/* * Copyright (c) 2004-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __CPU_O3_ALPHA_FULL_CPU_HH__ #define __CPU_O3_ALPHA_FULL_CPU_HH__ #include "arch/isa_traits.hh" #include "cpu/exec_context.hh" #include "cpu/o3/cpu.hh" #include "sim/byteswap.hh" template class AlphaFullCPU : public FullO3CPU { protected: typedef TheISA::IntReg IntReg; typedef TheISA::MiscReg MiscReg; typedef TheISA::RegFile RegFile; typedef TheISA::MiscRegFile MiscRegFile; public: typedef O3ThreadState ImplState; typedef O3ThreadState Thread; typedef typename Impl::Params Params; /** Constructs an AlphaFullCPU with the given parameters. */ AlphaFullCPU(Params *params); class AlphaXC : public ExecContext { public: AlphaFullCPU *cpu; O3ThreadState *thread; Tick lastActivate; Tick lastSuspend; Event *quiesceEvent; virtual BaseCPU *getCpuPtr() { return cpu; } virtual void setCpuId(int id) { cpu->cpu_id = id; } virtual int readCpuId() { return cpu->cpu_id; } virtual FunctionalMemory *getMemPtr() { return thread->mem; } #if FULL_SYSTEM virtual System *getSystemPtr() { return cpu->system; } virtual PhysicalMemory *getPhysMemPtr() { return cpu->physmem; } virtual AlphaITB *getITBPtr() { return cpu->itb; } virtual AlphaDTB * getDTBPtr() { return cpu->dtb; } #else virtual Process *getProcessPtr() { return thread->process; } #endif virtual Status status() const { return thread->status(); } virtual void setStatus(Status new_status) { thread->setStatus(new_status); } /// Set the status to Active. Optional delay indicates number of /// cycles to wait before beginning execution. virtual void activate(int delay = 1); /// Set the status to Suspended. virtual void suspend(); /// Set the status to Unallocated. virtual void deallocate(); /// Set the status to Halted. virtual void halt(); #if FULL_SYSTEM virtual void dumpFuncProfile(); #endif virtual void takeOverFrom(ExecContext *old_context); virtual void regStats(const std::string &name); virtual void serialize(std::ostream &os); virtual void unserialize(Checkpoint *cp, const std::string §ion); #if FULL_SYSTEM virtual Event *getQuiesceEvent(); // Not necessarily the best location for these... // Having an extra function just to read these is obnoxious virtual Tick readLastActivate(); virtual Tick readLastSuspend(); virtual void profileClear(); virtual void profileSample(); #endif virtual int getThreadNum() { return thread->tid; } // Also somewhat obnoxious. Really only used for the TLB fault. // However, may be quite useful in SPARC. virtual TheISA::MachInst getInst(); virtual void copyArchRegs(ExecContext *xc); virtual void clearArchRegs(); // // New accessors for new decoder. // virtual uint64_t readIntReg(int reg_idx); virtual float readFloatRegSingle(int reg_idx); virtual double readFloatRegDouble(int reg_idx); virtual uint64_t readFloatRegInt(int reg_idx); virtual void setIntReg(int reg_idx, uint64_t val); virtual void setFloatRegSingle(int reg_idx, float val); virtual void setFloatRegDouble(int reg_idx, double val); virtual void setFloatRegInt(int reg_idx, uint64_t val); virtual uint64_t readPC() { return cpu->readPC(thread->tid); } virtual void setPC(uint64_t val); virtual uint64_t readNextPC() { return cpu->readNextPC(thread->tid); } virtual void setNextPC(uint64_t val); virtual MiscReg readMiscReg(int misc_reg) { return cpu->readMiscReg(misc_reg, thread->tid); } virtual MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault) { return cpu->readMiscRegWithEffect(misc_reg, fault, thread->tid); } virtual Fault setMiscReg(int misc_reg, const MiscReg &val); virtual Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val); // Also not necessarily the best location for these two. // Hopefully will go away once we decide upon where st cond // failures goes. virtual unsigned readStCondFailures() { return thread->storeCondFailures; } virtual void setStCondFailures(unsigned sc_failures) { thread->storeCondFailures = sc_failures; } #if FULL_SYSTEM virtual bool inPalMode() { return TheISA::PcPAL(cpu->readPC(thread->tid)); } #endif // Only really makes sense for old CPU model. Still could be useful though. virtual bool misspeculating() { return false; } #if !FULL_SYSTEM virtual IntReg getSyscallArg(int i); // used to shift args for indirect syscall virtual void setSyscallArg(int i, IntReg val); virtual void setSyscallReturn(SyscallReturn return_value); virtual void syscall() { return cpu->syscall(thread->tid); } // Same with st cond failures. virtual Counter readFuncExeInst() { return thread->funcExeInst; } #endif }; friend class AlphaXC; std::vector xcProxies; #if FULL_SYSTEM /** ITB pointer. */ AlphaITB *itb; /** DTB pointer. */ AlphaDTB *dtb; #endif /** Registers statistics. */ void regStats(); #if FULL_SYSTEM //Note that the interrupt stuff from the base CPU might be somewhat //ISA specific (ie NumInterruptLevels). These functions might not //be needed in FullCPU though. // void post_interrupt(int int_num, int index); // void clear_interrupt(int int_num, int index); // void clear_interrupts(); /** Translates instruction requestion. */ Fault translateInstReq(MemReqPtr &req) { return itb->translate(req); } /** Translates data read request. */ Fault translateDataReadReq(MemReqPtr &req) { return dtb->translate(req, false); } /** Translates data