// -*- mode:c++ -*- // Copyright (c) 2003-2006 The Regents of The University of Michigan // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer; // redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution; // neither the name of the copyright holders nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. decode OPCODE default Unknown::unknown() { format LoadAddress { 0x08: lda({{ Ra = Rb + disp; }}); 0x09: ldah({{ Ra = Rb + (disp << 16); }}); } format LoadOrNop { 0x0a: ldbu({{ Ra.uq = Mem.ub; }}); 0x0c: ldwu({{ Ra.uq = Mem.uw; }}); 0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }}); 0x23: ldt({{ Fa = Mem.df; }}); 0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LOCKED); 0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LOCKED); 0x20: MiscPrefetch::copy_load({{ EA = Ra; }}, {{ fault = xc->copySrcTranslate(EA); }}, inst_flags = [IsMemRef, IsLoad, IsCopy]); } format LoadOrPrefetch { 0x28: ldl({{ Ra.sl = Mem.sl; }}); 0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT); // IsFloating flag on lds gets the prefetch to disassemble // using f31 instead of r31... funcitonally it's unnecessary 0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }}, pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating); } format Store { 0x0e: stb({{ Mem.ub = Ra<7:0>; }}); 0x0d: stw({{ Mem.uw = Ra<15:0>; }}); 0x2c: stl({{ Mem.ul = Ra<31:0>; }}); 0x2d: stq({{ Mem.uq = Ra.uq; }}); 0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }}); 0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }}); 0x27: stt({{ Mem.df = Fa; }}); 0x24: MiscPrefetch::copy_store({{ EA = Rb; }}, {{ fault = xc->copy(EA); }}, inst_flags = [IsMemRef, IsStore, IsCopy]); } format StoreCond { 0x2e: stl_c({{ Mem.ul = Ra<31:0>; }}, {{ uint64_t tmp = write_result; // see stq_c Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; }}, mem_flags = LOCKED, inst_flags = IsStoreConditional); 0x2f: stq_c({{ Mem.uq = Ra; }}, {{ uint64_t tmp = write_result; // If the write operation returns 0 or 1, then // this was a conventional store conditional, // and the value indicates the success/failure // of the operation. If another value is // returned, then this was a Turbolaser // mailbox access, and we don't update the // result register at all. Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; }}, mem_flags = LOCKED, inst_flags = IsStoreConditional); } format IntegerOperate { 0x10: decode INTFUNC { // integer arithmetic operations 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); 0x40: addlv({{ uint32_t tmp = Ra.sl + Rb_or_imm.sl; // signed overflow occurs when operands have same sign // and sign of result does not match. if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) fault = new IntegerOverflowFault; Rc.sl = tmp; }}); 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); 0x60: addqv({{ uint64_t tmp = Ra + Rb_or_imm; // signed overflow occurs when operands have same sign // and sign of result does not match. if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) fault = new IntegerOverflowFault; Rc = tmp; }}); 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); 0x49: sublv({{ uint32_t tmp = Ra.sl - Rb_or_imm.sl; // signed overflow detection is same as for add, // except we need to look at the *complemented* // sign bit of the subtrahend (Rb), i.e., if the initial // signs are the *same* then no overflow can occur if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) fault = new IntegerOverflowFault; Rc.sl = tmp; }}); 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); 0x69: subqv({{ uint64_t tmp = Ra - Rb_or_imm; // signed overflow detection is same as for add, // except we need to look at the *complemented* // sign bit of the subtrahend (Rb), i.e., if the initial // signs are the *same* then no overflow can occur if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) fault = new IntegerOverflowFault; Rc = tmp; }}); 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); 0x0f: cmpbge({{ int hi = 7; int lo = 0; uint64_t tmp = 0; for (int i = 0; i < 8; ++i) { tmp |= (Ra.uq >= Rb_or_imm.uq) << i; hi += 8; lo += 8; } Rc = tmp; }}); } 0x11: decode INTFUNC { // integer logical operations 0x00: and({{ Rc = Ra & Rb_or_imm; }}); 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); // conditional moves 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); // For AMASK, RA must be R31. 