/* * Copyright (c) 2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include "arch/isa_traits.hh" // For MachInst #include "base/trace.hh" #include "config/full_system.hh" #include "cpu/base.hh" #include "cpu/exec_context.hh" #include "cpu/exetrace.hh" #include "cpu/ozone/cpu.hh" #include "cpu/quiesce_event.hh" #include "cpu/static_inst.hh" #include "mem/base_mem.hh" #include "mem/mem_interface.hh" #include "sim/sim_object.hh" #include "sim/stats.hh" #if FULL_SYSTEM #include "arch/faults.hh" #include "arch/alpha/osfpal.hh" #include "arch/alpha/tlb.hh" #include "arch/vtophys.hh" #include "base/callback.hh" #include "base/remote_gdb.hh" #include "cpu/profile.hh" #include "kern/kernel_stats.hh" #include "mem/functional/memory_control.hh" #include "mem/functional/physical.hh" #include "sim/faults.hh" #include "sim/sim_events.hh" #include "sim/sim_exit.hh" #include "sim/system.hh" #else // !FULL_SYSTEM #include "mem/functional/functional.hh" #include "sim/process.hh" #endif // FULL_SYSTEM using namespace TheISA; template template void OzoneCPU::trace_data(T data) { if (traceData) { traceData->setData(data); } } template OzoneCPU::TickEvent::TickEvent(OzoneCPU *c, int w) : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c), width(w) { } template void OzoneCPU::TickEvent::process() { cpu->tick(); } template const char * OzoneCPU::TickEvent::description() { return "OzoneCPU tick event"; } /* template OzoneCPU::ICacheCompletionEvent::ICacheCompletionEvent(OzoneCPU *_cpu) : Event(&mainEventQueue), cpu(_cpu) { } template void OzoneCPU::ICacheCompletionEvent::process() { cpu->processICacheCompletion(); } template const char * OzoneCPU::ICacheCompletionEvent::description() { return "OzoneCPU I-cache completion event"; } template OzoneCPU::DCacheCompletionEvent:: DCacheCompletionEvent(OzoneCPU *_cpu, DynInstPtr &_inst, DCacheCompEventIt &_dcceIt) : Event(&mainEventQueue), cpu(_cpu), inst(_inst), dcceIt(_dcceIt) { this->setFlags(Event::AutoDelete); } template void OzoneCPU::DCacheCompletionEvent::process() { inst->setCompleted(); // Maybe remove the EA from the list of addrs? cpu->eaList.clearAddr(inst->seqNum, inst->getEA()); cpu->dCacheCompList.erase(this->dcceIt); } template const char * OzoneCPU::DCacheCompletionEvent::description() { return "OzoneCPU D-cache completion event"; } */ template OzoneCPU::OzoneCPU(Params *p) #if FULL_SYSTEM : BaseCPU(p), thread(this, 0, p->mem), tickEvent(this, p->width), #else : BaseCPU(p), thread(this, 0, p->workload[0], 0), tickEvent(this, p->width), #endif comm(5, 5) { frontEnd = new FrontEnd(p); backEnd = new BackEnd(p); _status = Idle; thread.xcProxy = &xcProxy; thread.inSyscall = false; xcProxy.cpu = this; xcProxy.thread = &thread; thread.setStatus(ExecContext::Suspended); #if FULL_SYSTEM // xc = new ExecContext(this, 0, p->system, p->itb, p->dtb, p->mem); /***** All thread state stuff *****/ thread.cpu = this; thread.tid = 0; thread.mem = p->mem; thread.quiesceEvent = new EndQuiesceEvent(&xcProxy); system = p->system; itb = p->itb; dtb = p->dtb; memctrl = p->system->memctrl; physmem = p->system->physmem; if (p->profile) { thread.profile = new FunctionProfile(p->system->kernelSymtab); Callback *cb = new MakeCallback(&xcProxy); registerExitCallback(cb); } // let's fill with a dummy node for now so we don't get a segfault // on the first cycle when there's no node available. static ProfileNode dummyNode; thread.profileNode = &dummyNode; thread.profilePC = 3; #else // xc = new ExecContext(this, /* thread_num */ 0, p->workload[0], /* asid */ 0); thread.cpu = this; thread.tid = 0; thread.process = p->workload[0]; // thread.mem = thread.process->getMemory(); thread.asid = 0; #endif // !FULL_SYSTEM /* icacheInterface = p->icache_interface; dcacheInterface = p->dcache_interface; cacheMemReq = new MemReq(); cacheMemReq->xc = xc; cacheMemReq->asid = 0; cacheMemReq->data = new uint8_t[64]; */ numInst = 0; startNumInst = 0; /* numLoad = 0; startNumLoad = 0; lastIcacheStall = 0; lastDcacheStall = 0; issueWidth = p->issueWidth; */ execContexts.push_back(&xcProxy); frontEnd->setCPU(this); backEnd->setCPU(this); frontEnd->setXC(&xcProxy); backEnd->setXC(&xcProxy); frontEnd->setThreadState(&thread); backEnd->setThreadState(&thread); frontEnd->setCommBuffer(&comm); backEnd->setCommBuffer(&comm); frontEnd->setBackEnd(backEnd); backEnd->setFrontEnd(frontEnd); decoupledFrontEnd = p->decoupledFrontEnd; globalSeqNum = 1; checkInterrupts = false; /* fetchRedirBranch = true; fetchRedirExcp = true; // Need to initialize the rename maps, and the head and tail pointers. robHeadPtr = new DynInst(this); robTailPtr = new DynInst(this); robHeadPtr->setNextInst(robTailPtr); // robHeadPtr->setPrevInst(NULL); // robTailPtr->setNextInst(NULL); robTailPtr->setPrevInst(robHeadPtr); robHeadPtr->setCompleted(); robTailPtr->setCompleted(); for (int i = 0; i < ISA::TotalNumRegs; ++i) { renameTable[i] = new DynInst(this); commitTable[i] = new DynInst(this); renameTable[i]->setCompleted(); commitTable[i]->setCompleted(); } #if FULL_SYSTEM for (int i = 0; i < ISA::NumIntRegs; ++i) { palShadowTable[i] = new DynInst(this); palShadowTable[i]->setCompleted(); } #endif // Size of cache block. cacheBlkSize = icacheInterface ? icacheInterface->getBlockSize() : 64; // Create mask to get rid of offset bits. cacheBlkMask = (cacheBlkSize - 1); // Get the size of an instruction. instSize = sizeof(MachInst); // Create space to store a cache line. cacheData = new uint8_t[cacheBlkSize]; cacheBlkValid = false; */ for (int i = 0; i < TheISA::TotalNumRegs; ++i) { thread.renameTable[i] = new DynInst(this); thread.renameTable[i]->setCompleted(); } frontEnd->renameTable.copyFrom(thread.renameTable); backEnd->renameTable.copyFrom(thread.renameTable); #if !FULL_SYSTEM pTable = p->pTable; #endif DPRINTF(OzoneCPU, "OzoneCPU: Created Ozone cpu object.\n"); } template OzoneCPU::~OzoneCPU() { } /* template void OzoneCPU::copyFromXC() { for (int i = 0; i < TheISA::TotalNumRegs; ++i) { if (i < TheISA::NumIntRegs) { renameTable[i]->setIntResult(xc->readIntReg(i)); } else if (i < TheISA::NumFloatRegs) { renameTable[i]->setDoubleResult(xc->readFloatRegDouble(i)); } } DPRINTF(OzoneCPU, "Func Exe inst is: %i\n", xc->func_exe_inst); backEnd->funcExeInst = xc->func_exe_inst; // PC = xc->readPC(); // nextPC = xc->regs.npc; } template void OzoneCPU::copyToXC() { for (int i = 0; i < TheISA::TotalNumRegs; ++i) { if (i < TheISA::NumIntRegs) { xc->setIntReg(i, renameTable[i]->readIntResult()); } else if (i < TheISA::NumFloatRegs) { xc->setFloatRegDouble(i, renameTable[i]->readDoubleResult()); } } this->xc->regs.miscRegs.fpcr = this->regFile.miscRegs[tid].fpcr; this->xc->regs.miscRegs.uniq = this->regFile.miscRegs[tid].uniq; this->xc->regs.miscRegs.lock_flag = this->regFile.miscRegs[tid].lock_flag; this->xc->regs.miscRegs.lock_addr = this->regFile.miscRegs[tid].lock_addr; xc->func_exe_inst = backEnd->funcExeInst; xc->regs.pc = PC; xc->regs.npc = nextPC; } */ template void OzoneCPU::switchOut() { _status = SwitchedOut; if (tickEvent.scheduled()) tickEvent.squash(); } template void OzoneCPU::takeOverFrom(BaseCPU *oldCPU) { BaseCPU::takeOverFrom(oldCPU); assert(!tickEvent.scheduled()); // if any of this CPU's ExecContexts are active, mark the CPU as // running and schedule its tick event. for (int i = 0; i < execContexts.size(); ++i) { ExecContext *xc = execContexts[i]; if (xc->status() == ExecContext::Active && _status != Running) { _status = Running; tickEvent.schedule(curTick); } } } template void OzoneCPU::activateContext(int thread_num, int delay) { // Eventually change this in SMT. assert(thread_num == 0); // assert(xcProxy); assert(_status == Idle); notIdleFraction++; scheduleTickEvent(delay); _status = Running; thread._status = ExecContext::Active; } template void OzoneCPU::suspendContext(int thread_num) { // Eventually change this in SMT. assert(thread_num == 0); // assert(xcProxy); assert(_status == Running); notIdleFraction--; unscheduleTickEvent(); _status = Idle; } template void OzoneCPU::deallocateContext(int thread_num) { // for now, these are equivalent suspendContext(thread_num); } template void OzoneCPU::haltContext(int thread_num) { // for now, these are equivalent suspendContext(thread_num); } template void OzoneCPU::regStats() { using namespace Stats; BaseCPU::regStats(); thread.numInsts .name(name() + ".num_insts") .desc("Number of instructions executed") ; thread.numMemRefs .name(name() + ".num_refs") .desc("Number of memory references") ; notIdleFraction .name(name() + ".not_idle_fraction") .desc("Percentage of non-idle cycles") ; idleFraction .name(name() + ".idle_fraction") .desc("Percentage of idle cycles") ; idleFraction = constant(1.0) - notIdleFraction; frontEnd->regStats(); backEnd->regStats(); } template void OzoneCPU::resetStats() { startNumInst = numInst; notIdleFraction = (_status != Idle); } template void OzoneCPU::init() { BaseCPU::init(); /* copyFromXC(); // ALso copy over PC/nextPC. This isn't normally copied in "copyFromXC()" // so that the XC doesn't mess up the PC when returning from a syscall. PC = xc->readPC(); nextPC = xc->regs.npc; */ // Mark this as in syscall so it won't need to squash thread.inSyscall = true; #if FULL_SYSTEM for (int i = 0; i < execContexts.size(); ++i) { ExecContext *xc = execContexts[i]; // initialize CPU, including PC TheISA::initCPU(xc, xc->readCpuId()); } #endif frontEnd->renameTable.copyFrom(thread.renameTable); backEnd->renameTable.copyFrom(thread.renameTable); thread.inSyscall = false; } template void OzoneCPU::serialize(std::ostream &os) { // At this point, all DCacheCompEvents should be processed. BaseCPU::serialize(os); SERIALIZE_ENUM(_status); nameOut(os, csprintf("%s.xc", name())); xcProxy.serialize(os); nameOut(os, csprintf("%s.tickEvent", name())); tickEvent.serialize(os); } template void OzoneCPU::unserialize(Checkpoint *cp, const std::string §ion) { BaseCPU::unserialize(cp, section); UNSERIALIZE_ENUM(_status); xcProxy.unserialize(cp, csprintf("%s.xc", section)); tickEvent.unserialize(cp, csprintf("%s.tickEvent", section)); } template Fault OzoneCPU::copySrcTranslate(Addr src) { panic("Copy not implemented!