write request. */ Fault translateDataWriteReq(MemReqPtr &req) { return dtb->translate(req, true); } #else Fault dummyTranslation(MemReqPtr &req) { #if 0 assert((req->vaddr >> 48 & 0xffff) == 0); #endif // put the asid in the upper 16 bits of the paddr req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16); req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16; return NoFault; } /** Translates instruction requestion in syscall emulation mode. */ Fault translateInstReq(MemReqPtr &req) { return dummyTranslation(req); } /** Translates data read request in syscall emulation mode. */ Fault translateDataReadReq(MemReqPtr &req) { return dummyTranslation(req); } /** Translates data write request in syscall emulation mode. */ Fault translateDataWriteReq(MemReqPtr &req) { return dummyTranslation(req); } #endif // Later on may want to remove this misc stuff from the regfile and // have it handled at this level. This would be similar to moving certain // IPRs into the devices themselves. Might prove to be an issue when // trying to rename source/destination registers... MiscReg readMiscReg(int misc_reg, unsigned tid); MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault, unsigned tid); Fault setMiscReg(int misc_reg, const MiscReg &val, unsigned tid); Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val, unsigned tid); void squashFromXC(unsigned tid); #if FULL_SYSTEM void post_interrupt(int int_num, int index); int readIntrFlag(); /** Sets the interrupt flags. */ void setIntrFlag(int val); /** HW return from error interrupt. */ Fault hwrei(unsigned tid); /** Returns if a specific PC is a PAL mode PC. */ bool inPalMode(uint64_t PC) { return AlphaISA::PcPAL(PC); } /** Traps to handle given fault. */ void trap(Fault fault, unsigned tid); bool simPalCheck(int palFunc); /** Processes any interrupts. */ void processInterrupts(); #endif #if !FULL_SYSTEM // Need to change these into regfile calls that directly set a certain // register. Actually, these functions should handle most of this // functionality by themselves; should look up the rename and then // set the register. /** Gets a syscall argument. */ IntReg getSyscallArg(int i, int tid); /** Used to shift args for indirect syscall. */ void setSyscallArg(int i, IntReg val, int tid); /** Sets the return value of a syscall. */ void setSyscallReturn(SyscallReturn return_value, int tid); /** Executes a syscall. * @todo: Determine if this needs to be virtual. */ virtual void syscall(int thread_num); #endif public: #if FULL_SYSTEM /** Halts the CPU. */ void halt() { panic("Halt not implemented!\n"); } #endif /** Old CPU read from memory function. No longer used. */ template Fault read(MemReqPtr &req, T &data) { // panic("CPU READ NOT IMPLEMENTED W/NEW MEMORY\n"); #if 0 #if FULL_SYSTEM && defined(TARGET_ALPHA) if (req->flags & LOCKED) { req->xc->setMiscReg(TheISA::Lock_Addr_DepTag, req->paddr); req->xc->setMiscReg(TheISA::Lock_Flag_DepTag, true); } #endif #endif Fault error; if (req->flags & LOCKED) { lockAddr = req->paddr; lockFlag = true; } error = this->mem->read(req, data); data = gtoh(data); return error; } /** CPU read function, forwards read to LSQ. */ template Fault read(MemReqPtr &req, T &data, int load_idx) { return this->iew.ldstQueue.read(req, data, load_idx); } /** Old CPU write to memory function. No longer used. */ template Fault write(MemReqPtr &req, T &data) { #if 0 #if FULL_SYSTEM && defined(TARGET_ALPHA) ExecContext *xc; // If this is a store conditional, act appropriately if (req->flags & LOCKED) { xc = req->xc; if (req->flags & UNCACHEABLE) { // Don't update result register (see stq_c in isa_desc) req->result = 2; xc->setStCondFailures(0);//Needed? [RGD] } else { bool lock_flag = xc->readMiscReg(TheISA::Lock_Flag_DepTag); Addr lock_addr = xc->readMiscReg(TheISA::Lock_Addr_DepTag); req->result = lock_flag; if (!lock_flag || ((lock_addr & ~0xf) != (req->paddr & ~0xf))) { xc->setMiscReg(TheISA::Lock_Flag_DepTag, false); xc->setStCondFailures(xc->readStCondFailures() + 1); if (((xc->readStCondFailures()) % 100000) == 0) { std::cerr << "Warning: " << xc->readStCondFailures() << " consecutive store conditional failures " << "on cpu " << req->xc->readCpuId() << std::endl; } return NoFault; } else xc->setStCondFailures(0); } } // Need to clear any locked flags on other proccessors for // this address. Only do this for succsful Store Conditionals // and all other stores (WH64?). Unsuccessful Store // Conditionals would have returned above, and wouldn't fall // through. for (int i = 0; i < this->system->execContexts.size(); i++){ xc = this->system->execContexts[i]; if ((xc->readMiscReg(TheISA::Lock_Addr_DepTag) & ~0xf) == (req->paddr & ~0xf)) { xc->setMiscReg(TheISA::Lock_Flag_DepTag, false); } } #endif #endif if (req->flags & LOCKED) { if (req->flags & UNCACHEABLE) { req->result = 2; } else { if (this->lockFlag/* && this->lockAddr == req->paddr*/) { req->result = 1; } else { req->result = 0; return NoFault; } } } return this->mem->write(req, (T)htog(data)); } /** CPU write function, forwards write to LSQ. */ template Fault write(MemReqPtr &req, T &data, int store_idx) { return this->iew.ldstQueue.write(req, data, store_idx); } Addr lockAddr; bool lockFlag; }; #endif // __CPU_O3_ALPHA_FULL_CPU_HH__