/* Copyright (c) 2012 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "model/optical/OpticalLinkBackendTx.h" #include "util/Constants.h" #include "model/PortInfo.h" #include "model/TransitionInfo.h" #include "model/EventInfo.h" #include "model/electrical/MuxTreeSerializer.h" #include "model/electrical/BarrelShifter.h" #include "model/electrical/Multiplexer.h" #include namespace DSENT { // TODO: Kind of don't like the way thermal tuning is written here. Maybe will switch // to curve fitting the CICC paper, which uses results from a monte-carlo sim OpticalLinkBackendTx::OpticalLinkBackendTx(const String& instance_name_, const TechModel* tech_model_) : ElectricalModel(instance_name_, tech_model_) { initParameters(); initProperties(); } OpticalLinkBackendTx::~OpticalLinkBackendTx() {} void OpticalLinkBackendTx::initParameters() { addParameterName("InBits"); addParameterName("CoreDataRate"); addParameterName("LinkDataRate"); addParameterName("RingTuningMethod"); addParameterName("BitDuplicate"); return; } void OpticalLinkBackendTx::initProperties() { return; } void OpticalLinkBackendTx::constructModel() { unsigned int in_bits = getParameter("InBits"); double core_data_rate = getParameter("CoreDataRate"); double link_data_rate = getParameter("LinkDataRate"); const String& tuning_method = getParameter("RingTuningMethod");; bool bit_duplicate = getParameter("BitDuplicate"); // Calculate serialization ratio unsigned int serialization_ratio = (unsigned int) floor(link_data_rate / core_data_rate); ASSERT(serialization_ratio == link_data_rate / core_data_rate, "[Error] " + getInstanceName() + " -> Cannot have non-integer serialization ratios " + "(" + (String) (core_data_rate / link_data_rate) + ")!"); // Calculate output width ASSERT(floor((double) in_bits / serialization_ratio) == (double) in_bits / serialization_ratio, "[Error] " + getInstanceName() + " -> Input width (" + (String) in_bits + ") " + "must be a multiple of the serialization ratio (" + (String) serialization_ratio + ")!"); unsigned int out_bits = in_bits / serialization_ratio; getGenProperties()->set("SerializationRatio", serialization_ratio); getGenProperties()->set("OutBits", out_bits); // Create ports createInputPort("In", makeNetIndex(0, in_bits-1)); createInputPort("LinkCK"); createOutputPort("Out", makeNetIndex(0, out_bits-1)); //Create energy, power, and area results createElectricalResults(); // Create ring heating power cost addNddPowerResult(new AtomicResult("RingTuning")); // Create process bits event createElectricalEventResult("ProcessBits"); getEventInfo("ProcessBits")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) serialization_ratio / 2.0, 0.0)); // Set conditions during idle state getEventInfo("Idle")->setStaticTransitionInfos(); getEventInfo("Idle")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) serialization_ratio / 2.0, 0.0)); // Create serializer const String& serializer_name = "Serializer"; MuxTreeSerializer* serializer = new MuxTreeSerializer(serializer_name, getTechModel()); serializer->setParameter("InBits", in_bits); serializer->setParameter("InDataRate", core_data_rate); serializer->setParameter("OutDataRate", link_data_rate); serializer->setParameter("BitDuplicate", bit_duplicate); serializer->construct(); addSubInstances(serializer, 1.0); addElectricalSubResults(serializer, 1.0); getEventResult("ProcessBits")->addSubResult(serializer->getEventResult("Serialize"), serializer_name, 1.0); if ((tuning_method == "ThermalWithBitReshuffle") || (tuning_method == "ElectricalAssistWithBitReshuffle")) { // If a bit reshuffling backend is present, create the reshuffling backend unsigned int reorder_degree = getBitReorderDegree(); // Create intermediate nets createNet("SerializerIn", makeNetIndex(0, in_bits-1)); createNet("ReorderIn", makeNetIndex(0, out_bits+reorder_degree-1)); assign("ReorderIn", makeNetIndex(out_bits, out_bits+reorder_degree-1), "ReorderIn", makeNetIndex(0, reorder_degree-1)); // Create barrelshifter unsigned int shift_index_min = (unsigned int)ceil(log2(serialization_ratio)); unsigned int shift_index_max = std::max(shift_index_min, (unsigned int) ceil(log2(in_bits)) - 1); // Remember some things getGenProperties()->set("ReorderDegree", reorder_degree); getGenProperties()->set("ShiftIndexMin", shift_index_min); getGenProperties()->set("ShiftIndexMax", shift_index_max); const String& barrel_shift_name = "BarrelShifter"; BarrelShifter* barrel_shift = new BarrelShifter(barrel_shift_name, getTechModel()); barrel_shift->setParameter("NumberBits", in_bits); barrel_shift->setParameter("ShiftIndexMax", shift_index_max); barrel_shift->setParameter("ShiftIndexMin", shift_index_min); barrel_shift->setParameter("BitDuplicate", bit_duplicate); barrel_shift->construct(); // Create