# Copyright (c) 2004-2006 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Steve Reinhardt # Nathan Binkert ##################################################################### # # Parameter description classes # # The _params dictionary in each class maps parameter names to either # a Param or a VectorParam object. These objects contain the # parameter description string, the parameter type, and the default # value (if any). The convert() method on these objects is used to # force whatever value is assigned to the parameter to the appropriate # type. # # Note that the default values are loaded into the class's attribute # space when the parameter dictionary is initialized (in # MetaSimObject._new_param()); after that point they aren't used. # ##################################################################### import sys, inspect, copy import convert from util import * # Dummy base class to identify types that are legitimate for SimObject # parameters. class ParamValue(object): cxx_predecls = [] swig_predecls = [] # default for printing to .ini file is regular string conversion. # will be overridden in some cases def ini_str(self): return str(self) # allows us to blithely call unproxy() on things without checking # if they're really proxies or not def unproxy(self, base): return self # Regular parameter description. class ParamDesc(object): def __init__(self, ptype_str, ptype, *args, **kwargs): self.ptype_str = ptype_str # remember ptype only if it is provided if ptype != None: self.ptype = ptype if args: if len(args) == 1: self.desc = args[0] elif len(args) == 2: self.default = args[0] self.desc = args[1] else: raise TypeError, 'too many arguments' if kwargs.has_key('desc'): assert(not hasattr(self, 'desc')) self.desc = kwargs['desc'] del kwargs['desc'] if kwargs.has_key('default'): assert(not hasattr(self, 'default')) self.default = kwargs['default'] del kwargs['default'] if kwargs: raise TypeError, 'extra unknown kwargs %s' % kwargs if not hasattr(self, 'desc'): raise TypeError, 'desc attribute missing' def __getattr__(self, attr): if attr == 'ptype': try: ptype = eval(self.ptype_str, objects.__dict__) if not isinstance(ptype, type): raise NameError self.ptype = ptype return ptype except NameError: raise TypeError, \ "Param qualifier '%s' is not a type" % self.ptype_str raise AttributeError, "'%s' object has no attribute '%s'" % \ (type(self).__name__, attr) def convert(self, value): if isinstance(value, proxy.BaseProxy): value.set_param_desc(self) return value if not hasattr(self, 'ptype') and isNullPointer(value): # deferred evaluation of SimObject; continue to defer if # we're just assigning a null pointer return value if isinstance(value, self.ptype): return value if isNullPointer(value) and isSimObjectClass(self.ptype): return value return self.ptype(value) def cxx_predecls(self): return self.ptype.cxx_predecls def swig_predecls(self): return self.ptype.swig_predecls def cxx_decl(self): return '%s %s;' % (self.ptype.cxx_type, self.name) # Vector-valued parameter description. Just like ParamDesc, except # that the value is a vector (list) of the specified type instead of a # single value. class VectorParamValue(list): def ini_str(self): return ' '.join([v.ini_str() for v in self]) def unproxy(self, base): return [v.unproxy(base) for v in self] class SimObjVector(VectorParamValue): def print_ini(self): for v in self: v.print_ini() class VectorParamDesc(ParamDesc): # Convert assigned value to appropriate type. If the RHS is not a # list or tuple, it generates a single-element list. def convert(self, value): if isinstance(value, (list, tuple)): # list: coerce each element into new list tmp_list = [ ParamDesc.convert(self, v) for v in value ] if isSimObjectSequence(tmp_list): return SimObjVector(tmp_list) else: return VectorParamValue(tmp_list) else: # singleton: leave it be (could coerce to a single-element # list here, but for some historical reason we don't... return ParamDesc.convert(self, value) def cxx_predecls(self): return ['#include '] + self.ptype.cxx_predecls