#ifndef __CPU_OZONE_THREAD_STATE_HH__ #define __CPU_OZONE_THREAD_STATE_HH__ #include "arch/faults.hh" #include "arch/isa_traits.hh" #include "cpu/exec_context.hh" #include "cpu/thread_state.hh" #include "sim/process.hh" class Event; //class Process; #if FULL_SYSTEM class EndQuiesceEvent; class FunctionProfile; class ProfileNode; #else class Process; class FunctionalMemory; #endif // Maybe this ozone thread state should only really have committed state? // I need to think about why I'm using this and what it's useful for. Clearly // has benefits for SMT; basically serves same use as CPUExecContext. // Makes the ExecContext proxy easier. Gives organization/central access point // to state of a thread that can be accessed normally (i.e. not in-flight // stuff within a OoO processor). Does this need an XC proxy within it? template struct OzoneThreadState : public ThreadState { typedef typename ExecContext::Status Status; typedef typename Impl::FullCPU FullCPU; typedef TheISA::MiscReg MiscReg; #if FULL_SYSTEM OzoneThreadState(FullCPU *_cpu, int _thread_num, FunctionalMemory *_mem) : ThreadState(-1, _thread_num, _mem), inSyscall(0), trapPending(0) { memset(®s, 0, sizeof(TheISA::RegFile)); } #else OzoneThreadState(FullCPU *_cpu, int _thread_num, Process *_process, int _asid) : ThreadState(-1, _thread_num, _process->getMemory(), _process, _asid), cpu(_cpu), inSyscall(0), trapPending(0) { memset(®s, 0, sizeof(TheISA::RegFile)); } OzoneThreadState(FullCPU *_cpu, int _thread_num, FunctionalMemory *_mem, int _asid) : ThreadState(-1, _thread_num, _mem, NULL, _asid), cpu(_cpu), inSyscall(0), trapPending(0) { memset(®s, 0, sizeof(TheISA::RegFile)); } #endif Status _status; Status status() const { return _status; } void setStatus(Status new_status) { _status = new_status; } RenameTable renameTable; // Should I include backend and frontend // tables here? For the ozone CPU, maybe, for the new full CPU, probably // not...you wouldn't want threads just accessing the backend/frontend // rename tables. Addr PC; // What should these be set to? Probably the committed ones. Addr nextPC; // Current instruction? TheISA::MachInst inst; TheISA::RegFile regs; // Front end? Back end? // MemReqPtr memReq; typename Impl::FullCPU *cpu; bool inSyscall; bool trapPending; ExecContext *xcProxy; ExecContext *getXCProxy() { return xcProxy; } #if !FULL_SYSTEM Fault dummyTranslation(MemReqPtr &req) { #if 0 assert((req->vaddr >> 48 & 0xffff) == 0); #endif // put the asid in the upper 16 bits of the paddr req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16); req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16; return NoFault; } Fault translateInstReq(MemReqPtr &req) { return dummyTranslation(req); } Fault translateDataReadReq(MemReqPtr &req) { return dummyTranslation(req); } Fault translateDataWriteReq(MemReqPtr &req) { return dummyTranslation(req); } #else Fault translateInstReq(MemReqPtr &req) { return cpu->itb->translate(req); } Fault translateDataReadReq(MemReqPtr &req) { return cpu->dtb->translate(req, false); } Fault translateDataWriteReq(MemReqPtr &req) { return cpu->dtb->translate(req, true); } #endif MiscReg readMiscReg(int misc_reg) { return regs.miscRegs.readReg(misc_reg); } MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault) { return regs.miscRegs.readRegWithEffect(misc_reg, fault, xcProxy); } Fault setMiscReg(int misc_reg, const MiscReg &val) { return regs.miscRegs.setReg(misc_reg, val); } Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val) { return regs.miscRegs.setRegWithEffect(misc_reg, val, xcProxy); } uint64_t readPC() { return PC; } void setPC(uint64_t val) { PC = val; } uint64_t readNextPC() { return nextPC; } void setNextPC(uint64_t val) { nextPC = val; } bool misspeculating() { return false; } void setInst(TheISA::MachInst _inst) { inst = _inst; } Counter readFuncExeInst() { return funcExeInst; } void setFuncExeInst(Counter new_val) { funcExeInst = new_val; } }; #endif // __CPU_OZONE_THREAD_STATE_HH__