/* Copyright (c) 2012 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "model/electrical/Multiplexer.h" #include #include "model/PortInfo.h" #include "model/TransitionInfo.h" #include "model/EventInfo.h" #include "model/timing_graph/ElectricalDriverMultiplier.h" #include "model/timing_graph/ElectricalNet.h" #include "model/std_cells/StdCell.h" #include "model/std_cells/StdCellLib.h" namespace DSENT { Multiplexer::Multiplexer(const String& instance_name_, const TechModel* tech_model_) : ElectricalModel(instance_name_, tech_model_) { initParameters(); initProperties(); } Multiplexer::~Multiplexer() {} void Multiplexer::initParameters() { addParameterName("NumberInputs"); addParameterName("NumberBits"); addParameterName("BitDuplicate", "TRUE"); addParameterName("IsTopLevel", "TRUE"); return; } void Multiplexer::initProperties() { return; } Multiplexer* Multiplexer::clone() const { return NULL; } void Multiplexer::constructModel() { // Get parameters unsigned int number_bits = (unsigned int) getParameter("NumberBits"); unsigned int number_inputs = (unsigned int) getParameter("NumberInputs"); unsigned int number_selects = (unsigned int) ceil(log2((double) number_inputs)); bool bit_duplicate = (bool) getParameter("BitDuplicate"); bool is_top_level = getParameter("IsTopLevel").toBool(); ASSERT(number_inputs > 0, "[Error] " + getInstanceName() + " -> Number of inputs must be > 0!"); ASSERT(number_bits > 0, "[Error] " + getInstanceName() + " -> Number of bits must be > 0!"); //Construct electrical ports and nets //Create each input port for(unsigned int i = 0; i < number_inputs; ++i) createInputPort( "In" + (String) i, makeNetIndex(0, number_bits-1)); //Create select signals for(unsigned int i = 0; i < number_selects; ++i) { createInputPort( "Sel" + (String)i); } //Create output createOutputPort( "Out", makeNetIndex(0, number_bits-1)); //Create energy, power, and area results createElectricalResults(); getEventInfo("Idle")->setStaticTransitionInfos(); createElectricalEventResult("Mux"); //Number of inputs on the 0 side unsigned int inputs_0 = (unsigned int) ceil((double) number_inputs / 2.0); unsigned int selects_0 = (unsigned int) ceil(log2((double) inputs_0)); //Number of inputs on the 1 side unsigned int inputs_1 = (unsigned int) floor((double) number_inputs / 2.0); unsigned int selects_1 = (unsigned int) ceil(log2((double) inputs_1)); //Depending on whether we want to create a 1-bit instance and have it multiplied //up by number of bits or actually instantiate number_bits of 1-bit instances. //Recursively instantiates smaller multiplexers if (bit_duplicate || number_bits == 1) { //If it is just a 1-input multiplexer, just connect output to input and be done if (number_inputs == 1) { assign("Out", "In0"); } else { //If it is more than 1 input, instantiate two sub multiplexers (Mux_way0 and Mux_way1) //and create a final 2:1 mux (muxf) to select between them String mux0_name = "Mux_way0"; String mux1_name = "Mux_way1"; String muxf_name = "Mux2_i" + (String)number_inputs; Multiplexer* mux0 = new Multiplexer(mux0_name, getTechModel()); mux0->setParameter("NumberInputs", inputs_0); mux0->setParameter("NumberBits", 1); mux0->setParameter("BitDuplicate", "TRUE"); mux0->setParameter("IsTopLevel", "FALSE"); mux0->construct(); Multiplexer* mux1 = new Multiplexer(mux1_name, getTechModel()); mux1->setParameter("NumberInputs", inputs_1); mux1->setParameter("NumberBits", 1); mux1->setParameter("BitDuplicate", "TRUE"); mux1->setParameter("IsTopLevel", "FALSE"); mux1->construct(); StdCell* muxf = getTechModel()->getStdCellLib()->createStdCell("MUX2", muxf_name); muxf->construct(); // TODO hack // create selector driver at the top level if(is_top_level) { for(unsigned int i = 0; i < number_selects; ++i) { StdCell* selinv0 = getTechModel()->getStdCellLib()->createStdCell("INV", String::format("Sel%dInv0", i)); StdCell* selinv1 = getTechModel()->getStdCellLib()->createStdCell("INV", String::format("Sel%dInv1", i)); selinv0->construct(); selinv1->construct(); addSubInstances(selinv0, 1.0); addElectricalSubResults(selinv0, 1.0); addSubInstances(selinv1, 1.0); addElectricalSubResults(selinv1, 1.0); getEventResult("Mux")->addSubResult(selinv0->getEventResult("INV"), String::format("Sel%dInv0", i), 1.0); getEventResult("Mux")->addSubResult(selinv1->getEventResult("INV"), String::format("Sel%dInv1", i), 1.0); } } //Create outputs of way0 and way1 multiplexers with final mux createNet("way0Out"); createNet("way1Out"); portConnect(mux0, "Out", "way0Out"); portConnect(mux1, "Out", "way1Out"); portConnect(muxf, "A", "way0Out"); portConnect(muxf, "B", "way1Out"); // TODO hack // Connect selector bits if(is_top_level) { for(unsigned int i = 0; i < number_selects; ++i) { ElectricalModel* selinv0 = (ElectricalModel*)getSubInstance(String::format("Sel%dInv0", i)); ElectricalModel* selinv1 = (ElectricalModel*)getSubInstance(String::format("Sel%dInv1", i)); createNet("SelInv" + (String)i); createNet("SelBuf" + (String)i); portConnect(selinv0, "A", "Sel" + (String)i); portConnect(selinv0, "Y", "SelInv" + (String)i); portConnect(selinv1, "A", "SelInv" + (String)i); portConnect(selinv1, "Y", "SelBuf" + (String)i); } } //Connect inputs to the sub multiplexers. //Note that multiple inputs are connected to the mux0 and mux1 input and the //selector signals are connected multiple times. This is just so that everything //is loaded appropriately since bit duplication is applied for (unsigned int n = 0; n < number_bits; ++n) { //Connect inputs for (unsigned int i = 0; i < inputs_0; ++i) portConnect(mux0, "In" + (String) i, "In" + (String) i, makeNetIndex(n)); for (unsigned int i = 0; i < inputs_1; ++i) portConnect(mux1, "In" + (String) i, "In" + (String) (i + inputs_0), makeNetIndex(n)); // TODO hack if(is_top_level) { //Connect selector bits for (unsigned int i = 0; i < selects_0; ++i) portConnect(mux0, "Sel" + (String)i, "SelBuf" + (String)i); for (unsigned int i = 0; i < selects_1; ++i) portConnect(mux1, "Sel" + (String)i, "SelBuf" + (String)i); portConnect(muxf, "S0", "SelBuf" + (String)(number_selects - 1)); } else { //Connect selector bits for (unsigned int i = 0; i < selects_0; ++i) portConnect(mux0, "Sel" + (String)i, "Sel" + (String)i); for (unsigned int i = 0; i < selects_1; ++i) portConnect(mux1, "Sel" + (String)i, "Sel" + (String)i); portConnect(muxf, "S0", "Sel" + (String)(number_selects - 1)); } } //Connect final mux to outputs //Because we use bit duplication and so there is only only one multiplexer //instance, we must use driver multiplier to drive each output appropriately if (number_bits == 1) portConnect(muxf, "Y", "Out"); else { createNet("OutTemp"); createDriverMultiplier("OutMult"); ElectricalDriverMultiplier* drive_mult = getDriverMultiplier("OutMult"); portConnect(muxf, "Y", "OutTemp"); getNet("OutTemp")->addDownstreamNode(drive_mult); for (unsigned int n = 0; n < number_bits; ++n) drive_mult->addDownstreamNode(getNet("Out", makeNetIndex(n))); } //Add area, power, and event results for each mux addSubInstances(mux0, number_bits); addElectricalSubResults(mux0, number_bits); addSubInstances(mux1, number_bits); addElectricalSubResults(mux1, number_bits); addSubInstances(muxf, number_bits); addElectricalSubResults(muxf, number_bits); getEventResult("Mux")->addSubResult(mux0->getEventResult("Mux"), mux0_name, number_bits); getEventResult("Mux")->addSubResult(mux1->getEventResult("Mux"), mux1_name, number_bits); getEventResult("Mux")->addSubResult(muxf->getEventResult("MUX2"), muxf_name, number_bits); } } else { //Instantiate a bunch of 1-bit multiplexers for (unsigned int n = 0; n < number_bits; ++n) { String mux_name = "Mux_bit" + (String) n; Multiplexer* mux = new