/* * Copyright (c) 2002-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "base/loader/object_file.hh" #include "base/loader/symtab.hh" #include "base/remote_gdb.hh" #include "cpu/exec_context.hh" #include "kern/kernel_stats.hh" #include "mem/functional/memory_control.hh" #include "mem/functional/physical.hh" #include "targetarch/vtophys.hh" #include "sim/builder.hh" #include "sim/system.hh" #include "base/trace.hh" using namespace std; vector System::systemList; int System::numSystemsRunning = 0; System::System(Params *p) : SimObject(p->name), memctrl(p->memctrl), physmem(p->physmem), init_param(p->init_param), numcpus(0), params(p) { // add self to global system list systemList.push_back(this); kernelSymtab = new SymbolTable; consoleSymtab = new SymbolTable; palSymtab = new SymbolTable; debugSymbolTable = new SymbolTable; /** * Load the kernel, pal, and console code into memory */ // Load kernel code kernel = createObjectFile(params->kernel_path); if (kernel == NULL) fatal("Could not load kernel file %s", params->kernel_path); // Load Console Code console = createObjectFile(params->console_path); if (console == NULL) fatal("Could not load console file %s", params->console_path); // Load pal file pal = createObjectFile(params->palcode); if (pal == NULL) fatal("Could not load PALcode file %s", params->palcode); // Load program sections into memory pal->loadSections(physmem, true); console->loadSections(physmem, true); kernel->loadSections(physmem, true); // setup entry points kernelStart = kernel->textBase(); kernelEnd = kernel->bssBase() + kernel->bssSize(); kernelEntry = kernel->entryPoint(); // load symbols if (!kernel->loadGlobalSymbols(kernelSymtab)) panic("could not load kernel symbols\n"); if (!kernel->loadLocalSymbols(kernelSymtab)) panic("could not load kernel local symbols\n"); if (!console->loadGlobalSymbols(consoleSymtab)) panic("could not load console symbols\n"); if (!pal->loadGlobalSymbols(palSymtab)) panic("could not load pal symbols\n"); if (!pal->loadLocalSymbols(palSymtab)) panic("could not load pal symbols\n"); if (!kernel->loadGlobalSymbols(debugSymbolTable)) panic("could not load kernel symbols\n"); if (!kernel->loadLocalSymbols(debugSymbolTable)) panic("could not load kernel local symbols\n"); if (!console->loadGlobalSymbols(debugSymbolTable)) panic("could not load console symbols\n"); if (!pal->loadGlobalSymbols(debugSymbolTable)) panic("could not load pal symbols\n"); if (!pal->loadLocalSymbols(debugSymbolTable)) panic("could not load pal symbols\n"); DPRINTF(Loader, "Kernel start = %#x\n", kernelStart); DPRINTF(Loader, "Kernel end = %#x\n", kernelEnd); DPRINTF(Loader, "Kernel entry = %#x\n", kernelEntry); DPRINTF(Loader, "Kernel loaded...\n"); Addr addr = 0; #ifdef DEBUG consolePanicEvent = addConsoleFuncEvent("panic"); #endif /** * Copy the osflags (kernel arguments) into the consoles * memory. (Presently Linux does not use the console service * routine to get these command line arguments, but Tru64 and * others do.) */ if (consoleSymtab->findAddress("env_booted_osflags", addr)) { Addr paddr = vtophys(physmem, addr); char *osflags = (char *)physmem->dma_addr(paddr, sizeof(uint32_t)); if (osflags) strcpy(osflags, params->boot_osflags.c_str()); } /** * Set the hardware reset parameter block system type and revision * information to Tsunami. */ if (consoleSymtab->findAddress("m5_rpb", addr)) { Addr paddr = vtophys(physmem, addr); char *hwrpb = (char *)physmem->dma_addr(paddr, sizeof(uint64_t)); if (!hwrpb) panic("could not translate hwrpb addr\n"); *(uint64_t*)(hwrpb+0x50) = htog(params->system_type); *(uint64_t*)(hwrpb+0x58) = htog(params->system_rev); } else panic("could not find hwrpb\n"); // increment the number of running systms numSystemsRunning++; kernelBinning = new Kernel::Binning(this); } System::~System() { delete kernelSymtab; delete consoleSymtab; delete kernel; delete console; delete pal; delete kernelBinning; #ifdef DEBUG delete consolePanicEvent; #endif } /** * This function fixes up addresses that are used to match PCs for * hooking simulator events on to target function executions. * * Alpha binaries may have multiple global offset table (GOT) * sections. A function that uses the GOT starts with a * two-instruction prolog which sets the global pointer (gp == r29) to * the appropriate GOT section. The proper gp value is calculated * based on the function address, which must be passed by the caller * in the procedure value register (pv aka t12 == r27). This sequence * looks like the following: * * opcode Ra Rb offset * ldah gp,X(pv) 09 29 27 X * lda gp,Y(gp) 08 29 29 Y * * for some constant offsets X and Y. The catch is that the linker * (or maybe even the compiler, I'm not sure) may recognize that the * caller and callee are using the same GOT section, making this * prolog redundant, and modify the call target to skip these * instructions. If we check for execution of the first instruction * of a function (the one the symbol points to) to detect when to skip * it, we'll miss all these modified calls. It might work to * unconditionally check for the third instruction, but not all * functions have this prolog, and there's some chance that those * first two instructions could have undesired consequences. So we do * the Right Thing and pattern-match the first two instructions of the * function to decide where to patch. * * Eventually this code should be moved into an ISA-specific file. */ Addr System::fixFuncEventAddr(Addr addr) { // mask for just the opcode, Ra, and Rb fields (not the offset) const uint32_t inst_mask = 0xffff0000; // ldah gp,X(pv): opcode 9, Ra = 29, Rb = 27 const uint32_t gp_ldah_pattern = (9 << 26) | (29 << 21) | (27 << 16); // lda gp,Y(gp): opcode 8, Ra = 29, rb = 29 const uint32_t gp_lda_pattern = (8 << 26) | (29 << 21) | (29 << 16); // instruction size const int sz = sizeof(uint32_t); Addr paddr = vtophys(physmem, addr); uint32_t i1 = *(uint32_t *)physmem->dma_addr(paddr, sz); uint32_t i2 = *(uint32_t *)physmem->dma_addr(paddr+sz, sz); if ((i1 & inst_mask) == gp_ldah_pattern && (i2 & inst_mask) == gp_lda_pattern) { Addr new_addr = addr + 2*sz; DPRINTF(Loader, "fixFuncEventAddr: %p -> %p", addr, new_addr); return new_addr; } else { return addr; } } void System::setAlphaAccess(Addr access) { Addr addr = 0; if (consoleSymtab->findAddress("m5AlphaAccess", addr)) { Addr paddr = vtophys(physmem, addr); uint64_t *m5AlphaAccess = (uint64_t *)physmem->dma_addr(paddr, sizeof(uint64_t)); if (!m5AlphaAccess) panic("could not translate m5AlphaAccess addr\n"); *m5AlphaAccess = htog(EV5::Phys2K0Seg(access)); } else panic("could not find m5AlphaAccess\n"); } bool System::breakpoint() { return remoteGDB[0]->trap(ALPHA_KENTRY_INT); } int rgdb_wait = -1; int System::registerExecContext(ExecContext *xc, int id) { if (id == -1) { for (id = 0; id < execContexts.size(); id++) { if (!execContexts[id]) break; } } if (execContexts.size() <= id) execContexts.resize(id + 1); if (execContexts[id]) panic("Cannot