# Copyright (c) 2010-2012 ARM Limited # All rights reserved. # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Copyright (c) 2010-2011 Advanced Micro Devices, Inc. # Copyright (c) 2006-2008 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Kevin Lim from m5.objects import * from Benchmarks import * from m5.util import * class CowIdeDisk(IdeDisk): image = CowDiskImage(child=RawDiskImage(read_only=True), read_only=False) def childImage(self, ci): self.image.child.image_file = ci class MemBus(CoherentXBar): badaddr_responder = BadAddr() default = Self.badaddr_responder.pio def makeLinuxAlphaSystem(mem_mode, mdesc = None, ruby = False): class BaseTsunami(Tsunami): ethernet = NSGigE(pci_bus=0, pci_dev=1, pci_func=0) ide = IdeController(disks=[Parent.disk0, Parent.disk2], pci_func=0, pci_dev=0, pci_bus=0) self = LinuxAlphaSystem() if not mdesc: # generic system mdesc = SysConfig() self.readfile = mdesc.script() self.tsunami = BaseTsunami() # Create the io bus to connect all device ports self.iobus = NoncoherentXBar() self.tsunami.attachIO(self.iobus) self.tsunami.ide.pio = self.iobus.master self.tsunami.ide.config = self.iobus.master self.tsunami.ethernet.pio = self.iobus.master self.tsunami.ethernet.config = self.iobus.master if ruby: # Store the dma devices for later connection to dma ruby ports. # Append an underscore to dma_ports to avoid the SimObjectVector check. self._dma_ports = [self.tsunami.ide.dma, self.tsunami.ethernet.dma] else: self.membus = MemBus() # By default the bridge responds to all addresses above the I/O # base address (including the PCI config space) IO_address_space_base = 0x80000000000 self.bridge = Bridge(delay='50ns', ranges = [AddrRange(IO_address_space_base, Addr.max)]) self.bridge.master = self.iobus.slave self.bridge.slave = self.membus.master self.tsunami.ide.dma = self.iobus.slave self.tsunami.ethernet.dma = self.iobus.slave self.system_port = self.membus.slave self.mem_ranges = [AddrRange(mdesc.mem())] self.disk0 = CowIdeDisk(driveID='master') self.disk2 = CowIdeDisk(driveID='master') self.disk0.childImage(mdesc.disk()) self.disk2.childImage(disk('linux-bigswap2.img')) self.simple_disk = SimpleDisk(disk=RawDiskImage(image_file = mdesc.disk(), read_only = True)) self.intrctrl = IntrControl() self.mem_mode = mem_mode self.terminal = Terminal() self.kernel = binary('vmlinux') self.pal = binary('ts_osfpal') self.console = binary('console') self.boot_osflags = 'root=/dev/hda1 console=ttyS0' return self def makeSparcSystem(mem_mode, mdesc = None): # Constants from iob.cc and uart8250.cc iob_man_addr = 0x9800000000 uart_pio_size = 8 class CowMmDisk(MmDisk): image = CowDiskImage(child=RawDiskImage(read_only=True), read_only=False) def childImage(self, ci): self.image.child.image_file = ci self = SparcSystem() if not mdesc: # generic system mdesc = SysConfig() self.readfile = mdesc.script() self.iobus = NoncoherentXBar() self.membus = MemBus() self.bridge = Bridge(delay='50ns') self.t1000 = T1000() self.t1000.attachOnChipIO(self.membus) self.t1000.attachIO(self.iobus) self.mem_ranges = [AddrRange(Addr('1MB'), size = '64MB'), AddrRange(Addr('2GB'), size ='256MB')] self.bridge.master = self.iobus.slave self.bridge.slave = self.membus.master self.rom.port = self.membus.master self.nvram.port = self.membus.master self.hypervisor_desc.port = self.membus.master self.partition_desc.port = self.membus.master self.intrctrl = IntrControl() self.disk0 = CowMmDisk() self.disk0.childImage(disk('disk.s10hw2')) self.disk0.pio = self.iobus.master # The puart0 and hvuart are placed on the IO bus, so create ranges # for them. The remaining IO range is rather fragmented, so poke # holes for the iob and partition descriptors etc. self.bridge.ranges = \ [ AddrRange(self.t1000.puart0.pio_addr, self.t1000.puart0.pio_addr + uart_pio_size - 1), AddrRange(self.disk0.pio_addr, self.t1000.fake_jbi.pio_addr + self.t1000.fake_jbi.pio_size - 1), AddrRange(self.t1000.fake_clk.pio_addr, iob_man_addr - 1), AddrRange(self.t1000.fake_l2_1.pio_addr, self.t1000.fake_ssi.pio_addr + self.t1000.fake_ssi.pio_size - 1), AddrRange(self.t1000.hvuart.pio_addr, self.t1000.hvuart.pio_addr + uart_pio_size - 1) ] self.reset_bin = binary('reset_new.bin') self.hypervisor_bin = binary('q_new.bin') self.openboot_bin = binary('openboot_new.bin') self.nvram_bin = binary('nvram1') self.hypervisor_desc_bin = binary('1up-hv.bin') self.partition_desc_bin = binary('1up-md.bin') self.system_port = self.membus.slave return self def makeArmSystem(mem_mode, machine_type, mdesc = None, dtb_filename = None, bare_metal=False): assert machine_type if bare_metal: self = ArmSystem() else: self = LinuxArmSystem() if not mdesc: # generic system mdesc = SysConfig() self.readfile = mdesc.script() self.iobus = NoncoherentXBar() self.membus = MemBus() self.membus.badaddr_responder.warn_access = "warn" self.bridge = Bridge(delay='50ns') self.bridge.master = self.iobus.slave self.bridge.slave = self.membus.master self.mem_mode = mem_mode if machine_type == "RealView_PBX": self.realview = RealViewPBX() elif machine_type == "RealView_EB": self.realview = RealViewEB() elif machine_type == "VExpress_ELT": self.realview = VExpress_ELT() elif machine_type == "VExpress_EMM": self.realview = VExpress_EMM() elif machine_type == "VExpress_EMM64": self.realview = VExpress_EMM64() else: print "Unknown Machine Type" sys.exit(1) self.cf0 = CowIdeDisk(driveID='master') self.cf0.childImage(mdesc.disk()) # Attach any PCI devices this platform supports self.realview.attachPciDevices() # default to an IDE controller rather than a CF one try: self.realview.ide.disks = [self.cf0] except: self.realview.cf_ctrl.disks = [self.cf0] if bare_metal: # EOT character on UART will end the simulation self.realview.uart.end_on_eot = True self.mem_ranges = [AddrRange(self.realview.mem_start_addr, size = mdesc.mem())] else: if machine_type == "VExpress_EMM64": self.kernel = binary('vmlinux-3.16-aarch64-vexpress-emm64-pcie') elif machine_type == "VExpress_EMM": self.kernel = binary('vmlinux-3.3-arm-vexpress-emm-pcie') else: self.kernel = binary('vmlinux.arm.smp.fb.2.6.38.8') if dtb_filename: self.dtb_filename = binary(dtb_filename) self.machine_type = machine_type # Ensure that writes to the UART actually go out early in the boot boot_flags = 'earlyprintk=pl011,0x1c090000 console=ttyAMA0 ' + \ 'lpj=19988480 norandmaps rw loglevel=8 ' + \ 'mem=%s root=/dev/sda1' % mdesc.mem() self.mem_ranges = [] size_remain = long(Addr(mdesc.mem())) for region in self.realview._mem_regions: if size_remain > long(region[1]): self.mem_ranges.append(AddrRange(region[0], size=region[1])) size_remain = size_remain - long(region[1]) else: self.mem_ranges.append(AddrRange(region[0], size=size_remain)) size_remain = 0 break warn("Memory size specified spans more than one region. Creating" \ " another memory controller for that range.") if size_remain > 0: fatal("The currently selected ARM platforms doesn't support" \ " the amount of DRAM you've selected. Please try" \ " another platform") self.realview.setupBootLoader(self.membus, self, binary) self.gic_cpu_addr = self.realview.gic.cpu_addr self.flags_addr = self.realview.realview_io.pio_addr + 0x30 if mdesc.disk().lower().count('android'): boot_flags += " init=/init " self.boot_osflags = boot_flags self.realview.attachOnChipIO(self.membus, self.bridge) self.realview.attachIO(self.iobus) self.intrctrl = IntrControl() self.terminal = Terminal() self.vncserver = VncServer() self.system_port = self.membus.slave return self def makeLinuxMipsSystem(mem_mode, mdesc = None): class BaseMalta(Malta): ethernet = NSGigE(pci_bus=0, pci_dev=1, pci_func=0) ide = IdeController(disks=[Parent.disk0, Parent.disk2], pci_func=0, pci_dev=0, pci_bus=0) self = LinuxMipsSystem() if not mdesc: # generic system mdesc = SysConfig() self.readfile = mdesc.script() self.iobus = NoncoherentXBar() self.membus = MemBus() self.bridge = Bridge(delay='50ns') self.mem_ranges = [AddrRange('1GB')] self.bridge.master = self.iobus.slave self.bridge.slave = self.membus.master self.disk0 = CowIdeDisk(driveID='master') self.disk2 = CowIdeDisk(driveID='master') self.disk0.childImage(mdesc.disk()) self.disk2.childImage(disk('linux-bigswap2.img')) self.malta = BaseMalta() self.malta.attachIO(self.iobus) self.malta.ide.pio = self.iobus.master self.malta.ide.config = self.iobus.master self.malta.ide.dma = self.iobus.slave self.malta.ethernet.pio = self.iobus.master self.malta.ethernet.config = self.iobus.master self.malta.ethernet.dma = self.iobus.slave self.simple_disk = SimpleDisk(disk=RawDiskImage(image_file = mdesc.disk(), read_only = True)) self.intrctrl = IntrControl() self.mem_mode = mem_mode self.terminal = Terminal() self.kernel = binary('mips/vmlinux') self.console = binary('mips/console') self.boot_osflags = 'root=/dev/hda1 console=ttyS0' self.system_port = self.membus.slave return self def x86IOAddress(port): IO_address_space_base = 0x8000000000000000 return IO_address_space_base + port def connectX86ClassicSystem(x86_sys, numCPUs): # Constants similar to x86_traits.hh IO_address_space_base = 0x8000000000000000 pci_config_address_space_base = 0xc000000000000000 interrupts_address_space_base = 0xa000000000000000 APIC_range_size = 1 << 12; x86_sys.membus = MemBus() # North Bridge x86_sys.iobus = NoncoherentXBar() x86_sys.bridge = Bridge(delay='50ns') x86_sys.bridge.master = x86_sys.iobus.slave x86_sys.bridge.slave = x86_sys.membus.master # Allow the bridge to pass through the IO APIC (two pages), # everything in the IO address range up to the local APIC, and # then the entire PCI address space and beyond x86_sys.bridge.ranges = \ [ AddrRange(x86_sys.pc.south_bridge.io_apic.pio_addr, x86_sys.pc.south_bridge.io_apic.pio_addr + APIC_range_size - 1), AddrRange(IO_address_space_base, interrupts_address_space_base - 1), AddrRange(pci_config_address_space_base, Addr.max) ] # Create a bridge from the IO bus to the memory bus to allow access to # the local APIC (two pages) x86_sys.apicbridge = Bridge(delay='50ns') x86_sys.apicbridge.slave = x86_sys.iobus.master x86_sys.apicbridge.master = x86_sys.membus.slave x86_sys.apicbridge.ranges = [AddrRange(interrupts_address_space_base, interrupts_address_space_base + numCPUs * APIC_range_size - 1)] # connect the io bus x86_sys.pc.attachIO(x86_sys.iobus) x86_sys.system_port = x86_sys.membus.slave def connectX86RubySystem(x86_sys): # North Bridge x86_sys.iobus = NoncoherentXBar() # add the ide to the list of dma devices that later need to attach to # dma controllers x86_sys._dma_ports = [x86_sys.pc.south_bridge.ide.dma] x86_sys.pc.attachIO(x86_sys.iobus, x86_sys._dma_ports) def makeX86System(mem_mode, numCPUs = 1, mdesc = None, self = None, Ruby = False): if self == None: self = X86System() if not mdesc: # generic system mdesc = SysConfig() self.readfile = mdesc.script() self.mem_mode = mem_mode # Physical memory # On the PC platform, the memory region 0xC0000000-0xFFFFFFFF is reserved # for various devices. Hence, if the physical memory size is greater than # 3GB, we need to split it into two parts. excess_mem_size = \ convert.toMemorySize(mdesc.mem()) - convert.toMemorySize('3GB') if excess_mem_size <= 0: self.mem_ranges = [AddrRange(mdesc.mem())] else: warn("Physical memory size specified is %s which is greater than " \ "3GB. Twice the number of memory controllers would be " \ "created." % (mdesc.mem())) self.mem_ranges = [AddrRange('3GB'), AddrRange(Addr('4GB'), size = excess_mem_size)] # Platform self.pc = Pc() # Create and connect the busses required by each memory system if Ruby: connectX86RubySystem(self) else: connectX86ClassicSystem(self, numCPUs) self.intrctrl = IntrControl() # Disks disk0 = CowIdeDisk(driveID='master') disk2 = CowIdeDisk(driveID='master') disk0.childImage(mdesc.disk()) disk2.childImage(disk('linux-bigswap2.img')) self.pc.south_bridge.ide.disks = [disk0, disk2] # Add in a Bios