/* * Copyright (c) 2002-2004 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include "base/cprintf.hh" #include "base/inifile.hh" #include "base/loader/symtab.hh" #include "base/misc.hh" #include "base/pollevent.hh" #include "base/range.hh" #include "base/trace.hh" #include "base/stats/events.hh" #include "cpu/base_cpu.hh" #include "cpu/exec_context.hh" #include "cpu/exetrace.hh" #include "cpu/full_cpu/smt.hh" #include "cpu/simple_cpu/simple_cpu.hh" #include "cpu/static_inst.hh" #include "mem/base_mem.hh" #include "mem/mem_interface.hh" #include "sim/builder.hh" #include "sim/debug.hh" #include "sim/host.hh" #include "sim/sim_events.hh" #include "sim/sim_object.hh" #include "sim/stats.hh" #ifdef FULL_SYSTEM #include "base/remote_gdb.hh" #include "dev/alpha_access.h" #include "dev/pciareg.h" #include "mem/functional_mem/memory_control.hh" #include "mem/functional_mem/physical_memory.hh" #include "sim/system.hh" #include "targetarch/alpha_memory.hh" #include "targetarch/vtophys.hh" #else // !FULL_SYSTEM #include "eio/eio.hh" #include "mem/functional_mem/functional_memory.hh" #endif // FULL_SYSTEM using namespace std; SimpleCPU::TickEvent::TickEvent(SimpleCPU *c, int w) : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c), width(w) { } void SimpleCPU::TickEvent::process() { int count = width; do { cpu->tick(); } while (--count > 0 && cpu->status() == Running); } const char * SimpleCPU::TickEvent::description() { return "SimpleCPU tick event"; } SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu) : Event(&mainEventQueue), cpu(_cpu) { } void SimpleCPU::CacheCompletionEvent::process() { cpu->processCacheCompletion(); } const char * SimpleCPU::CacheCompletionEvent::description() { return "SimpleCPU cache completion event"; } SimpleCPU::SimpleCPU(Params *p) : BaseCPU(p), tickEvent(this, p->width), xc(NULL), cacheCompletionEvent(this) { _status = Idle; #ifdef FULL_SYSTEM xc = new ExecContext(this, 0, p->system, p->itb, p->dtb, p->mem); // initialize CPU, including PC TheISA::initCPU(&xc->regs); #else xc = new ExecContext(this, /* thread_num */ 0, p->process, /* asid */ 0); #endif // !FULL_SYSTEM icacheInterface = p->icache_interface; dcacheInterface = p->dcache_interface; memReq = new MemReq(); memReq->xc = xc; memReq->asid = 0; memReq->data = new uint8_t[64]; numInst = 0; startNumInst = 0; numLoad = 0; startNumLoad = 0; lastIcacheStall = 0; lastDcacheStall = 0; execContexts.push_back(xc); } SimpleCPU::~SimpleCPU() { } void SimpleCPU::switchOut() { _status = SwitchedOut; if (tickEvent.scheduled()) tickEvent.squash(); } void SimpleCPU::takeOverFrom(BaseCPU *oldCPU) { BaseCPU::takeOverFrom(oldCPU); assert(!tickEvent.scheduled()); // if any of this CPU's ExecContexts are active, mark the CPU as // running and schedule its tick event. for (int i = 0; i < execContexts.size(); ++i) { ExecContext *xc = execContexts[i]; if (xc->status() == ExecContext::Active && _status != Running) { _status = Running; tickEvent.schedule(curTick); } } oldCPU->switchOut(); } void SimpleCPU::activateContext(int thread_num, int delay) { assert(thread_num == 0); assert(xc); assert(_status == Idle); notIdleFraction++; scheduleTickEvent(delay); _status = Running; } void SimpleCPU::suspendContext(int thread_num) { assert(thread_num == 0); assert(xc); assert(_status == Running); notIdleFraction--; unscheduleTickEvent(); _status = Idle; } void SimpleCPU::deallocateContext(int thread_num) { // for now, these are equivalent suspendContext(thread_num); } void SimpleCPU::haltContext(int thread_num) { // for now, these are equivalent suspendContext(thread_num); } void SimpleCPU::regStats() { using namespace Stats; BaseCPU::regStats(); numInsts .name(name() + ".num_insts") .desc("Number of instructions executed") ; numMemRefs .name(name() + ".num_refs") .desc("Number of memory references") ; notIdleFraction .name(name() + ".not_idle_fraction") .desc("Percentage of non-idle cycles") ; idleFraction .name(name() + ".idle_fraction") .desc("Percentage of idle cycles") ; icacheStallCycles .name(name() + ".icache_stall_cycles") .desc("ICache total stall cycles") .prereq(icacheStallCycles) ; dcacheStallCycles .name(name() + ".dcache_stall_cycles") .desc("DCache total stall cycles") .prereq(dcacheStallCycles) ; idleFraction = constant(1.0) - notIdleFraction; } void SimpleCPU::resetStats() { startNumInst = numInst; notIdleFraction = (_status != Idle); } void SimpleCPU::serialize(ostream &os) { BaseCPU::serialize(os); SERIALIZE_ENUM(_status); SERIALIZE_SCALAR(inst); nameOut(os, csprintf("%s.xc", name())); xc->serialize(os); nameOut(os, csprintf("%s.tickEvent", name())); tickEvent.serialize(os); nameOut(os, csprintf("%s.cacheCompletionEvent", name())); cacheCompletionEvent.serialize(os); } void SimpleCPU::unserialize(Checkpoint *cp, const string §ion) { BaseCPU::unserialize(cp, section); UNSERIALIZE_ENUM(_status); UNSERIALIZE_SCALAR(inst); xc->unserialize(cp, csprintf("%s.xc", section)); tickEvent.unserialize(cp, csprintf("%s.tickEvent", section)); cacheCompletionEvent .unserialize(cp, csprintf("%s.cacheCompletionEvent", section)); } void change_thread_state(int thread_number, int activate, int priority) { } Fault SimpleCPU::copySrcTranslate(Addr src) { static bool no_warn = true; int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64; // Only support block sizes of 64 atm. assert(blk_size == 64); int offset = src & (blk_size - 1); // Make sure block doesn't span page if (no_warn && (src & TheISA::PageMask) != ((src + blk_size) & TheISA::PageMask) && (src >> 40) != 0xfffffc) { warn("Copied block source spans pages %x.", src); no_warn = false; } memReq->reset(src & ~(blk_size - 1), blk_size); // translate to physical address Fault fault = xc->translateDataReadReq(memReq); assert(fault != Alignment_Fault); if (fault == No_Fault) { xc->copySrcAddr = src; xc->copySrcPhysAddr = memReq->paddr + offset; } else { xc->copySrcAddr = 0; xc->copySrcPhysAddr = 0; } return fault; } Fault SimpleCPU::copy(Addr dest) { static bool no_warn = true; int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64; // Only support block sizes of 64 atm. assert(blk_size == 64); uint8_t data[blk_size]; //assert(xc->copySrcAddr); int offset = dest & (blk_size - 1); // Make sure block doesn't span page if (no_warn && (dest & TheISA::PageMask) != ((dest + blk_size) & TheISA::PageMask) && (dest >> 40) != 0xfffffc) { no_warn = false; warn("Copied block destination spans pages %x. ", dest); } memReq->reset(dest & ~(blk_size -1), blk_size); // translate to physical address Fault fault = xc->translateDataWriteReq(memReq); assert(fault != Alignment_Fault); if (fault == No_Fault) { Addr dest_addr = memReq->paddr + offset; // Need to read straight from memory since we have more than 8 bytes. memReq->paddr = xc->copySrcPhysAddr; xc->mem->read(memReq, data); memReq->paddr = dest_addr; xc->mem->write(memReq, data); if (dcacheInterface) { memReq->cmd = Copy; memReq->completionEvent = NULL; memReq->paddr = xc->copySrcPhysAddr; memReq->dest = dest_addr; memReq->size = 64; memReq->time = curTick; dcacheInterface->access(memReq); } } return fault; } // precise architected memory state accessor macros template Fault SimpleCPU::read(Addr addr, T &data, unsigned flags) { memReq->reset(addr, sizeof(T), flags); // translate to physical address Fault fault = xc->translateDataReadReq(memReq); // do