def swig_predecls(self): return ['%include "std_vector.i"'] + self.ptype.swig_predecls def cxx_decl(self): return 'std::vector< %s > %s;' % (self.ptype.cxx_type, self.name) class ParamFactory(object): def __init__(self, param_desc_class, ptype_str = None): self.param_desc_class = param_desc_class self.ptype_str = ptype_str def __getattr__(self, attr): if self.ptype_str: attr = self.ptype_str + '.' + attr return ParamFactory(self.param_desc_class, attr) # E.g., Param.Int(5, "number of widgets") def __call__(self, *args, **kwargs): caller_frame = inspect.currentframe().f_back ptype = None try: ptype = eval(self.ptype_str, caller_frame.f_globals, caller_frame.f_locals) if not isinstance(ptype, type): raise TypeError, \ "Param qualifier is not a type: %s" % ptype except NameError: # if name isn't defined yet, assume it's a SimObject, and # try to resolve it later pass return self.param_desc_class(self.ptype_str, ptype, *args, **kwargs) Param = ParamFactory(ParamDesc) VectorParam = ParamFactory(VectorParamDesc) ##################################################################### # # Parameter Types # # Though native Python types could be used to specify parameter types # (the 'ptype' field of the Param and VectorParam classes), it's more # flexible to define our own set of types. This gives us more control # over how Python expressions are converted to values (via the # __init__() constructor) and how these values are printed out (via # the __str__() conversion method). # ##################################################################### # String-valued parameter. Just mixin the ParamValue class with the # built-in str class. class String(ParamValue,str): cxx_type = 'std::string' cxx_predecls = ['#include '] swig_predecls = ['%include "std_string.i"\n' + '%apply const std::string& {std::string *};'] pass # superclass for "numeric" parameter values, to emulate math # operations in a type-safe way. e.g., a Latency times an int returns # a new Latency object. class NumericParamValue(ParamValue): def __str__(self): return str(self.value) def __float__(self): return float(self.value) # hook for bounds checking def _check(self): return def __mul__(self, other): newobj = self.__class__(self) newobj.value *= other newobj._check() return newobj __rmul__ = __mul__ def __div__(self, other): newobj = self.__class__(self) newobj.value /= other newobj._check() return newobj def __sub__(self, other): newobj = self.__class__(self) newobj.value -= other newobj._check() return newobj # Metaclass for bounds-checked integer parameters. See CheckedInt. class CheckedIntType(type): def __init__(cls, name, bases, dict): super(CheckedIntType, cls).__init__(name, bases, dict) # CheckedInt is an abstract base class, so we actually don't # want to do any processing on it... the rest of this code is # just for classes that derive from CheckedInt. if name == 'CheckedInt': return if not cls.cxx_predecls: # most derived types require this, so we just do it here once cls.cxx_predecls = ['#include "sim/host.hh"'] if not cls.swig_predecls: # most derived types require this, so we just do it here once cls.swig_predecls = ['%import "python/m5/swig/stdint.i"\n' + '%import "sim/host.hh"'] if not (hasattr(cls, 'min') and hasattr(cls, 'max')): if not (hasattr(cls, 'size') and hasattr(cls, 'unsigned')): panic("CheckedInt subclass %s must define either\n" \ " 'min' and 'max' or 'size' and 'unsigned'\n" \ % name); if cls.unsigned: cls.min = 0 cls.max = 2 ** cls.size - 1 else: cls.min = -(2 ** (cls.size - 1)) cls.max = (2 ** (cls.size - 1)) - 1 # Abstract superclass for bounds-checked integer parameters. This # class is subclassed to generate parameter classes with specific # bounds. Initialization of the min and max bounds is done in the # metaclass CheckedIntType.