/* * Copyright (c) 2003-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Gabe Black * Kevin Lim */ #include #include "arch/sparc/faults.hh" #include "arch/sparc/isa_traits.hh" #include "base/bitfield.hh" #include "base/trace.hh" #include "config/full_system.hh" #include "cpu/base.hh" #include "cpu/thread_context.hh" #if !FULL_SYSTEM #include "arch/sparc/process.hh" #include "mem/page_table.hh" #include "sim/process.hh" #endif using namespace std; namespace SparcISA { template<> SparcFaultBase::FaultVals SparcFault::vals = {"power_on_reset", 0x001, 0, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"watch_dog_reset", 0x002, 120, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"externally_initiated_reset", 0x003, 110, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"software_initiated_reset", 0x004, 130, {SH, SH, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"RED_state_exception", 0x005, 1, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"store_error", 0x007, 201, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"instruction_access_exception", 0x008, 300, {H, H, H}}; //XXX This trap is apparently dropped from ua2005 /*template<> SparcFaultBase::FaultVals SparcFault::vals = {"inst_mmu", 0x009, 2, {H, H, H}};*/ template<> SparcFaultBase::FaultVals SparcFault::vals = {"instruction_access_error", 0x00A, 400, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"illegal_instruction", 0x010, 620, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"privileged_opcode", 0x011, 700, {P, SH, SH}}; //XXX This trap is apparently dropped from ua2005 /*template<> SparcFaultBase::FaultVals SparcFault::vals = {"unimp_ldd", 0x012, 6, {H, H, H}};*/ //XXX This trap is apparently dropped from ua2005 /*template<> SparcFaultBase::FaultVals SparcFault::vals = {"unimp_std", 0x013, 6, {H, H, H}};*/ template<> SparcFaultBase::FaultVals SparcFault::vals = {"fp_disabled", 0x020, 800, {P, P, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"fp_exception_ieee_754", 0x021, 1110, {P, P, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"fp_exception_other", 0x022, 1110, {P, P, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"tag_overflow", 0x023, 1400, {P, P, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"clean_window", 0x024, 1010, {P, P, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"division_by_zero", 0x028, 1500, {P, P, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"internal_processor_error", 0x029, 4, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"instruction_invalid_tsb_entry", 0x02A, 210, {H, H, SH}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"data_invalid_tsb_entry", 0x02B, 1203, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"data_access_exception", 0x030, 1201, {H, H, H}}; //XXX This trap is apparently dropped from ua2005 /*template<> SparcFaultBase::FaultVals SparcFault::vals = {"data_mmu", 0x031, 12, {H, H, H}};*/ template<> SparcFaultBase::FaultVals SparcFault::vals = {"data_access_error", 0x032, 1210, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"data_access_protection", 0x033, 1207, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"mem_address_not_aligned", 0x034, 1020, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"LDDF_mem_address_not_aligned", 0x035, 1010, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"STDF_mem_address_not_aligned", 0x036, 1010, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"privileged_action", 0x037, 1110, {H, H, SH}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"LDQF_mem_address_not_aligned", 0x038, 1010, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"STQF_mem_address_not_aligned", 0x039, 1010, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"instruction_real_translation_miss", 