0x61: decode RA { 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); } // For IMPLVER, RA must be R31 and the B operand // must be the immediate value 1. 0x6c: decode RA { 31: decode IMM { 1: decode INTIMM { // return EV5 for FULL_SYSTEM and EV6 otherwise 1: implver({{ #if FULL_SYSTEM Rc = 1; #else Rc = 2; #endif }}); } } } #if FULL_SYSTEM // The mysterious 11.25... 0x25: WarnUnimpl::eleven25(); #endif } 0x12: decode INTFUNC { 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); 0x52: mskwh({{ int bv = Rb_or_imm<2:0>; Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; }}); 0x62: msklh({{ int bv = Rb_or_imm<2:0>; Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; }}); 0x72: mskqh({{ int bv = Rb_or_imm<2:0>; Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; }}); 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); 0x5a: extwh({{ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); 0x6a: extlh({{ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); 0x7a: extqh({{ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); 0x57: inswh({{ int bv = Rb_or_imm<2:0>; Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; }}); 0x67: inslh({{ int bv = Rb_or_imm<2:0>; Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; }}); 0x77: insqh({{ int bv = Rb_or_imm<2:0>; Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; }}); 0x30: zap({{ uint64_t zapmask = 0; for (int i = 0; i < 8; ++i) { if (Rb_or_imm) zapmask |= (mask(8) << (i * 8)); } Rc = Ra & ~zapmask; }}); 0x31: zapnot({{ uint64_t zapmask = 0; for (int i = 0; i < 8; ++i) { if (!Rb_or_imm) zapmask |= (mask(8) << (i * 8)); } Rc = Ra & ~zapmask; }}); } 0x13: decode INTFUNC { // integer multiplies 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp); 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); 0x30: umulh({{ uint64_t hi, lo; mul128(Ra, Rb_or_imm, hi, lo); Rc = hi; }}, IntMultOp); 0x40: mullv({{ // 32-bit multiply with trap on overflow int64_t Rax = Ra.sl; // sign extended version of Ra.sl int64_t Rbx = Rb_or_imm.sl; int64_t tmp = Rax * Rbx; // To avoid overflow, all the upper 32 bits must match // the sign bit of the lower 32. We code this as // checking the upper 33 bits for all 0s or all 1s. uint64_t sign_bits = tmp<63:31>; if (sign_bits != 0 && sign_bits != mask(33)) fault = new IntegerOverflowFault; Rc.sl = tmp<31:0>; }}, IntMultOp); 0x60: mulqv({{ // 64-bit multiply with trap on overflow uint64_t hi, lo; mul128(Ra, Rb_or_imm, hi, lo); // all the upper 64 bits must match the sign bit of // the lower 64 if (!((hi == 0 && lo<63:> == 0) || (hi == mask(64) && lo<63:> == 1))) fault = new IntegerOverflowFault; Rc = lo; }}, IntMultOp); } 0x1c: decode INTFUNC { 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } 0x32: ctlz({{ uint64_t count = 0; uint64_t temp = Rb; if (temp<63:32>) temp >>= 32; else count += 32; if (temp<31:16>) temp >>= 16; else count += 16; if (temp<15:8>) temp >>= 8; else count += 8; if (temp<7:4>) temp >>= 4; else count += 4; if (temp<3:2>) temp >>= 2; else count += 2; if (temp<1:1>) temp >>= 1; else count += 1; if ((temp<0:0>) != 0x1) count += 1; Rc = count; }}, IntAluOp); 0x33: cttz({{ uint64_t count = 0; uint64_t temp = Rb; if (!(temp<31:0>)) { temp >>= 32; count += 32; } if (!(temp<15:0>)) { temp >>= 16; count += 16; } if (!(temp<7:0>)) { temp >>= 8; count += 8; } if (!(temp<3:0>)) { temp >>= 4; count += 4; } if (!(temp<1:0>)) { temp >>= 2; count += 2; } if (!