functional access if (fault == No_Fault) fault = xc->read(memReq, data); if (traceData) { traceData->setAddr(addr); if (fault == No_Fault) traceData->setData(data); } // if we have a cache, do cache access too if (fault == No_Fault && dcacheInterface) { memReq->cmd = Read; memReq->completionEvent = NULL; memReq->time = curTick; MemAccessResult result = dcacheInterface->access(memReq); // Ugly hack to get an event scheduled *only* if the access is // a miss. We really should add first-class support for this // at some point. if (result != MA_HIT && dcacheInterface->doEvents()) { memReq->completionEvent = &cacheCompletionEvent; lastDcacheStall = curTick; unscheduleTickEvent(); _status = DcacheMissStall; } } if (!dcacheInterface && (memReq->flags & UNCACHEABLE)) recordEvent("Uncached Read"); return fault; } #ifndef DOXYGEN_SHOULD_SKIP_THIS template Fault SimpleCPU::read(Addr addr, uint64_t &data, unsigned flags); template Fault SimpleCPU::read(Addr addr, uint32_t &data, unsigned flags); template Fault SimpleCPU::read(Addr addr, uint16_t &data, unsigned flags); template Fault SimpleCPU::read(Addr addr, uint8_t &data, unsigned flags); #endif //DOXYGEN_SHOULD_SKIP_THIS template<> Fault SimpleCPU::read(Addr addr, double &data, unsigned flags) { return read(addr, *(uint64_t*)&data, flags); } template<> Fault SimpleCPU::read(Addr addr, float &data, unsigned flags) { return read(addr, *(uint32_t*)&data, flags); } template<> Fault SimpleCPU::read(Addr addr, int32_t &data, unsigned flags) { return read(addr, (uint32_t&)data, flags); } template Fault SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res) { if (traceData) { traceData->setAddr(addr); traceData->setData(data); } memReq->reset(addr, sizeof(T), flags); // translate to physical address Fault fault = xc->translateDataWriteReq(memReq); // do functional access if (fault == No_Fault) fault = xc->write(memReq, data); if (fault == No_Fault && dcacheInterface) { memReq->cmd = Write; memcpy(memReq->data,(uint8_t *)&data,memReq->size); memReq->completionEvent = NULL; memReq->time = curTick; MemAccessResult result = dcacheInterface->access(memReq); // Ugly hack to get an event scheduled *only* if the access is // a miss. We really should add first-class support for this // at some point. if (result != MA_HIT && dcacheInterface->doEvents()) { memReq->completionEvent = &cacheCompletionEvent; lastDcacheStall = curTick; unscheduleTickEvent(); _status = DcacheMissStall; } } if (res && (fault == No_Fault)) *res = memReq->result; if (!dcacheInterface && (memReq->flags & UNCACHEABLE)) recordEvent("Uncached Write"); return fault; } #ifndef DOXYGEN_SHOULD_SKIP_THIS template Fault SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res); template Fault SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res); template Fault SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res); template Fault SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res); #endif //DOXYGEN_SHOULD_SKIP_THIS template<> Fault SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res) { return write(*(uint64_t*)&data, addr, flags, res); } template<> Fault SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res) { return write(*(uint32_t*)&data, addr, flags, res); } template<> Fault SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res) { return write((uint32_t)data, addr, flags, res); } #ifdef FULL_SYSTEM Addr SimpleCPU::dbg_vtophys(Addr addr) { return vtophys(xc, addr); } #endif // FULL_SYSTEM void SimpleCPU::processCacheCompletion() { switch (status()) { case IcacheMissStall: icacheStallCycles += curTick - lastIcacheStall; _status = IcacheMissComplete; scheduleTickEvent(1); break; case