__init__. class CheckedInt(NumericParamValue): __metaclass__ = CheckedIntType def _check(self): if not self.min <= self.value <= self.max: raise TypeError, 'Integer param out of bounds %d < %d < %d' % \ (self.min, self.value, self.max) def __init__(self, value): if isinstance(value, str): self.value = convert.toInteger(value) elif isinstance(value, (int, long, float)): self.value = long(value) self._check() class Int(CheckedInt): cxx_type = 'int'; size = 32; unsigned = False class Unsigned(CheckedInt): cxx_type = 'unsigned'; size = 32; unsigned = True class Int8(CheckedInt): cxx_type = 'int8_t'; size = 8; unsigned = False class UInt8(CheckedInt): cxx_type = 'uint8_t'; size = 8; unsigned = True class Int16(CheckedInt): cxx_type = 'int16_t'; size = 16; unsigned = False class UInt16(CheckedInt): cxx_type = 'uint16_t'; size = 16; unsigned = True class Int32(CheckedInt): cxx_type = 'int32_t'; size = 32; unsigned = False class UInt32(CheckedInt): cxx_type = 'uint32_t'; size = 32; unsigned = True class Int64(CheckedInt): cxx_type = 'int64_t'; size = 64; unsigned = False class UInt64(CheckedInt): cxx_type = 'uint64_t'; size = 64; unsigned = True class Counter(CheckedInt): cxx_type = 'Counter'; size = 64; unsigned = True class Tick(CheckedInt): cxx_type = 'Tick'; size = 64; unsigned = True class TcpPort(CheckedInt): cxx_type = 'uint16_t'; size = 16; unsigned = True class UdpPort(CheckedInt): cxx_type = 'uint16_t'; size = 16; unsigned = True class Percent(CheckedInt): cxx_type = 'int'; min = 0; max = 100 class Float(ParamValue, float): pass class MemorySize(CheckedInt): cxx_type = 'uint64_t' size = 64 unsigned = True def __init__(self, value): if isinstance(value, MemorySize): self.value = value.value else: self.value = convert.toMemorySize(value) self._check() class MemorySize32(CheckedInt): size = 32 unsigned = True def __init__(self, value): if isinstance(value, MemorySize): self.value = value.value else: self.value = convert.toMemorySize(value) self._check() class Addr(CheckedInt): cxx_type = 'Addr' cxx_predecls = ['#include "targetarch/isa_traits.hh"'] size = 64 unsigned = True def __init__(self, value): if isinstance(value, Addr): self.value = value.value else: try: self.value = convert.toMemorySize(value) except TypeError: self.value = long(value) self._check() class MetaRange(type): def __init__(cls, name, bases, dict): super(MetaRange, cls).__init__(name, bases, dict) if name == 'Range': return cls.cxx_type = 'Range< %s >' % cls.type.cxx_type cls.cxx_predecls = \ ['#include "base/range.hh"'] + cls.type.cxx_predecls class Range(ParamValue): __metaclass__ = MetaRange type = Int # default; can be overridden in subclasses def __init__(self, *args, **kwargs): def handle_kwargs(self, kwargs): if 'end' in kwargs: self.second = self.type(kwargs.pop('end')) elif 'size' in kwargs: self.second = self.first + self.type(kwargs.pop('size')) - 1 else: raise TypeError, "Either end or size must be specified" if len(args) == 0: self.first = self.type(kwargs.pop('start')) handle_kwargs(self, kwargs) elif len(args) == 1: if kwargs: self.first = self.type(args[0]) handle_kwargs(self, kwargs) elif isinstance(args[0], Range): self.first = self.type(args[0].first) self.second = self.type(args[0].second) else: self.first = self.type(0) self.second = self.type(args[0]) - 1 elif len(args) == 2: self.first = self.type(args[0]) self.second = self.type(args[1]) else: raise TypeError, "Too many arguments specified" if kwargs: raise TypeError, "too many keywords: %s" % kwargs.keys() def __str__(self): return '%s:%s' % (self.first, self.second) class AddrRange(Range): type = Addr class TickRange(Range): type = Tick # Boolean parameter type. Python doesn't let you subclass bool, since # it doesn't want to let you create multiple instances of True and # False. Thus this is a little more complicated than String. class Bool(ParamValue): cxx_type = 'bool' def __init__(self, value): try: self.value = convert.toBool(value) except TypeError: self.value = bool(value) def __str__(self): return str(self.value) def ini_str(self): if self.value: return 'true' return 'false' def IncEthernetAddr(addr, val = 1): bytes = map(lambda x: int(x, 16), addr.split(':')) bytes[5] += val for i in (5, 4, 3, 2, 1): val,rem = divmod(bytes[i], 256) bytes[i] = rem if val == 0: break