(temp<0:0> & ULL(0x1))) count += 1; Rc = count; }}, IntAluOp); format FailUnimpl { 0x30: ctpop(); 0x31: perr(); 0x34: unpkbw(); 0x35: unpkbl(); 0x36: pkwb(); 0x37: pklb(); 0x38: minsb8(); 0x39: minsw4(); 0x3a: minub8(); 0x3b: minuw4(); 0x3c: maxub8(); 0x3d: maxuw4(); 0x3e: maxsb8(); 0x3f: maxsw4(); } format BasicOperateWithNopCheck { 0x70: decode RB { 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp); } 0x78: decode RB { 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, FloatCvtOp); } } } } // Conditional branches. format CondBranch { 0x39: beq({{ cond = (Ra == 0); }}); 0x3d: bne({{ cond = (Ra != 0); }}); 0x3e: bge({{ cond = (Ra.sq >= 0); }}); 0x3f: bgt({{ cond = (Ra.sq > 0); }}); 0x3b: ble({{ cond = (Ra.sq <= 0); }}); 0x3a: blt({{ cond = (Ra.sq < 0); }}); 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); 0x31: fbeq({{ cond = (Fa == 0); }}); 0x35: fbne({{ cond = (Fa != 0); }}); 0x36: fbge({{ cond = (Fa >= 0); }}); 0x37: fbgt({{ cond = (Fa > 0); }}); 0x33: fble({{ cond = (Fa <= 0); }}); 0x32: fblt({{ cond = (Fa < 0); }}); } // unconditional branches format UncondBranch { 0x30: br(); 0x34: bsr(IsCall); } // indirect branches 0x1a: decode JMPFUNC { format Jump { 0: jmp(); 1: jsr(IsCall); 2: ret(IsReturn); 3: jsr_coroutine(IsCall, IsReturn); } } // Square root and integer-to-FP moves 0x14: decode FP_SHORTFUNC { // Integer to FP register moves must have RB == 31 0x4: decode RB { 31: decode FP_FULLFUNC { format BasicOperateWithNopCheck { 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp); 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp); 0x014: FailUnimpl::itoff(); // VAX-format conversion } } } // Square root instructions must have FA == 31 0xb: decode FA { 31: decode FP_TYPEFUNC { format FloatingPointOperate { #if SS_COMPATIBLE_FP 0x0b: sqrts({{ if (Fb < 0.0) fault = new ArithmeticFault; Fc = sqrt(Fb); }}, FloatSqrtOp); #else 0x0b: sqrts({{ if (Fb.sf < 0.0) fault = new ArithmeticFault; Fc.sf = sqrt(Fb.sf); }}, FloatSqrtOp); #endif 0x2b: sqrtt({{ if (Fb < 0.0) fault = new ArithmeticFault; Fc = sqrt(Fb); }}, FloatSqrtOp); } } } // VAX-format sqrtf and sqrtg are not implemented 0xa: FailUnimpl::sqrtfg(); } // IEEE floating point 0x16: decode FP_SHORTFUNC_TOP2 { // The top two bits of the short function code break this // space into four groups: binary ops, compares, reserved, and // conversions. See Table 4-12 of AHB. There are different // special cases in these different groups, so we decode on // these top two bits first just to select a decode strategy. // Most of these instructions may have various trapping and // rounding mode flags set; these are decoded in the // FloatingPointDecode template used by the // FloatingPointOperate format. // add/sub/mul/div: just decode on the short function code // and source type. All valid trapping and rounding modes apply. 0: decode FP_TRAPMODE { // check for valid trapping modes here 0,1,5,7: decode FP_TYPEFUNC { format FloatingPointOperate { #if SS_COMPATIBLE_FP 0x00: adds({{ Fc = Fa + Fb; }}); 0x01: subs({{ Fc = Fa - Fb; }}); 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); #else 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); #endif 0x20: addt({{ Fc = Fa + Fb; }}); 0x21: subt({{ Fc = Fa - Fb; }}); 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); } } } // Floating-point compare instructions must have the default // rounding mode, and may use the default trapping mode or // /SU. Both trapping modes are treated the same by M5; the // only difference on the real hardware (as far a I can tell) // is that without /SU you'd get an imprecise trap if you // tried to compare a NaN with something else (instead of an // "unordered" result). 1: decode FP_FULLFUNC { format BasicOperateWithNopCheck { 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, FloatCmpOp); 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, FloatCmpOp); 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, FloatCmpOp); 0x0a4, 0x5a4: cmptun({{ // unordered Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; }}, FloatCmpOp); } } // The FP-to-integer and integer-to-FP conversion insts // require that FA be 31. 