DcacheMissStall: dcacheStallCycles += curTick - lastDcacheStall; _status = Running; scheduleTickEvent(1); break; case SwitchedOut: // If this CPU has been switched out due to sampling/warm-up, // ignore any further status changes (e.g., due to cache // misses outstanding at the time of the switch). return; default: panic("SimpleCPU::processCacheCompletion: bad state"); break; } } #ifdef FULL_SYSTEM void SimpleCPU::post_interrupt(int int_num, int index) { BaseCPU::post_interrupt(int_num, index); if (xc->status() == ExecContext::Suspended) { DPRINTF(IPI,"Suspended Processor awoke\n"); xc->activate(); } } #endif // FULL_SYSTEM /* start simulation, program loaded, processor precise state initialized */ void SimpleCPU::tick() { numCycles++; traceData = NULL; Fault fault = No_Fault; #ifdef FULL_SYSTEM if (checkInterrupts && check_interrupts() && !xc->inPalMode() && status() != IcacheMissComplete) { int ipl = 0; int summary = 0; checkInterrupts = false; IntReg *ipr = xc->regs.ipr; if (xc->regs.ipr[TheISA::IPR_SIRR]) { for (int i = TheISA::INTLEVEL_SOFTWARE_MIN; i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) { if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) { // See table 4-19 of 21164 hardware reference ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1; summary |= (ULL(1) << i); } } } uint64_t interrupts = xc->cpu->intr_status(); for (int i = TheISA::INTLEVEL_EXTERNAL_MIN; i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) { if (interrupts & (ULL(1) << i)) { // See table 4-19 of 21164 hardware reference ipl = i; summary |= (ULL(1) << i); } } if (ipr[TheISA::IPR_ASTRR]) panic("asynchronous traps not implemented\n"); if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) { ipr[TheISA::IPR_ISR] = summary; ipr[TheISA::IPR_INTID] = ipl; xc->ev5_trap(Interrupt_Fault); DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n", ipr[TheISA::IPR_IPLR], ipl, summary); } } #endif // maintain $r0 semantics xc->regs.intRegFile[ZeroReg] = 0; #ifdef TARGET_ALPHA xc->regs.floatRegFile.d[ZeroReg] = 0.0; #endif // TARGET_ALPHA if (status() == IcacheMissComplete) { // We've already fetched an instruction and were stalled on an // I-cache miss. No need to fetch it again. // Set status to running; tick event will get rescheduled if // necessary at end of tick() function. _status = Running; } else { // Try to fetch an instruction // set up memory request for instruction fetch #ifdef FULL_SYSTEM #define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0 #else #define IFETCH_FLAGS(pc) 0 #endif memReq->cmd = Read; memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t), IFETCH_FLAGS(xc->regs.pc)); fault = xc->translateInstReq(memReq); if (fault == No_Fault) fault = xc->mem->read(memReq, inst); if (icacheInterface && fault == No_Fault) { memReq->completionEvent = NULL; memReq->time = curTick; MemAccessResult result = icacheInterface->access(memReq); // Ugly hack to get an event scheduled *only* if the access is // a miss. We really should add first-class support for this // at some point. if (result != MA_HIT && icacheInterface->doEvents()) { memReq->completionEvent = &cacheCompletionEvent; lastIcacheStall = curTick; unscheduleTickEvent(); _status = IcacheMissStall; return; } } } // If we've got a valid instruction (i.e., no fault on instruction // fetch), then execute it. if (fault == No_Fault) { // keep an instruction count numInst++; numInsts++; // check for instruction-count-based events comInstEventQueue[0]->serviceEvents(numInst); // decode the instruction inst = htoa(inst); StaticInstPtr si(inst); traceData = Trace::getInstRecord(curTick, xc, this, si, xc->regs.pc); #ifdef