\n"); return NoFault; #if 0 static bool no_warn = true; int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64; // Only support block sizes of 64 atm. assert(blk_size == 64); int offset = src & (blk_size - 1); // Make sure block doesn't span page if (no_warn && (src & TheISA::PageMask) != ((src + blk_size) & TheISA::PageMask) && (src >> 40) != 0xfffffc) { warn("Copied block source spans pages %x.", src); no_warn = false; } memReq->reset(src & ~(blk_size - 1), blk_size); // translate to physical address Fault fault = xc->translateDataReadReq(memReq); assert(fault != Alignment_Fault); if (fault == NoFault) { xc->copySrcAddr = src; xc->copySrcPhysAddr = memReq->paddr + offset; } else { xc->copySrcAddr = 0; xc->copySrcPhysAddr = 0; } return fault; #endif } template Fault OzoneCPU::copy(Addr dest) { panic("Copy not implemented!\n"); return NoFault; #if 0 static bool no_warn = true; int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64; // Only support block sizes of 64 atm. assert(blk_size == 64); uint8_t data[blk_size]; //assert(xc->copySrcAddr); int offset = dest & (blk_size - 1); // Make sure block doesn't span page if (no_warn && (dest & TheISA::PageMask) != ((dest + blk_size) & TheISA::PageMask) && (dest >> 40) != 0xfffffc) { no_warn = false; warn("Copied block destination spans pages %x. ", dest); } memReq->reset(dest & ~(blk_size -1), blk_size); // translate to physical address Fault fault = xc->translateDataWriteReq(memReq); assert(fault != Alignment_Fault); if (fault == NoFault) { Addr dest_addr = memReq->paddr + offset; // Need to read straight from memory since we have more than 8 bytes. memReq->paddr = xc->copySrcPhysAddr; xc->mem->read(memReq, data); memReq->paddr = dest_addr; xc->mem->write(memReq, data); if (dcacheInterface) { memReq->cmd = Copy; memReq->completionEvent = NULL; memReq->paddr = xc->copySrcPhysAddr; memReq->dest = dest_addr; memReq->size = 64; memReq->time = curTick; dcacheInterface->access(memReq); } } return fault; #endif } #if FULL_SYSTEM template Addr OzoneCPU::dbg_vtophys(Addr addr) { return vtophys(&xcProxy, addr); } #endif // FULL_SYSTEM /* template void OzoneCPU::processICacheCompletion() { switch (status()) { case IcacheMiss: DPRINTF(OzoneCPU, "OzoneCPU: Finished Icache miss.\n"); icacheStallCycles += curTick - lastIcacheStall; _status = IcacheMissComplete; cacheBlkValid = true; // scheduleTickEvent(1); break; case SwitchedOut: // If this CPU has been switched out due to sampling/warm-up, // ignore any further status changes (e.g., due to cache // misses outstanding at the time of the switch). return; default: panic("OzoneCPU::processICacheCompletion: bad state"); break; } } */ #if FULL_SYSTEM template void OzoneCPU::post_interrupt(int int_num, int index) { BaseCPU::post_interrupt(int_num, index); if (thread._status == ExecContext::Suspended) { DPRINTF(IPI,"Suspended Processor awoke\n"); // thread.activate(); // Hack for now. Otherwise might have to go through the xcProxy, or // I need to figure out what's the right thing to call. activateContext(thread.tid, 1); } } #endif // FULL_SYSTEM /* start simulation, program loaded, processor precise state initialized */ template void OzoneCPU::tick() { DPRINTF(OzoneCPU, "\n\nOzoneCPU: Ticking cpu.\n"); thread.renameTable[ZeroReg]->setIntResult(0); thread.renameTable[ZeroReg+TheISA::FP_Base_DepTag]-> setDoubleResult(0.0); // General code flow: // Check for any interrupts. Handle them if I do have one. // Check if I have a need to fetch a new cache block. Either a bit could be // set by functions indicating that I need to fetch a new block, or I could // hang onto the last PC of the last cache block I fetched and compare the // current PC to that. Setting a bit seems nicer but may be more error // prone. // Scan through the IQ to figure out if there's anything I can issue/execute // Might need something close to the FU Pools