3: decode FA { 31: decode FP_TYPEFUNC { format FloatingPointOperate { 0x2f: decode FP_ROUNDMODE { format FPFixedRounding { // "chopped" i.e. round toward zero 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }}, Chopped); // round to minus infinity 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }}, MinusInfinity); } default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }}); } // The cvtts opcode is overloaded to be cvtst if the trap // mode is 2 or 6 (which are not valid otherwise) 0x2c: decode FP_FULLFUNC { format BasicOperateWithNopCheck { // trap on denorm version "cvtst/s" is // simulated same as cvtst 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); } default: cvtts({{ Fc.sf = Fb; }}); } // The trapping mode for integer-to-FP conversions // must be /SUI or nothing; /U and /SU are not // allowed. The full set of rounding modes are // supported though. 0x3c: decode FP_TRAPMODE { 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); } 0x3e: decode FP_TRAPMODE { 0,7: cvtqt({{ Fc = Fb.sq; }}); } } } } } // misc FP operate 0x17: decode FP_FULLFUNC { format BasicOperateWithNopCheck { 0x010: cvtlq({{ Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; }}); 0x030: cvtql({{ Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); }}); // We treat the precise & imprecise trapping versions of // cvtql identically. 0x130, 0x530: cvtqlv({{ // To avoid overflow, all the upper 32 bits must match // the sign bit of the lower 32. We code this as // checking the upper 33 bits for all 0s or all 1s. uint64_t sign_bits = Fb.uq<63:31>; if (sign_bits != 0 && sign_bits != mask(33)) fault = new IntegerOverflowFault; Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); }}); 0x020: cpys({{ // copy sign Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; }}); 0x021: cpysn({{ // copy sign negated Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; }}); 0x022: cpyse({{ // copy sign and exponent Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; }}); 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); 0x024: mt_fpcr({{ FPCR = Fa.uq; }}, IsIprAccess); 0x025: mf_fpcr({{ Fa.uq = FPCR; }}, IsIprAccess); } } // miscellaneous mem-format ops 0x18: decode MEMFUNC { format WarnUnimpl { 0x8000: fetch(); 0xa000: fetch_m(); 0xe800: ecb(); } format MiscPrefetch { 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, {{ xc->writeHint(EA, 64, memAccessFlags); }}, mem_flags = NO_FAULT, inst_flags = [IsMemRef, IsDataPrefetch, IsStore, MemWriteOp]); } format BasicOperate { 0xc000: rpcc({{ #if FULL_SYSTEM /* Rb is a fake dependency so here is a fun way to get * the parser to understand that. */ Ra = xc->readMiscRegWithEffect(AlphaISA::IPR_CC, fault) + (Rb & 0); #else Ra = curTick; #endif }}, IsUnverifiable); // All of the barrier instructions below do nothing in // their execute() methods (hence the empty code blocks). // All of their functionality is hard-coded in the // pipeline based on the flags IsSerializing, // IsMemBarrier, and IsWriteBarrier. In the current // detailed CPU model, the execute() function only gets // called at fetch, so there's no way to generate pipeline // behavior at any other stage. Once we go to an // exec-in-exec CPU model we should be able to get rid of // these flags and implement this behavior via the // execute() methods. // trapb is just a barrier on integer traps, where excb is // a barrier on integer and FP traps. "EXCB is thus a // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat // them the same though. 