FULL_SYSTEM xc->setInst(inst); #endif // FULL_SYSTEM xc->func_exe_inst++; fault = si->execute(this, traceData); #ifdef FULL_SYSTEM if (xc->fnbin) xc->execute(si.get()); #endif if (si->isMemRef()) { numMemRefs++; } if (si->isLoad()) { ++numLoad; comLoadEventQueue[0]->serviceEvents(numLoad); } if (traceData) traceData->finalize(); traceFunctions(xc->regs.pc); } // if (fault == No_Fault) if (fault != No_Fault) { #ifdef FULL_SYSTEM xc->ev5_trap(fault); #else // !FULL_SYSTEM fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc); #endif // FULL_SYSTEM } else { // go to the next instruction xc->regs.pc = xc->regs.npc; xc->regs.npc += sizeof(MachInst); } #ifdef FULL_SYSTEM Addr oldpc; do { oldpc = xc->regs.pc; system->pcEventQueue.service(xc); } while (oldpc != xc->regs.pc); #endif assert(status() == Running || status() == Idle || status() == DcacheMissStall); if (status() == Running && !tickEvent.scheduled()) tickEvent.schedule(curTick + 1); } //////////////////////////////////////////////////////////////////////// // // SimpleCPU Simulation Object // BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU) Param max_insts_any_thread; Param max_insts_all_threads; Param max_loads_any_thread; Param max_loads_all_threads; #ifdef FULL_SYSTEM SimObjectParam itb; SimObjectParam dtb; SimObjectParam mem; SimObjectParam system; Param mult; #else SimObjectParam workload; #endif // FULL_SYSTEM SimObjectParam icache; SimObjectParam dcache; Param defer_registration; Param width; Param function_trace; Param function_trace_start; END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU) BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU) INIT_PARAM(max_insts_any_thread, "terminate when any thread reaches this inst count"), INIT_PARAM(max_insts_all_threads, "terminate when all threads have reached this inst count"), INIT_PARAM(max_loads_any_thread, "terminate when any thread reaches this load count"), INIT_PARAM(max_loads_all_threads, "terminate when all threads have reached this load count"), #ifdef FULL_SYSTEM INIT_PARAM(itb, "Instruction TLB"), INIT_PARAM(dtb, "Data TLB"), INIT_PARAM(mem, "memory"), INIT_PARAM(system, "system object"), INIT_PARAM(mult, "system clock multiplier"), #else INIT_PARAM(workload, "processes to run"), #endif // FULL_SYSTEM INIT_PARAM(icache, "L1 instruction cache object"), INIT_PARAM(dcache, "L1 data cache object"), INIT_PARAM(defer_registration, "defer system registration (for sampling)"), INIT_PARAM(width, "cpu width"), INIT_PARAM(function_trace, "Enable function trace"), INIT_PARAM(function_trace_start, "Cycle to start function trace") END_INIT_SIM_OBJECT_PARAMS(SimpleCPU) CREATE_SIM_OBJECT(SimpleCPU) { #ifdef FULL_SYSTEM if (mult != 1) panic("processor clock multiplier must be 1\n"); #endif SimpleCPU::Params *params = new SimpleCPU::Params(); params->name = getInstanceName(); params->numberOfThreads = 1; params->max_insts_any_thread = max_insts_any_thread; params->max_insts_all_threads = max_insts_all_threads; params->max_loads_any_thread = max_loads_any_thread; params->max_loads_all_threads = max_loads_all_threads; params->deferRegistration = defer_registration; params->freq = ticksPerSecond; params->functionTrace = function_trace; params->functionTraceStart = function_trace_start; params->icache_interface = (icache) ? icache->getInterface() : NULL; params->dcache_interface = (dcache) ? dcache->getInterface() : NULL; params->width = width; #ifdef FULL_SYSTEM params->itb = itb; params->dtb = dtb; params->mem = mem; params->system = system; #else params->process = workload; #endif SimpleCPU *cpu = new SimpleCPU(params); return cpu; } REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)