bit reorder muxes const String& reorder_mux_name = "ReorderMux"; Multiplexer* reorder_mux = new Multiplexer(reorder_mux_name, getTechModel()); reorder_mux->setParameter("NumberBits", out_bits); reorder_mux->setParameter("NumberInputs", reorder_degree); reorder_mux->setParameter("BitDuplicate", bit_duplicate); reorder_mux->construct(); // Connect barrelshifter // TODO: Connect barrelshift shifts! portConnect(barrel_shift, "In", "In"); portConnect(barrel_shift, "Out", "SerializerIn"); // Connect serializer portConnect(serializer, "In", "SerializerIn"); portConnect(serializer, "Out", "ReorderIn", makeNetIndex(0, out_bits-1)); portConnect(serializer, "OutCK", "LinkCK"); // Connect bit reorder muxes // TODO: Connect re-order multiplex select signals! for (unsigned int i = 0; i < reorder_degree; i++) portConnect(reorder_mux, "In" + (String) i, "ReorderIn", makeNetIndex(i, i+out_bits-1)); portConnect(reorder_mux, "Out", "Out"); addSubInstances(barrel_shift, 1.0); addSubInstances(reorder_mux, 1.0); addElectricalSubResults(barrel_shift, 1.0); addElectricalSubResults(reorder_mux, 1.0); getEventResult("ProcessBits")->addSubResult(barrel_shift->getEventResult("BarrelShift"), barrel_shift_name, 1.0); getEventResult("ProcessBits")->addSubResult(reorder_mux->getEventResult("Mux"), reorder_mux_name, 1.0); // This happens multiple times } else if ((tuning_method == "FullThermal") || (tuning_method == "AthermalWithTrim")) { // If no bit reshuffling backend is present, then just connect serializer up portConnect(serializer, "In", "In"); portConnect(serializer, "Out", "Out"); portConnect(serializer, "OutCK", "LinkCK"); } else { ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!"); } return; } void OpticalLinkBackendTx::updateModel() { // Update everyone Model::updateModel(); // Update ring tuning power getNddPowerResult("RingTuning")->setValue(getRingTuningPower()); return; } void OpticalLinkBackendTx::propagateTransitionInfo() { // Get parameters const String& tuning_method = getParameter("RingTuningMethod"); // Update the serializer if ((tuning_method == "ThermalWithBitReshuffle") || (tuning_method == "ElectricalAssistWithBitReshuffle")) { // Get generated properties unsigned int reorder_degree = getGenProperties()->get("ReorderDegree").toUInt(); unsigned int shift_index_min = getGenProperties()->get("ShiftIndexMin").toUInt(); unsigned int shift_index_max = getGenProperties()->get("ShiftIndexMax").toUInt(); // Update barrel shifter const String& barrel_shift_name = "BarrelShifter"; ElectricalModel* barrel_shift = (ElectricalModel*) getSubInstance(barrel_shift_name); propagatePortTransitionInfo(barrel_shift, "In", "In"); // Set shift transitions to be very low (since it is affected by slow temperature time constants) for (unsigned int i = shift_index_min; i <= shift_index_max; ++i) barrel_shift->getInputPort("Shift" + (String) i)->setTransitionInfo(TransitionInfo(0.499, 0.001, 0.499)); barrel_shift->use(); // Set serializer transition info ElectricalModel* serializer = (ElectricalModel*) getSubInstance("Serializer"); propagatePortTransitionInfo(serializer, "In", barrel_shift, "Out"); propagatePortTransitionInfo(serializer, "OutCK", "LinkCK"); serializer->use(); // Reorder mux shift select bits unsigned int reorder_sel_bits = (unsigned int)ceil(log2(reorder_degree)); // Reorder mux probabilities const String& reorder_mux_name = "ReorderMux"; ElectricalModel* reorder_mux = (ElectricalModel*) getSubInstance(reorder_mux_name); for (unsigned int i = 0; i < reorder_degree; ++i) propagatePortTransitionInfo(reorder_mux, "In" + (String) i, serializer, "Out"); // Set select transitions to be 0, since these are statically configured for (unsigned int i = 0; i < reorder_sel_bits; ++i) reorder_mux->getInputPort("Sel" + (String) i)->setTransitionInfo(TransitionInfo(0.5, 0.0, 0.5)); reorder_mux->use(); // Set output transition info propagatePortTransitionInfo("Out", reorder_mux, "Out"); } else if ((tuning_method == "FullThermal") || (tuning_method == "AthermalWithTrim")) { // Set serializer transition info ElectricalModel* serializer = (ElectricalModel*) getSubInstance("Serializer"); propagatePortTransitionInfo(serializer, "In", "In"); propagatePortTransitionInfo(serializer, "OutCK", "LinkCK"); serializer->use(); // Set output transition info propagatePortTransitionInfo("Out", serializer, "Out"); } return; } double OpticalLinkBackendTx::getRingTuningPower() { // Get properties const String& tuning_method = getParameter("RingTuningMethod");; unsigned int number_rings = getGenProperties()->get("OutBits"); // Get tech model parameters double R = getTechModel()->get("Ring->Radius"); double