0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); 0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); } #if FULL_SYSTEM format BasicOperate { 0xe000: rc({{ Ra = xc->readIntrFlag(); xc->setIntrFlag(0); }}, IsNonSpeculative); 0xf000: rs({{ Ra = xc->readIntrFlag(); xc->setIntrFlag(1); }}, IsNonSpeculative); } #else format FailUnimpl { 0xe000: rc(); 0xf000: rs(); } #endif } #if FULL_SYSTEM 0x00: CallPal::call_pal({{ if (!palValid || (palPriv && xc->readMiscRegWithEffect(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) { // invalid pal function code, or attempt to do privileged // PAL call in non-kernel mode fault = new UnimplementedOpcodeFault; } else { // check to see if simulator wants to do something special // on this PAL call (including maybe suppress it) bool dopal = xc->simPalCheck(palFunc); if (dopal) { xc->setMiscRegWithEffect(AlphaISA::IPR_EXC_ADDR, NPC); NPC = xc->readMiscRegWithEffect(AlphaISA::IPR_PAL_BASE, fault) + palOffset; } } }}, IsNonSpeculative); #else 0x00: decode PALFUNC { format EmulatedCallPal { 0x00: halt ({{ SimExit(curTick, "halt instruction encountered"); }}, IsNonSpeculative); 0x83: callsys({{ xc->syscall(); }}, IsNonSpeculative, IsSerializeAfter); // Read uniq reg into ABI return value register (r0) 0x9e: rduniq({{ R0 = Runiq; }}, IsIprAccess); // Write uniq reg with value from ABI arg register (r16) 0x9f: wruniq({{ Runiq = R16; }}, IsIprAccess); } } #endif #if FULL_SYSTEM 0x1b: decode PALMODE { 0: OpcdecFault::hw_st_quad(); 1: decode HW_LDST_QUAD { format HwLoad { 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L); 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q); } } } 0x1f: decode PALMODE { 0: OpcdecFault::hw_st_cond(); format HwStore { 1: decode HW_LDST_COND { 0: decode HW_LDST_QUAD { 0: hw_st({{ EA = (Rb + disp) & ~3; }}, {{ Mem.ul = Ra<31:0>; }}, L); 1: hw_st({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }}, Q); } 1: FailUnimpl::hw_st_cond(); } } } 0x19: decode PALMODE { 0: OpcdecFault::hw_mfpr(); format HwMoveIPR { 1: hw_mfpr({{ Ra = xc->readMiscRegWithEffect(ipr_index, fault); }}, IsIprAccess); } } 0x1d: decode PALMODE { 0: OpcdecFault::hw_mtpr(); format HwMoveIPR { 1: hw_mtpr({{ xc->setMiscRegWithEffect(ipr_index, Ra); if (traceData) { traceData->setData(Ra); } }}, IsIprAccess); } } format BasicOperate { 0x1e: decode PALMODE { 0: OpcdecFault::hw_rei(); 1:hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore); } // M5 special opcodes use the reserved 0x01 opcode space 0x01: decode M5FUNC { 0x00: arm({{ AlphaPseudo::arm(xc->xcBase()); }}, IsNonSpeculative); 0x01: quiesce({{ AlphaPseudo::quiesce(xc->xcBase()); }}, IsNonSpeculative, IsQuiesce); 0x02: quiesceNs({{ AlphaPseudo::quiesceNs(xc->xcBase(), R16); }}, IsNonSpeculative, IsQuiesce); 0x03: quiesceCycles({{ AlphaPseudo::quiesceCycles(xc->xcBase(), R16); }}, IsNonSpeculative, IsQuiesce, IsUnverifiable); 0x04: quiesceTime({{ R0 = AlphaPseudo::quiesceTime(xc->xcBase()); }}, IsNonSpeculative, IsUnverifiable); 0x10: ivlb({{ AlphaPseudo::ivlb(xc->xcBase()); }}, No_OpClass, IsNonSpeculative); 0x11: ivle({{ AlphaPseudo::ivle(xc->xcBase()); }}, No_OpClass, IsNonSpeculative); 0x20: m5exit_old({{ AlphaPseudo::m5exit_old(xc->xcBase()); }}, No_OpClass, IsNonSpeculative); 0x21: m5exit({{ AlphaPseudo::m5exit(xc->xcBase(), R16); }}, No_OpClass, IsNonSpeculative); 0x30: initparam({{ Ra = xc->xcBase()->getCpuPtr()->system->init_param; }}); 0x40: resetstats({{ AlphaPseudo::resetstats(xc->xcBase(), R16, R17); }}, IsNonSpeculative); 0x41: dumpstats({{ AlphaPseudo::dumpstats(xc->xcBase(), R16, R17); }}, IsNonSpeculative); 0x42: dumpresetstats({{ AlphaPseudo::dumpresetstats(xc->xcBase(), R16, R17); }}, IsNonSpeculative); 0x43: m5checkpoint({{ AlphaPseudo::m5checkpoint(xc->xcBase(), R16, R17); }}, IsNonSpeculative); 0x50: m5readfile({{ R0 = AlphaPseudo::readfile(xc->xcBase(), R16, R17, R18); }}, IsNonSpeculative); 0x51: m5break({{ AlphaPseudo::debugbreak(xc->xcBase()); }}, IsNonSpeculative); 0x52: m5switchcpu({{ AlphaPseudo::switchcpu(xc->xcBase()); }}, IsNonSpeculative); 0x53: m5addsymbol({{ AlphaPseudo::addsymbol(xc->xcBase(), R16, R17); }}, IsNonSpeculative); 0x54: m5panic({{ panic("M5 panic instruction called at pc=%#x.", xc->readPC()); }}, IsNonSpeculative); } } #endif }