have two CPUs with the same id (%d)\n", id); execContexts[id] = xc; numcpus++; RemoteGDB *rgdb = new RemoteGDB(this, xc); GDBListener *gdbl = new GDBListener(rgdb, 7000 + id); gdbl->listen(); /** * Uncommenting this line waits for a remote debugger to connect * to the simulator before continuing. */ if (rgdb_wait != -1 && rgdb_wait == id) gdbl->accept(); if (remoteGDB.size() <= id) { remoteGDB.resize(id + 1); } remoteGDB[id] = rgdb; return id; } void System::startup() { if (!execContexts.empty()) { // activate with zero delay so that we start ticking right // away on cycle 0 execContexts[0]->activate(0); } } void System::replaceExecContext(ExecContext *xc, int id) { if (id >= execContexts.size()) { panic("replaceExecContext: bad id, %d >= %d\n", id, execContexts.size()); } execContexts[id] = xc; remoteGDB[id]->replaceExecContext(xc); } void System::regStats() { kernelBinning->regStats(name() + ".kern"); } void System::serialize(ostream &os) { kernelBinning->serialize(os); kernelSymtab->serialize("kernel_symtab", os); consoleSymtab->serialize("console_symtab", os); palSymtab->serialize("pal_symtab", os); } void System::unserialize(Checkpoint *cp, const string §ion) { kernelBinning->unserialize(cp, section); kernelSymtab->unserialize("kernel_symtab", cp, section); consoleSymtab->unserialize("console_symtab", cp, section); palSymtab->unserialize("pal_symtab", cp, section); } void System::printSystems() { vector::iterator i = systemList.begin(); vector::iterator end = systemList.end(); for (; i != end; ++i) { System *sys = *i; cerr << "System " << sys->name() << ": " << hex << sys << endl; } } extern "C" void printSystems() { System::printSystems(); } BEGIN_DECLARE_SIM_OBJECT_PARAMS(System) Param boot_cpu_frequency; SimObjectParam memctrl; SimObjectParam physmem; Param kernel; Param console; Param pal; Param boot_osflags; Param readfile; Param init_param; Param system_type; Param system_rev; Param bin; VectorParam binned_fns; Param bin_int; END_DECLARE_SIM_OBJECT_PARAMS(System) BEGIN_INIT_SIM_OBJECT_PARAMS(System) INIT_PARAM(boot_cpu_frequency, "Frequency of the boot CPU"), INIT_PARAM(memctrl, "memory controller"), INIT_PARAM(physmem, "phsyical memory"), INIT_PARAM(kernel, "file that contains the kernel code"), INIT_PARAM(console, "file that contains the console code"), INIT_PARAM(pal, "file that contains palcode"), INIT_PARAM_DFLT(boot_osflags, "flags to pass to the kernel during boot", "a"), INIT_PARAM_DFLT(readfile, "file to read startup script from", ""), INIT_PARAM_DFLT(init_param, "numerical value to pass into simulator", 0), INIT_PARAM_DFLT(system_type, "Type of system we are emulating", 34), INIT_PARAM_DFLT(system_rev, "Revision of system we are emulating", 1<<10), INIT_PARAM_DFLT(bin, "is this system to be binned", false), INIT_PARAM(binned_fns, "functions to be broken down and binned"), INIT_PARAM_DFLT(bin_int, "is interrupt code binned seperately?", true) END_INIT_SIM_OBJECT_PARAMS(System) CREATE_SIM_OBJECT(System) { System::Params *p = new System::Params; p->name = getInstanceName(); p->boot_cpu_frequency = boot_cpu_frequency; p->memctrl = memctrl; p->physmem = physmem; p->kernel_path = kernel; p->console_path = console; p->palcode = pal; p->boot_osflags = boot_osflags; p->init_param = init_param; p->readfile = readfile; p->system_type = system_type; p->system_rev = system_rev; p->bin = bin; p->binned_fns = binned_fns; p->bin_int = bin_int; return new System(p); } REGISTER_SIM_OBJECT("System", System)