to tell what instructions // I can issue. How to handle loads and stores vs other insts? // Extremely slow way: find first inst that can possibly issue; if it's a // load or a store, then iterate through load/store queue. // If I can't find instructions to execute and I've got room in the IQ // (which is just a counter), then grab a few instructions out of the cache // line buffer until I either run out or can execute up until my limit. numCycles++; traceData = NULL; // Fault fault = NoFault; #if 0 // FULL_SYSTEM if (checkInterrupts && check_interrupts() && !inPalMode() && status() != IcacheMissComplete) { int ipl = 0; int summary = 0; checkInterrupts = false; if (readMiscReg(IPR_SIRR)) { for (int i = INTLEVEL_SOFTWARE_MIN; i < INTLEVEL_SOFTWARE_MAX; i++) { if (readMiscReg(IPR_SIRR) & (ULL(1) << i)) { // See table 4-19 of 21164 hardware reference ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1; summary |= (ULL(1) << i); } } } // Is this method so that if the interrupts are switched over from // another CPU they'll still be handled? // uint64_t interrupts = cpuXC->cpu->intr_status(); uint64_t interrupts = intr_status(); for (int i = INTLEVEL_EXTERNAL_MIN; i < INTLEVEL_EXTERNAL_MAX; i++) { if (interrupts & (ULL(1) << i)) { // See table 4-19 of 21164 hardware reference ipl = i; summary |= (ULL(1) << i); } } if (readMiscReg(IPR_ASTRR)) panic("asynchronous traps not implemented\n"); if (ipl && ipl > readMiscReg(IPR_IPLR)) { setMiscReg(IPR_ISR, summary); setMiscReg(IPR_INTID, ipl); Fault(new InterruptFault)->invoke(xc); DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n", readMiscReg(IPR_IPLR), ipl, summary); } } #endif // Make call to ISA to ensure 0 register semantics...actually because the // DynInsts will generally be the register file, this should only have to // happen when the xc is actually written to (during a syscall or something) // maintain $r0 semantics // assert(renameTable[ZeroReg]->readIntResult() == 0); #ifdef TARGET_ALPHA // assert(renameTable[ZeroReg]->readDoubleResult() == 0); #endif // TARGET_ALPHA comm.advance(); frontEnd->tick(); backEnd->tick(); // Do this here? For now the front end will control the PC. // PC = nextPC; // check for instruction-count-based events comInstEventQueue[0]->serviceEvents(numInst); if (!tickEvent.scheduled()) tickEvent.schedule(curTick + 1); } template void OzoneCPU::squashFromXC() { thread.inSyscall = true; backEnd->generateXCEvent(); } #if !FULL_SYSTEM template void OzoneCPU::syscall() { // Not sure this copy is needed, depending on how the XC proxy is made. thread.renameTable.copyFrom(backEnd->renameTable); thread.inSyscall = true; thread.funcExeInst++; DPRINTF(OzoneCPU, "FuncExeInst: %i\n", thread.funcExeInst); thread.process->syscall(&xcProxy); thread.funcExeInst--; thread.inSyscall = false; frontEnd->renameTable.copyFrom(thread.renameTable); backEnd->renameTable.copyFrom(thread.renameTable); } template void OzoneCPU::setSyscallReturn(SyscallReturn return_value, int tid) { // check for error condition. Alpha syscall convention is to // indicate success/failure in reg a3 (r19) and put the // return value itself in the standard return value reg (v0). if (return_value.successful()) { // no error thread.renameTable[SyscallSuccessReg]->setIntResult(0); thread.renameTable[ReturnValueReg]->setIntResult(return_value.value()); } else { // got an error, return details thread.renameTable[SyscallSuccessReg]->setIntResult((IntReg) -1); thread.renameTable[ReturnValueReg]->setIntResult(-return_value.value()); } } #else