information structure. structures = [X86SMBiosBiosInformation()] self.smbios_table.structures = structures # Set up the Intel MP table base_entries = [] ext_entries = [] for i in xrange(numCPUs): bp = X86IntelMPProcessor( local_apic_id = i, local_apic_version = 0x14, enable = True, bootstrap = (i == 0)) base_entries.append(bp) io_apic = X86IntelMPIOAPIC( id = numCPUs, version = 0x11, enable = True, address = 0xfec00000) self.pc.south_bridge.io_apic.apic_id = io_apic.id base_entries.append(io_apic) isa_bus = X86IntelMPBus(bus_id = 0, bus_type='ISA') base_entries.append(isa_bus) pci_bus = X86IntelMPBus(bus_id = 1, bus_type='PCI') base_entries.append(pci_bus) connect_busses = X86IntelMPBusHierarchy(bus_id=0, subtractive_decode=True, parent_bus=1) ext_entries.append(connect_busses) pci_dev4_inta = X86IntelMPIOIntAssignment( interrupt_type = 'INT', polarity = 'ConformPolarity', trigger = 'ConformTrigger', source_bus_id = 1, source_bus_irq = 0 + (4 << 2), dest_io_apic_id = io_apic.id, dest_io_apic_intin = 16) base_entries.append(pci_dev4_inta) def assignISAInt(irq, apicPin): assign_8259_to_apic = X86IntelMPIOIntAssignment( interrupt_type = 'ExtInt', polarity = 'ConformPolarity', trigger = 'ConformTrigger', source_bus_id = 0, source_bus_irq = irq, dest_io_apic_id = io_apic.id, dest_io_apic_intin = 0) base_entries.append(assign_8259_to_apic) assign_to_apic = X86IntelMPIOIntAssignment( interrupt_type = 'INT', polarity = 'ConformPolarity', trigger = 'ConformTrigger', source_bus_id = 0, source_bus_irq = irq, dest_io_apic_id = io_apic.id, dest_io_apic_intin = apicPin) base_entries.append(assign_to_apic) assignISAInt(0, 2) assignISAInt(1, 1) for i in range(3, 15): assignISAInt(i, i) self.intel_mp_table.base_entries = base_entries self.intel_mp_table.ext_entries = ext_entries def makeLinuxX86System(mem_mode, numCPUs = 1, mdesc = None, Ruby = False): self = LinuxX86System() # Build up the x86 system and then specialize it for Linux makeX86System(mem_mode, numCPUs, mdesc, self, Ruby) # We assume below that there's at least 1MB of memory. We'll require 2 # just to avoid corner cases. phys_mem_size = sum(map(lambda r: r.size(), self.mem_ranges)) assert(phys_mem_size >= 0x200000) assert(len(self.mem_ranges) <= 2) entries = \ [ # Mark the first megabyte of memory as reserved X86E820Entry(addr = 0, size = '639kB', range_type = 1), X86E820Entry(addr = 0x9fc00, size = '385kB', range_type = 2), # Mark the rest of physical memory as available X86E820Entry(addr = 0x100000, size = '%dB' % (self.mem_ranges[0].size() - 0x100000), range_type = 1), # Reserve the last 16kB of the 32-bit address space for the # m5op interface X86E820Entry(addr=0xFFFF0000, size='64kB', range_type=2), ] # In case the physical memory is greater than 3GB, we split it into two # parts and add a separate e820 entry for the second part. This entry # starts at 0x100000000, which is the first address after the space # reserved for devices. if len(self.mem_ranges) == 2: entries.append(X86E820Entry(addr = 0x100000000, size = '%dB' % (self.mem_ranges[1].size()), range_type = 1)) self.e820_table.entries = entries # Command line self.boot_osflags = 'earlyprintk=ttyS0 console=ttyS0 lpj=7999923 ' + \ 'root=/dev/hda1' self.kernel = binary('x86_64-vmlinux-2.6.22.9') return self def makeDualRoot(full_system, testSystem, driveSystem, dumpfile): self = Root(full_system = full_system) self.testsys = testSystem self.drivesys = driveSystem self.etherlink = EtherLink() if hasattr(testSystem, 'realview'): self.etherlink.int0 = Parent.testsys.realview.ethernet.interface self.etherlink.int1 = Parent.drivesys.realview.ethernet.interface elif hasattr(testSystem, 'tsunami'): self.etherlink.int0 = Parent.testsys.tsunami.ethernet.interface self.etherlink.int1 = Parent.drivesys.tsunami.ethernet.interface else: fatal("Don't know how to connect these system together") if dumpfile: self.etherdump = EtherDump(file=dumpfile) self.etherlink.dump = Parent.etherdump return self