0x03E, 208, {H, H, SH}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"data_real_translation_miss", 0x03F, 1203, {H, H, H}}; //XXX This trap is apparently dropped from ua2005 /*template<> SparcFaultBase::FaultVals SparcFault::vals = {"async_data", 0x040, 2, {H, H, H}};*/ template<> SparcFaultBase::FaultVals SparcFault::vals = {"interrupt_level_n", 0x041, 0, {P, P, SH}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"hstick_match", 0x05E, 1601, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"trap_level_zero", 0x05F, 202, {H, H, SH}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"PA_watchpoint", 0x061, 1209, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"VA_watchpoint", 0x062, 1120, {P, P, SH}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"fast_instruction_access_MMU_miss", 0x064, 208, {H, H, SH}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"fast_data_access_MMU_miss", 0x068, 1203, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"fast_data_access_protection", 0x06C, 1207, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"instruction_break", 0x076, 610, {H, H, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"cpu_mondo", 0x07C, 1608, {P, P, SH}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"dev_mondo", 0x07D, 1611, {P, P, SH}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"resume_error", 0x07E, 3330, {P, P, SH}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"spill_n_normal", 0x080, 900, {P, P, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"spill_n_other", 0x0A0, 900, {P, P, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"fill_n_normal", 0x0C0, 900, {P, P, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"fill_n_other", 0x0E0, 900, {P, P, H}}; template<> SparcFaultBase::FaultVals SparcFault::vals = {"trap_instruction", 0x100, 1602, {P, P, H}}; #if !FULL_SYSTEM template<> SparcFaultBase::FaultVals SparcFault::vals = {"page_table_fault", 0x0000, 0, {SH, SH, SH}}; #endif /** * This sets everything up for a normal trap except for actually jumping to * the handler. It will need to be expanded to include the state machine in * the manual. Right now it assumes that traps will always be to the * privileged level. */ void doNormalFault(ThreadContext *tc, TrapType tt) { uint64_t TL = tc->readMiscReg(MISCREG_TL); uint64_t TSTATE = tc->readMiscReg(MISCREG_TSTATE); uint64_t PSTATE = tc->readMiscReg(MISCREG_PSTATE); uint64_t HPSTATE = tc->readMiscReg(MISCREG_HPSTATE); uint64_t CCR = tc->readMiscReg(MISCREG_CCR); uint64_t ASI = tc->readMiscReg(MISCREG_ASI); uint64_t CWP = tc->readMiscReg(MISCREG_CWP); uint64_t CANSAVE = tc->readMiscReg(MISCREG_CANSAVE); uint64_t GL = tc->readMiscReg(MISCREG_GL); uint64_t PC = tc->readPC(); uint64_t NPC = tc->readNextPC(); //Increment the trap level TL++; tc->setMiscReg(MISCREG_TL, TL); //Save off state //set TSTATE.gl to gl replaceBits(TSTATE, 42, 40, GL); //set TSTATE.ccr to ccr replaceBits(TSTATE, 39, 32, CCR); //set TSTATE.asi to asi replaceBits(TSTATE, 31, 24, ASI); //set TSTATE.pstate to pstate replaceBits(TSTATE, 20, 8, PSTATE); //set TSTATE.cwp to cwp replaceBits(TSTATE, 4, 0, CWP); //Write back TSTATE tc->setMiscReg(MISCREG_TSTATE, TSTATE); //set TPC to PC tc->setMiscReg(MISCREG_TPC, PC); //set TNPC to NPC tc->setMiscReg(MISCREG_TNPC, NPC); //set HTSTATE.hpstate to hpstate tc->setMiscReg(MISCREG_HTSTATE, HPSTATE); //TT = trap type; tc->setMiscReg(MISCREG_TT, tt); //Update the global register level if(1/*We're delivering the trap in priveleged mode*/) tc->setMiscReg(MISCREG_GL, min(GL+1, MaxGL)); else tc->setMiscReg(MISCREG_GL, min(GL+1, MaxPGL)); //PSTATE.mm is unchanged //PSTATE.pef = whether or not an fpu is present //XXX We'll say there's