template Fault OzoneCPU::hwrei() { // Need to move this to ISA code // May also need to make this per thread if (!inPalMode()) return new UnimplementedOpcodeFault; thread.setNextPC(thread.readMiscReg(AlphaISA::IPR_EXC_ADDR)); // Not sure how to make a similar check in the Ozone model // if (!misspeculating()) { kernelStats->hwrei(); checkInterrupts = true; // } // FIXME: XXX check for interrupts? XXX return NoFault; } template void OzoneCPU::processInterrupts() { // Check for interrupts here. For now can copy the code that // exists within isa_fullsys_traits.hh. Also assume that thread 0 // is the one that handles the interrupts. // Check if there are any outstanding interrupts //Handle the interrupts int ipl = 0; int summary = 0; checkInterrupts = false; if (thread.readMiscReg(IPR_ASTRR)) panic("asynchronous traps not implemented\n"); if (thread.readMiscReg(IPR_SIRR)) { for (int i = INTLEVEL_SOFTWARE_MIN; i < INTLEVEL_SOFTWARE_MAX; i++) { if (thread.readMiscReg(IPR_SIRR) & (ULL(1) << i)) { // See table 4-19 of the 21164 hardware reference ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1; summary |= (ULL(1) << i); } } } uint64_t interrupts = intr_status(); if (interrupts) { for (int i = INTLEVEL_EXTERNAL_MIN; i < INTLEVEL_EXTERNAL_MAX; i++) { if (interrupts & (ULL(1) << i)) { // See table 4-19 of the 21164 hardware reference ipl = i; summary |= (ULL(1) << i); } } } if (ipl && ipl > thread.readMiscReg(IPR_IPLR)) { thread.setMiscReg(IPR_ISR, summary); thread.setMiscReg(IPR_INTID, ipl); Fault fault = new InterruptFault; fault->invoke(thread.getXCProxy()); DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n", thread.readMiscReg(IPR_IPLR), ipl, summary); } } template bool OzoneCPU::simPalCheck(int palFunc) { // Need to move this to ISA code // May also need to make this per thread this->kernelStats->callpal(palFunc, &xcProxy); switch (palFunc) { case PAL::halt: haltContext(thread.tid); if (--System::numSystemsRunning == 0) new SimExitEvent("all cpus halted"); break; case PAL::bpt: case PAL::bugchk: if (system->breakpoint()) return false; break; } return true; } #endif template BaseCPU * OzoneCPU::OzoneXC::getCpuPtr() { return cpu; } template void OzoneCPU::OzoneXC::setCpuId(int id) { cpu->cpuId = id; thread->cpuId = id; } template void OzoneCPU::OzoneXC::setStatus(Status new_status) { // cpu->_status = new_status; thread->_status = new_status; } template void OzoneCPU::OzoneXC::activate(int delay) { cpu->activateContext(thread->tid, delay); } /// Set the status to Suspended. template void OzoneCPU::OzoneXC::suspend() { cpu->suspendContext(thread->tid); } /// Set the status to Unallocated. template void OzoneCPU::OzoneXC::deallocate() { cpu->deallocateContext(thread->tid); } /// Set the status to Halted. template void OzoneCPU::OzoneXC::halt() { cpu->haltContext(thread->tid); } #if FULL_SYSTEM template void OzoneCPU::OzoneXC::dumpFuncProfile() { } #endif template void OzoneCPU::OzoneXC::takeOverFrom(ExecContext *old_context) { } template void OzoneCPU::OzoneXC::regStats(const std::string &name) { } template void OzoneCPU::OzoneXC::serialize(std::ostream &os) { } template void OzoneCPU::OzoneXC::unserialize(Checkpoint *cp, const std::string §ion) { } #if FULL_SYSTEM template Event * OzoneCPU::OzoneXC::getQuiesceEvent() { return thread->quiesceEvent; } template Tick OzoneCPU::OzoneXC::readLastActivate() { return thread->lastActivate; } template Tick OzoneCPU::OzoneXC::readLastSuspend() { return