bytes[i - 1] += val assert(bytes[0] <= 255) return ':'.join(map(lambda x: '%02x' % x, bytes)) class NextEthernetAddr(object): addr = "00:90:00:00:00:01" def __init__(self, inc = 1): self.value = NextEthernetAddr.addr NextEthernetAddr.addr = IncEthernetAddr(NextEthernetAddr.addr, inc) class EthernetAddr(ParamValue): cxx_type = 'Net::EthAddr' cxx_predecls = ['#include "base/inet.hh"'] swig_predecls = ['class Net::EthAddr;'] def __init__(self, value): if value == NextEthernetAddr: self.value = value return if not isinstance(value, str): raise TypeError, "expected an ethernet address and didn't get one" bytes = value.split(':') if len(bytes) != 6: raise TypeError, 'invalid ethernet address %s' % value for byte in bytes: if not 0 <= int(byte) <= 256: raise TypeError, 'invalid ethernet address %s' % value self.value = value def unproxy(self, base): if self.value == NextEthernetAddr: self.addr = self.value().value return self def __str__(self): if self.value == NextEthernetAddr: if hasattr(self, 'addr'): return self.addr else: return "NextEthernetAddr (unresolved)" else: return self.value # Enumerated types are a little more complex. The user specifies the # type as Enum(foo) where foo is either a list or dictionary of # alternatives (typically strings, but not necessarily so). (In the # long run, the integer value of the parameter will be the list index # or the corresponding dictionary value. For now, since we only check # that the alternative is valid and then spit it into a .ini file, # there's not much point in using the dictionary.) # What Enum() must do is generate a new type encapsulating the # provided list/dictionary so that specific values of the parameter # can be instances of that type. We define two hidden internal # classes (_ListEnum and _DictEnum) to serve as base classes, then # derive the new type from the appropriate base class on the fly. # Metaclass for Enum types class MetaEnum(type): def __init__(cls, name, bases, init_dict): if init_dict.has_key('map'): if not isinstance(cls.map, dict): raise TypeError, "Enum-derived class attribute 'map' " \ "must be of type dict" # build list of value strings from map cls.vals = cls.map.keys() cls.vals.sort() elif init_dict.has_key('vals'): if not isinstance(cls.vals, list): raise TypeError, "Enum-derived class attribute 'vals' " \ "must be of type list" # build string->value map from vals sequence cls.map = {} for idx,val in enumerate(cls.vals): cls.map[val] = idx else: raise TypeError, "Enum-derived class must define "\ "attribute 'map' or 'vals'" cls.cxx_type = name + '::Enum' super(MetaEnum, cls).__init__(name, bases, init_dict) # Generate C++ class declaration for this enum type. # Note that we wrap the enum in a class/struct to act as a namespace, # so that the enum strings can be brief w/o worrying about collisions. def cxx_decl(cls): s = 'struct %s {\n enum Enum {\n ' % cls.__name__ s += ',\n '.join(['%s = %d' % (v,cls.map[v]) for v in cls.vals]) s += '\n };\n};\n' return s # Base class for enum types. class Enum(ParamValue): __metaclass__ = MetaEnum vals = [] def __init__(self, value): if value not in self.map: raise TypeError, "Enum param got bad value '%s' (not in %s)" \ % (value, self.vals) self.value = value def __str__(self): return self.value ticks_per_sec = None # how big does a rounding error need to be before we warn about it? frequency_tolerance = 0.001 # 0.1% # convert a floting-point # of ticks to integer, and warn if rounding # discards too much precision def tick_check(float_ticks): if float_ticks == 0: return 0 int_ticks = int(round(float_ticks)) err = (float_ticks - int_ticks) / float_ticks if err > frequency_tolerance: print >> sys.stderr, "Warning: rounding error > tolerance" print >> sys.stderr, " %f rounded to %d" % (float_ticks, int_ticks) #raise ValueError return int_ticks def getLatency(value): if isinstance(value, Latency) or isinstance(value, Clock): return value.value elif isinstance(value, Frequency) or isinstance(value, RootClock): return 1 / value.value elif isinstance(value, str): try: return convert.toLatency(value) except ValueError: try: return 1 / convert.toFrequency(value) except ValueError: pass # fall through raise ValueError, "Invalid Frequency/Latency value '%s'" % value class Latency(NumericParamValue): cxx_type = 'Tick' cxx_predecls = ['#include "sim/host.hh"'] swig_predecls = ['%import "python/m5/swig/stdint.i"\n' + '%import "sim/host.hh"'] def __init__(self, value): self.value = getLatency(value) def __getattr__(self, attr): if attr in ('latency', 'period'): return self if attr == 'frequency': return Frequency(self) raise AttributeError, "Latency object has no attribute '%s'" % attr # convert latency to ticks def ini_str(self): return str(tick_check(self.value * ticks_per_sec)) class Frequency(NumericParamValue): cxx_type = 'Tick' cxx_predecls = ['#include "sim/host.hh"'] swig_predecls = ['%import "python/m5/swig/stdint.i"\n' + '%import "sim/host.hh"'] def __init__(self, value): self.value = 1 / getLatency(value) def __getattr__(self, attr): if attr == 'frequency': return self if attr in ('latency', 'period'): return Latency(self) raise AttributeError, "Frequency object has no attribute '%s'" % attr # convert frequency to ticks per period def ini_str(self): return self.period.ini_str() # Just like Frequency, except ini_str() is absolute # of ticks per sec (Hz). # We can't inherit from Frequency because we don't want it to be directly # assignable to a regular Frequency parameter. class RootClock(ParamValue): cxx_type = 'Tick' cxx_predecls = ['#include "sim/host.hh"'] swig_predecls = ['%import "python/m5/swig/stdint.i"\n' + '%import "sim/host.hh"'] def __init__(self, value): self.value = 1 / getLatency(value) def __getattr__(self, attr): if attr == 'frequency': return Frequency(self) if attr in ('latency', 'period'): return Latency(self) raise AttributeError, "Frequency object has no attribute '%s'" % attr def ini_str(self): return str(tick_check(self.value)) # A generic frequency and/or Latency value. Value is stored as a latency, # but to avoid ambiguity this object does not support numeric ops (* or /). # An explicit conversion to a Latency or Frequency must be made first. class Clock(ParamValue): cxx_type = 'Tick' cxx_predecls = ['#include "sim/host.hh"'] swig_predecls = ['%import "python/m5/swig/stdint.i"\n' + '%import "sim/host.hh"'] def __init__(self, value): self.value = getLatency(value) def __getattr__(self, attr): if attr == 'frequency': return Frequency(self) if attr in ('latency', 'period'): return Latency(self) raise AttributeError, "Frequency object has no attribute '%s'" % attr def ini_str(self): return self.period.ini_str() class NetworkBandwidth(float,ParamValue): cxx_type = 'float' def __new__(cls, value): val = convert.toNetworkBandwidth(value) / 8.0 return super(cls, NetworkBandwidth).__new__(cls, val) def __str__(self): return str(self.val) def ini_str(self): return '%f' % (ticks_per_sec / float(self)) class MemoryBandwidth(float,ParamValue): cxx_type = 'float' def __new__(self, value): val = convert.toMemoryBandwidth(value) return super(cls, MemoryBandwidth).__new__(cls, val) def __str__(self): return str(self.val) def ini_str(self): return '%f' % (ticks_per_sec / float(self)) # # "Constants"... handy aliases for various values. # # Special class for NULL pointers. Note the special check in # make_param_value() above that lets these be assigned where a # SimObject is required. # only one copy of a particular node class NullSimObject(object): __metaclass__ = Singleton def __call__(cls): return cls def _instantiate(self, parent = None, path = ''): pass def ini_str(self): return 'Null' def unproxy(self, base): return self def set_path(self, parent, name): pass def __str__(self): return 'Null' # The only instance you'll ever need... NULL = NullSimObject() def isNullPointer(value): return isinstance(value, NullSimObject) # Some memory range specifications use this as a default upper bound. MaxAddr = Addr.max MaxTick = Tick.max AllMemory = AddrRange(0, MaxAddr) ##################################################################### # # Port