one present, even though there aren't //implementations for a decent number of the instructions PSTATE |= (1 << 4); //PSTATE.am = 0 PSTATE &= ~(1 << 3); if(1/*We're delivering the trap in priveleged mode*/) { //PSTATE.priv = 1 PSTATE |= (1 << 2); //PSTATE.cle = PSTATE.tle replaceBits(PSTATE, 9, 9, PSTATE >> 8); } else { //PSTATE.priv = 0 PSTATE &= ~(1 << 2); //PSTATE.cle = 0 PSTATE &= ~(1 << 9); } //PSTATE.ie = 0 PSTATE &= ~(1 << 1); //PSTATE.tle is unchanged //PSTATE.tct = 0 //XXX Where exactly is this field? tc->setMiscReg(MISCREG_PSTATE, PSTATE); if(0/*We're delivering the trap in hyperprivileged mode*/) { //HPSTATE.red = 0 HPSTATE &= ~(1 << 5); //HPSTATE.hpriv = 1 HPSTATE |= (1 << 2); //HPSTATE.ibe = 0 HPSTATE &= ~(1 << 10); //HPSTATE.tlz is unchanged tc->setMiscReg(MISCREG_HPSTATE, HPSTATE); } bool changedCWP = true; if(tt == 0x24) CWP++; else if(0x80 <= tt && tt <= 0xbf) CWP += (CANSAVE + 2); else if(0xc0 <= tt && tt <= 0xff) CWP--; else changedCWP = false; if(changedCWP) { CWP = (CWP + NWindows) % NWindows; tc->setMiscRegWithEffect(MISCREG_CWP, CWP); } } #if FULL_SYSTEM void SparcFaultBase::invoke(ThreadContext * tc) { FaultBase::invoke(tc); countStat()++; //Use the SPARC trap state machine } void PowerOnReset::invoke(ThreadContext * tc) { //For SPARC, when a system is first started, there is a power //on reset Trap which sets the processor into the following state. //Bits that aren't set aren't defined on startup. /* tl = MaxTL; gl = MaxGL; tickFields.counter = 0; //The TICK register is unreadable bya tickFields.npt = 1; //The TICK register is unreadable by by !priv softint = 0; // Clear all the soft interrupt bits tick_cmprFields.int_dis = 1; // disable timer compare interrupts tick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing stickFields.npt = 1; //The TICK register is unreadable by by !priv stick_cmprFields.int_dis = 1; // disable timer compare interrupts stick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing tt[tl] = _trapType; pstate = 0; // fields 0 but pef pstateFields.pef = 1; hpstate = 0; hpstateFields.red = 1; hpstateFields.hpriv = 1; hpstateFields.tlz = 0; // this is a guess hintp = 0; // no interrupts pending hstick_cmprFields.int_dis = 1; // disable timer compare interrupts hstick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing */ } #endif #if !FULL_SYSTEM void SpillNNormal::invoke(ThreadContext *tc) { doNormalFault(tc, trapType()); Process *p = tc->getProcessPtr(); //This will only work in faults from a SparcLiveProcess SparcLiveProcess *lp = dynamic_cast(p); assert(lp); //Then adjust the PC and NPC Addr spillStart = lp->readSpillStart(); tc->setPC(spillStart); tc->setNextPC(spillStart + sizeof(MachInst)); tc->setNextNPC(spillStart + 2*sizeof(MachInst)); } void FillNNormal::invoke(ThreadContext *tc) { doNormalFault(tc, trapType()); Process * p = tc->getProcessPtr(); //This will only work in faults from a SparcLiveProcess SparcLiveProcess *lp = dynamic_cast(p); assert(lp); //The adjust the PC and NPC Addr fillStart = lp->readFillStart(); tc->setPC(fillStart); tc->setNextPC(fillStart + sizeof(MachInst)); tc->setNextNPC(fillStart + 2*sizeof(MachInst)); } void PageTableFault::invoke(ThreadContext *tc) { Process *p = tc->getProcessPtr(); // address is higher than the stack region or in the current stack region if (vaddr > p->stack_base || vaddr > p->stack_min) FaultBase::invoke(tc); // We've accessed the next page if (vaddr > p->stack_min - PageBytes) { p->stack_min -= PageBytes; if (p->stack_base - p->stack_min > 8*1024*1024) fatal("Over max stack size for one thread\n"); p->pTable->allocate(p->stack_min, PageBytes); warn("Increasing stack size by one page."); } else { FaultBase::invoke(tc); } } #endif } // namespace SparcISA