/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Unordered buffer of messages that can be inserted such * that they can be dequeued after a given delta time has expired. */ #ifndef __MEM_RUBY_BUFFERS_MESSAGEBUFFER_HH__ #define __MEM_RUBY_BUFFERS_MESSAGEBUFFER_HH__ #include #include #include #include #include #include #include "base/trace.hh" #include "debug/RubyQueue.hh" #include "mem/ruby/common/Address.hh" #include "mem/ruby/common/Consumer.hh" #include "mem/ruby/slicc_interface/Message.hh" #include "mem/packet.hh" #include "params/MessageBuffer.hh" #include "sim/sim_object.hh" class MessageBuffer : public SimObject { public: typedef MessageBufferParams Params; MessageBuffer(const Params *p); void reanalyzeMessages(Addr addr, Tick current_time); void reanalyzeAllMessages(Tick current_time); void stallMessage(Addr addr, Tick current_time); // TRUE if head of queue timestamp <= SystemTime bool isReady(Tick current_time) const; void delayHead(Tick current_time, Tick delta) { MsgPtr m = m_prio_heap.front(); std::pop_heap(m_prio_heap.begin(), m_prio_heap.end(), std::greater()); m_prio_heap.pop_back(); enqueue(m, current_time, delta); } bool areNSlotsAvailable(unsigned int n, Tick curTime); int getPriority() { return m_priority_rank; } void setPriority(int rank) { m_priority_rank = rank; } void setConsumer(Consumer* consumer) { DPRINTF(RubyQueue, "Setting consumer: %s\n", *consumer); if (m_consumer != NULL) { fatal("Trying to connect %s to MessageBuffer %s. \ \n%s already connected. Check the cntrl_id's.\n", *consumer, *this, *m_consumer); } m_consumer = consumer; } Consumer* getConsumer() { return m_consumer; } bool getOrdered() { return m_strict_fifo; } //! Function for extracting the message at the head of the //! message queue. The function assumes that the queue is nonempty. const Message* peek() const; const MsgPtr &peekMsgPtr() const { return m_prio_heap.front(); } void enqueue(MsgPtr message, Tick curTime, Tick delta); //! Updates the delay cycles of the message at the head of the queue, //! removes it from the queue and returns its total delay. Tick dequeue(Tick current_time, bool decrement_messages = true); void registerDequeueCallback(std::function callback); void unregisterDequeueCallback(); void recycle(Tick current_time, Tick recycle_latency); bool isEmpty() const { return m_prio_heap.size() == 0; } bool isStallMapEmpty() { return m_stall_msg_map.size() == 0; } unsigned int getStallMapSize() { return m_stall_msg_map.size(); } unsigned int getSize(Tick curTime); void clear(); void print(std::ostream& out) const; void clearStats() { m_not_avail_count = 0; m_msg_counter = 0; } void setIncomingLink(int link_id) { m_input_link_id = link_id; } void setVnet(int net) { m_vnet_id = net; } void regStats(); // Function for figuring out if any of the messages in the buffer need // to be updated with the data from the packet. // Return value indicates the number of messages that were updated. // This required for debugging the code. uint32_t functionalWrite(Packet *pkt); private: void reanalyzeList(std::list &, Tick); private: // Data Members (m_ prefix) //! Consumer to signal a wakeup(), can be NULL Consumer* m_consumer; std::vector m_prio_heap; std::function m_dequeue_callback; // use a std::map for the stalled messages as this container is // sorted and ensures a well-defined iteration order typedef std::map > StallMsgMapType; /** * A map from line addresses to lists of stalled messages for that line. * If this buffer allows the receiver to stall messages, on a stall * request, the stalled message is removed from the m_prio_heap and placed * in the m_stall_msg_map. Messages are held there until the receiver * requests they be reanalyzed, at which point they are moved back to * m_prio_heap. * * NOTE: The stall map holds messages in the order in which they were * initially received, and when a line is unblocked, the messages are * moved back to the m_prio_heap in the same order. This prevents starving * older requests with younger ones. */ StallMsgMapType m_stall_msg_map; /** * Current size of the stall map. * Track the number of messages held in stall map lists. This is used to * ensure that if the buffer is finite-sized, it blocks further requests * when the m_prio_heap and m_stall_msg_map contain m_max_size messages. */ int m_stall_map_size; /** * The maximum capacity. For finite-sized buffers, m_max_size stores a * number greater than 0 to indicate the maximum allowed number of messages * in the buffer at any time. To get infinitely-sized buffers, set buffer * size: m_max_size = 0 */ const unsigned int m_max_size; Tick m_time_last_time_size_checked; unsigned int m_size_last_time_size_checked; // variables used so enqueues appear to happen immediately, while // pop happen the next cycle Tick m_time_last_time_enqueue; Tick m_time_last_time_pop; Tick m_last_arrival_time; unsigned int m_size_at_cycle_start; unsigned int m_msgs_this_cycle; Stats::Scalar m_not_avail_count; // count the # of times I didn't have N // slots available uint64_t m_msg_counter; int m_priority_rank; const bool m_strict_fifo; const bool m_randomization; int m_input_link_id; int m_vnet_id; Stats::Average m_buf_msgs; Stats::Average m_stall_time; Stats::Scalar m_stall_count; Stats::Formula m_occupancy; }; Tick random_time(); inline std::ostream& operator<<(std::ostream& out, const MessageBuffer& obj) { obj.print(out); out << std::flush; return out; } #endif // __MEM_RUBY_BUFFERS_MESSAGEBUFFER_HH__