objects # # Ports are used to interconnect objects in the memory system. # ##################################################################### # Port reference: encapsulates a reference to a particular port on a # particular SimObject. class PortRef(object): def __init__(self, simobj, name, isVec): assert(isSimObject(simobj)) self.simobj = simobj self.name = name self.index = -1 self.isVec = isVec # is this a vector port? self.peer = None # not associated with another port yet self.ccConnected = False # C++ port connection done? def __str__(self): ext = '' if self.isVec: ext = '[%d]' % self.index return '%s.%s%s' % (self.simobj.path(), self.name, ext) # Set peer port reference. Called via __setattr__ as a result of # a port assignment, e.g., "obj1.port1 = obj2.port2". def setPeer(self, other): if self.isVec: curMap = self.simobj._port_map.get(self.name, []) self.index = len(curMap) curMap.append(other) else: curMap = self.simobj._port_map.get(self.name) if curMap and not self.isVec: print "warning: overwriting port", self.simobj, self.name curMap = other self.simobj._port_map[self.name] = curMap self.peer = other def clone(self, memo): newRef = copy.copy(self) assert(isSimObject(newRef.simobj)) newRef.simobj = newRef.simobj(_memo=memo) # Tricky: if I'm the *second* PortRef in the pair to be # cloned, then my peer is still in the middle of its clone # method, and thus hasn't returned to its owner's # SimObject.__init__ to get installed in _port_map. As a # result I have no way of finding the *new* peer object. So I # mark myself as "waiting" for my peer, and I let the *first* # PortRef clone call set up both peer pointers after I return. newPeer = newRef.simobj._port_map.get(self.name) if newPeer: if self.isVec: assert(self.index != -1) newPeer = newPeer[self.index] # other guy is all set up except for his peer pointer assert(newPeer.peer == -1) # peer must be waiting for handshake newPeer.peer = newRef newRef.peer = newPeer else: # other guy is in clone; just wait for him to do the work newRef.peer = -1 # mark as waiting for handshake return newRef # Call C++ to create corresponding port connection between C++ objects def ccConnect(self): if self.ccConnected: # already done this return peer = self.peer cc_main.connectPorts(self.simobj.getCCObject(), self.name, self.index, peer.simobj.getCCObject(), peer.name, peer.index) self.ccConnected = True peer.ccConnected = True # Port description object. Like a ParamDesc object, this represents a # logical port in the SimObject class, not a particular port on a # SimObject instance. The latter are represented by PortRef objects. class Port(object): def __init__(self, desc): self.desc = desc self.isVec = False # Generate a PortRef for this port on the given SimObject with the # given name def makeRef(self, simobj, name): return PortRef(simobj, name, self.isVec) # Connect an instance of this port (on the given SimObject with # the given name) with the port described by the supplied PortRef def connect(self, simobj, name, ref): if not isinstance(ref, PortRef): raise TypeError, \ "assigning non-port reference port '%s'" % name myRef = self.makeRef(simobj, name) myRef.setPeer(ref) ref.setPeer(myRef) # VectorPort description object. Like Port, but represents a vector # of connections (e.g., as on a Bus). class VectorPort(Port): def __init__(self, desc): Port.__init__(self, desc) self.isVec = True __all__ = ['Param', 'VectorParam', 'Enum', 'Bool', 'String', 'Float', 'Int', 'Unsigned', 'Int8', 'UInt8', 'Int16', 'UInt16', 'Int32', 'UInt32', 'Int64', 'UInt64', 'Counter', 'Addr', 'Tick', 'Percent', 'TcpPort', 'UdpPort', 'EthernetAddr', 'MemorySize', 'MemorySize32', 'Latency', 'Frequency', 'RootClock', 'Clock', 'NetworkBandwidth', 'MemoryBandwidth', 'Range', 'AddrRange', 'TickRange', 'MaxAddr', 'MaxTick', 'AllMemory', 'NextEthernetAddr', 'NULL', 'Port', 'VectorPort'] # see comment on imports at end of __init__.py. from SimObject import isSimObject, isSimObjectSequence, isSimObjectClass import proxy import objects import cc_main