thread->lastSuspend; } template void OzoneCPU::OzoneXC::profileClear() { if (thread->profile) thread->profile->clear(); } template void OzoneCPU::OzoneXC::profileSample() { if (thread->profile) thread->profile->sample(thread->profileNode, thread->profilePC); } #endif template int OzoneCPU::OzoneXC::getThreadNum() { return thread->tid; } // Also somewhat obnoxious. Really only used for the TLB fault. template TheISA::MachInst OzoneCPU::OzoneXC::getInst() { return thread->inst; } template void OzoneCPU::OzoneXC::copyArchRegs(ExecContext *xc) { thread->PC = xc->readPC(); thread->nextPC = xc->readNextPC(); cpu->frontEnd->setPC(thread->PC); cpu->frontEnd->setNextPC(thread->nextPC); for (int i = 0; i < TheISA::TotalNumRegs; ++i) { if (i < TheISA::FP_Base_DepTag) { thread->renameTable[i]->setIntResult(xc->readIntReg(i)); } else if (i < (TheISA::FP_Base_DepTag + TheISA::NumFloatRegs)) { int fp_idx = i - TheISA::FP_Base_DepTag; thread->renameTable[i]->setDoubleResult( xc->readFloatRegDouble(fp_idx)); } } #if !FULL_SYSTEM thread->funcExeInst = xc->readFuncExeInst(); #endif // Need to copy the XC values into the current rename table, // copy the misc regs. thread->regs.miscRegs.copyMiscRegs(xc); } template void OzoneCPU::OzoneXC::clearArchRegs() { panic("Unimplemented!"); } template uint64_t OzoneCPU::OzoneXC::readIntReg(int reg_idx) { return thread->renameTable[reg_idx]->readIntResult(); } template float OzoneCPU::OzoneXC::readFloatRegSingle(int reg_idx) { return thread->renameTable[reg_idx]->readFloatResult(); } template double OzoneCPU::OzoneXC::readFloatRegDouble(int reg_idx) { return thread->renameTable[reg_idx]->readDoubleResult(); } template uint64_t OzoneCPU::OzoneXC::readFloatRegInt(int reg_idx) { return thread->renameTable[reg_idx]->readIntResult(); } template void OzoneCPU::OzoneXC::setIntReg(int reg_idx, uint64_t val) { thread->renameTable[reg_idx]->setIntResult(val); if (!thread->inSyscall) { cpu->squashFromXC(); } } template void OzoneCPU::OzoneXC::setFloatRegSingle(int reg_idx, float val) { panic("Unimplemented!"); } template void OzoneCPU::OzoneXC::setFloatRegDouble(int reg_idx, double val) { thread->renameTable[reg_idx]->setDoubleResult(val); if (!thread->inSyscall) { cpu->squashFromXC(); } } template void OzoneCPU::OzoneXC::setFloatRegInt(int reg_idx, uint64_t val) { panic("Unimplemented!"); } template void OzoneCPU::OzoneXC::setPC(Addr val) { thread->PC = val; cpu->frontEnd->setPC(val); if (!thread->inSyscall) { cpu->squashFromXC(); } } template void OzoneCPU::OzoneXC::setNextPC(Addr val) { thread->nextPC = val; cpu->frontEnd->setNextPC(val); if (!thread->inSyscall) { cpu->squashFromXC(); } } template TheISA::MiscReg OzoneCPU::OzoneXC::readMiscReg(int misc_reg) { return thread->regs.miscRegs.readReg(misc_reg); } template TheISA::MiscReg OzoneCPU::OzoneXC::readMiscRegWithEffect(int misc_reg, Fault &fault) { return thread->regs.miscRegs.readRegWithEffect(misc_reg, fault, this); } template Fault OzoneCPU::OzoneXC::setMiscReg(int misc_reg, const MiscReg &val) { // Needs to setup a squash event unless we're in syscall mode Fault ret_fault = thread->regs.miscRegs.setReg(misc_reg, val); if (!thread->inSyscall) { cpu->squashFromXC(); } return ret_fault; } template Fault OzoneCPU::OzoneXC::setMiscRegWithEffect(int misc_reg, const MiscReg &val) { // Needs to setup a squash event unless we're in syscall mode Fault ret_fault = thread->regs.miscRegs.setRegWithEffect(misc_reg, val, this); if (!thread->inSyscall) { cpu->squashFromXC(); } return ret_fault; }