n_g = getTechModel()->get("Ring->GroupIndex"); double heating_efficiency = getTechModel()->get("Ring->HeatingEfficiency"); // This can actually be derived if we know thermo-optic coefficient (delta n / delta T) double tuning_efficiency = getTechModel()->get("Ring->TuningEfficiency"); double sigma_r_local = getTechModel()->get("Ring->LocalVariationSigma"); double sigma_r_systematic = getTechModel()->get("Ring->SystematicVariationSigma"); double T_max = getTechModel()->get("Ring->TemperatureMax"); double T_min = getTechModel()->get("Ring->TemperatureMin"); double T = getTechModel()->get("Temperature"); // Get constants double c = Constants::c; double pi = Constants::pi; double tuning_power = 0.0; if (tuning_method == "ThermalWithBitReshuffle") { // When an electrical backend is present, rings only have to tune to the nearest channel // This can be approximated as each ring tuning to something exactly 1 channel away // Setup calculations double L = 2 * pi * R; // Optical length double FSR = c / (n_g * L); // Free spectral range double freq_sep = FSR / number_rings; // Channel separation // Calculate tuning power tuning_power = number_rings * freq_sep / (tuning_efficiency * heating_efficiency); } else if (tuning_method == "ElectricalAssistWithBitReshuffle") { // Electrical assistance allows for a fraction of the tuning range to be // covered electrically. This is most pronounced when the tuning range is small, // such is the case when bit reshuffling is applied. The electrically // assisted part of it pretty much comes for free... // Get electrically tunable range double max_assist = getTechModel()->get("Ring->MaxElectricallyTunableFreq"); // Setup calculations double L = 2 * pi * R; // Optical length double FSR = c / (n_g * L); // Free spectral range double freq_sep = FSR / number_rings; // Channel separation double heating_range = std::max(0.0, freq_sep - max_assist); // The distance needed to bridge using heaters // Calculate tuning power, which is really only the power spent on heating since // distance tuned electrically is pretty much free tuning_power = number_rings * heating_range / (tuning_efficiency * heating_efficiency); } else if (tuning_method == "FullThermal") { // If there is no bit reshuffling backend, each ring must tune to an // absolute channel frequency. Since we can only heat rings (and not cool), // we can only red-shift (decrease frequency). Thus, a fabrication bias // must be applied such that under any process and temperature corner, the // ring resonance remains above channel resonance // I'll use 3 sigmas of sigma_r_local and sigma_r_systematic, and bias against // the full temperature range double fabrication_bias_freq = 3.0 * sqrt(pow(sigma_r_local, 2) + pow(sigma_r_systematic, 2)) + (T_max - T_min) * tuning_efficiency; // The local/systematic variations are 0 on average. Thus, the tuning distance can be calculated as double tuning_distance = fabrication_bias_freq - (T - T_min) * tuning_efficiency; // Tuning power needed is just the number of rings * tuning distance / (tuning and heating efficiencies) tuning_power = number_rings * tuning_distance / (tuning_efficiency * heating_efficiency); } else if (tuning_method == "AthermalWithTrim") { // Athermal! Each ring's process variations are trimmed! Everything is free! // Basically an ideal scenario tuning_power = 0; } else { ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!"); } return tuning_power; } unsigned int OpticalLinkBackendTx::getBitReorderDegree() { // Get properties unsigned int number_rings = getGenProperties()->get("OutBits"); // Get tech model parameters double R = getTechModel()->get("Ring->Radius"); double n_g = getTechModel()->get("Ring->GroupIndex"); // This can actually be derived if we know thermo-optic coefficient (delta n / delta T) double sigma_r_local = getTechModel()->get("Ring->LocalVariationSigma"); // Get constants double c = Constants::c; double pi = Constants::pi; // Calculates the degree of bit re-order multiplexing needed for bit-reshuffling backend // Bit reshuffling tuning is largely unaffected by sigma_r_systematic. However, sigma_r_local // Can potentially throw each ring to a channel several channels away. This just calculates // the degree of bit reorder muxing needed to realign bits in the correct order // Setup calculations double L = 2 * pi * R; // Optical length double FSR = c / (n_g * L); // Free spectral range double freq_sep = FSR / number_rings; // Channel separation // Using 4 sigmas as the worst re-ordering case (must double to get both sides) unsigned int worst_case_channels = (unsigned int)ceil(2.0 * 4.0 * sigma_r_local / freq_sep); return worst_case_channels; } } // namespace DSENT