Multiplexer(mux_name, getTechModel()); mux->setParameter("NumberInputs", number_inputs); mux->setParameter("NumberBits", 1); mux->setParameter("BitDuplicate", "TRUE"); mux->construct(); // Connect inputs for (unsigned int i = 0; i < number_inputs; ++i) portConnect(mux, "In" + (String) i, "In" + (String) i, makeNetIndex(n)); for(unsigned int i = 0; i < number_selects; ++i) portConnect(mux, "Sel" + (String)i, "Sel" + (String)i); portConnect(mux, "Out", "Out", makeNetIndex(n)); //Add area, power, and event results for each mux addSubInstances(mux, 1.0); addElectricalSubResults(mux, 1.0); getEventResult("Mux")->addSubResult(mux->getEventResult("Mux"), mux_name, 1.0); } } return; } void Multiplexer::propagateTransitionInfo() { // The only thing can be updated are the input probabilities...so we will update them unsigned int number_bits = (unsigned int) getParameter("NumberBits"); unsigned int number_inputs = (unsigned int) getParameter("NumberInputs"); unsigned int number_selects = (unsigned int) ceil(log2((double) number_inputs)); bool bit_duplicate = (bool) getParameter("BitDuplicate"); bool is_top_level = getParameter("IsTopLevel").toBool(); //Number of inputs on the 0 side unsigned int inputs_0 = (unsigned int) ceil((double) number_inputs / 2.0); unsigned int selects_0 = (unsigned int) ceil(log2((double) inputs_0)); //Number of inputs on the 1 side unsigned int inputs_1 = (unsigned int) floor((double) number_inputs / 2.0); unsigned int selects_1 = (unsigned int) ceil(log2((double) inputs_1)); if (bit_duplicate || number_bits == 1) { if (number_inputs == 1) { //If theres only 1 input, output transition = input transition propagatePortTransitionInfo("Out", "In0"); } else { // Update sub muxes with appropriate probabilities ElectricalModel* mux0 = (ElectricalModel*)getSubInstance("Mux_way0"); for(unsigned int i = 0; i < inputs_0; ++i) { propagatePortTransitionInfo(mux0, "In" + (String)i, "In" + (String)i); } for(unsigned int i = 0; i < selects_0; ++i) { propagatePortTransitionInfo(mux0, "Sel" + (String)i, "Sel" + (String)i); } mux0->use(); ElectricalModel* mux1 = (ElectricalModel*)getSubInstance("Mux_way1"); for(unsigned int i = 0; i < inputs_1; ++i) { propagatePortTransitionInfo(mux1, "In" + (String)i, "In" + (String)(i + inputs_0)); } for(unsigned int i = 0; i < selects_1; ++i) { propagatePortTransitionInfo(mux1, "Sel" + (String)i, "Sel" + (String)i); } mux1->use(); ElectricalModel* muxf = (ElectricalModel*)getSubInstance("Mux2_i" + (String)number_inputs); propagatePortTransitionInfo(muxf, "A", mux0, "Out"); propagatePortTransitionInfo(muxf, "B", mux1, "Out"); propagatePortTransitionInfo(muxf, "S0", "Sel" + (String)(number_selects-1)); muxf->use(); // TODO hack if(is_top_level) { for(unsigned int i = 0; i < number_selects; ++i) { ElectricalModel* selinv0 = (ElectricalModel*)getSubInstance(String::format("Sel%dInv0", i)); ElectricalModel* selinv1 = (ElectricalModel*)getSubInstance(String::format("Sel%dInv1", i)); propagatePortTransitionInfo(selinv0, "A", "Sel" + (String)i); selinv0->use(); propagatePortTransitionInfo(selinv1, "A", selinv0, "Y"); selinv1->use(); } } // Set output transition propagatePortTransitionInfo("Out", muxf, "Y"); } } else { // Go through each bit and set the appropriate probability for (unsigned int n = 0; n < number_bits; ++n) { ElectricalModel* mux_bit = (ElectricalModel*)getSubInstance("Mux_bit" + (String) n); for(unsigned int i = 0; i < number_inputs; ++i) { propagatePortTransitionInfo(mux_bit, "In" + (String)i, "In" + (String)i); } for(unsigned int i = 0; i < number_selects; ++i) { propagatePortTransitionInfo(mux_bit, "Sel" + (String)i, "Sel" + (String)i); } mux_bit->use(); } // Set output probability to be average that of probabilties of each output bit ElectricalModel* mux_bit = (ElectricalModel*)getSubInstance("Mux_bit0"); propagatePortTransitionInfo("Out", mux_bit, "Out"); } return; } } // namespace DSENT