/* * Copyright (c) 2004-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Erik Hallnor */ /** * @file * Definition of a memory trace CPU object for optimal caches. Uses a memory * trace to access a fully associative cache with optimal replacement. */ #include // For heap functions. #include "cpu/trace/opt_cpu.hh" #include "cpu/trace/reader/mem_trace_reader.hh" #include "params/OptCPU.hh" #include "sim/sim_events.hh" using namespace std; OptCPU::OptCPU(const string &name, MemTraceReader *_trace, int block_size, int cache_size, int _assoc) : SimObject(name), tickEvent(this), trace(_trace), numBlks(cache_size/block_size), assoc(_assoc), numSets(numBlks/assoc), setMask(numSets - 1) { int log_block_size = 0; int tmp_block_size = block_size; while (tmp_block_size > 1) { ++log_block_size; tmp_block_size = tmp_block_size >> 1; } assert(1<getNextReq(req); refInfo.resize(numSets); while (req) { RefInfo temp; temp.addr = req->paddr >> log_block_size; int set = temp.addr & setMask; refInfo[set].push_back(temp); trace->getNextReq(req); } // Initialize top level of lookup table. lookupTable.resize(16); // Annotate references with next ref time. for (int k = 0; k < numSets; ++k) { for (RefIndex i = refInfo[k].size() - 1; i >= 0; --i) { Addr addr = refInfo[k][i].addr; initTable(addr, InfiniteRef); refInfo[k][i].nextRefTime = lookupValue(addr); setValue(addr, i); } } // Reset the lookup table for (int j = 0; j < 16; ++j) { if (lookupTable[j].size() == (1<<16)) { for (int k = 0; k < (1<<16); ++k) { if (lookupTable[j][k].size() == (1<<16)) { for (int l = 0; l < (1<<16); ++l) { lookupTable[j][k][l] = -1; } } } } } tickEvent.schedule(0); hits = 0; misses = 0; } void OptCPU::processSet(int set) { // Initialize cache int blks_in_cache = 0; RefIndex i = 0; cacheHeap.clear(); cacheHeap.resize(assoc); while (blks_in_cache < assoc) { RefIndex cache_index = lookupValue(refInfo[set][i].addr); if (cache_index == -1) { // First reference to this block misses++; cache_index = blks_in_cache++; setValue(refInfo[set][i].addr, cache_index); } else { hits++; } // update cache heap to most recent reference cacheHeap[cache_index] = i; if (++i >= refInfo[set].size()) { return; } } for (int start = assoc/2; start >= 0; --start) { heapify(set,start); } //verifyHeap(set,0); for (; i < refInfo[set].size(); ++i) { RefIndex cache_index = lookupValue(refInfo[set][i].addr); if (cache_index == -1) { // miss misses++; // replace from cacheHeap[0] // mark replaced block as absent setValue(refInfo[set][cacheHeap[0]].addr, -1); setValue(refInfo[set][i].addr, 0); cacheHeap[0] = i; heapify(set, 0); // Make sure its in the cache assert(lookupValue(refInfo[set][i].addr) != -1); } else { // hit hits++; assert(refInfo[set][cacheHeap[cache_index]].addr == refInfo[set][i].addr); assert(refInfo[set][cacheHeap[cache_index]].nextRefTime == i); assert(heapLeft(cache_index) >= assoc); cacheHeap[cache_index] = i; processRankIncrease(set, cache_index); assert(lookupValue(refInfo[set][i].addr) != -1); } } } void OptCPU::tick() { // Do opt simulation int references = 0; for (int set = 0; set < numSets; ++set) { if (!refInfo[set].empty()) { processSet(set); } references += refInfo[set].size(); } // exit; fprintf(stderr,"sys.cpu.misses %d #opt cache misses\n",misses); fprintf(stderr,"sys.cpu.hits %d #opt cache hits\n", hits); fprintf(stderr,"sys.cpu.accesses %d #opt cache acceses\n", references); exitSimLoop("end of memory trace reached"); } void OptCPU::initTable(Addr addr, RefIndex index) { int l1_index = (addr >> 32) & 0x0f; int l2_index = (addr >> 16) & 0xffff; assert(l1_index == addr >> 32); if (lookupTable[l1_index].size() != (1<<16)) { lookupTable[l1_index].resize(1<<16); } if (lookupTable[l1_index][l2_index].size() != (1<<16)) { lookupTable[l1_index][l2_index].resize(1<<16, index); } } OptCPU::TickEvent::TickEvent(OptCPU *c) : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c) { } void OptCPU::TickEvent::process() { cpu->tick(); } const char * OptCPU::TickEvent::description() { return "OptCPU tick event"; } OptCPU * OptCPUParams::create() { return new OptCPU(name, data_trace, block_size, size, assoc); }