/* * Copyright (c) 2010 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2011 Advanced Micro Devices, Inc. * Copyright (c) 2003-2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Nathan Binkert */ #include #include #include #include #include #include "arch/kernel_stats.hh" #include "arch/vtophys.hh" #include "base/debug.hh" #include "config/the_isa.hh" #include "cpu/base.hh" #include "cpu/quiesce_event.hh" #include "cpu/thread_context.hh" #include "debug/Loader.hh" #include "debug/Quiesce.hh" #include "debug/WorkItems.hh" #include "params/BaseCPU.hh" #include "sim/full_system.hh" #include "sim/pseudo_inst.hh" #include "sim/serialize.hh" #include "sim/sim_events.hh" #include "sim/sim_exit.hh" #include "sim/stat_control.hh" #include "sim/stats.hh" #include "sim/system.hh" #include "sim/vptr.hh" using namespace std; using namespace Stats; using namespace TheISA; namespace PseudoInst { static inline void panicFsOnlyPseudoInst(const char *name) { panic("Pseudo inst \"%s\" is only available in Full System mode."); } void arm(ThreadContext *tc) { if (FullSystem) { if (tc->getKernelStats()) tc->getKernelStats()->arm(); } else { panicFsOnlyPseudoInst("arm"); } } void quiesce(ThreadContext *tc) { if (FullSystem) { if (!tc->getCpuPtr()->params()->do_quiesce) return; DPRINTF(Quiesce, "%s: quiesce()\n", tc->getCpuPtr()->name()); tc->suspend(); if (tc->getKernelStats()) tc->getKernelStats()->quiesce(); } else { panicFsOnlyPseudoInst("quiesce"); } } void quiesceSkip(ThreadContext *tc) { if (FullSystem) { BaseCPU *cpu = tc->getCpuPtr(); if (!cpu->params()->do_quiesce) return; EndQuiesceEvent *quiesceEvent = tc->getQuiesceEvent(); Tick resume = curTick() + 1; cpu->reschedule(quiesceEvent, resume, true); DPRINTF(Quiesce, "%s: quiesceSkip() until %d\n", cpu->name(), resume); tc->suspend(); if (tc->getKernelStats()) tc->getKernelStats()->quiesce(); } else { panicFsOnlyPseudoInst("quiesceSkip"); } } void quiesceNs(ThreadContext *tc, uint64_t ns) { if (FullSystem) { BaseCPU *cpu = tc->getCpuPtr(); if (!cpu->params()->do_quiesce || ns == 0) return; EndQuiesceEvent *quiesceEvent = tc->getQuiesceEvent(); Tick resume = curTick() + SimClock::Int::ns * ns; cpu->reschedule(quiesceEvent, resume, true); DPRINTF(Quiesce, "%s: quiesceNs(%d) until %d\n", cpu->name(), ns, resume); tc->suspend(); if (tc->getKernelStats()) tc->getKernelStats()->quiesce(); } else { panicFsOnlyPseudoInst("quiesceNs"); } } void quiesceCycles(ThreadContext *tc, uint64_t cycles) { if (FullSystem) { BaseCPU *cpu = tc->getCpuPtr(); if (!cpu->params()->do_quiesce || cycles == 0) return; EndQuiesceEvent *quiesceEvent = tc->getQuiesceEvent(); Tick resume = curTick() + cpu->ticks(cycles); cpu->reschedule(quiesceEvent, resume, true); DPRINTF(Quiesce, "%s: quiesceCycles(%d) until %d\n", cpu->name(), cycles, resume); tc->suspend(); if (tc->getKernelStats()) tc->getKernelStats()->quiesce(); } else { panicFsOnlyPseudoInst("quiesceCycles"); } } uint64_t quiesceTime(ThreadContext *tc) { if (FullSystem) { return (tc->readLastActivate() - tc->readLastSuspend()) / SimClock::Int::ns; } else { panicFsOnlyPseudoInst("quiesceTime"); return 0; } } uint64_t rpns(ThreadContext *tc) { return curTick() / SimClock::Int::ns; } void wakeCPU(ThreadContext *tc, uint64_t cpuid) { System *sys = tc->getSystemPtr(); ThreadContext *other_tc = sys->threadContexts[cpuid]; if (other_tc->status() == ThreadContext::Suspended) other_tc->activate(); } void m5exit(ThreadContext *tc, Tick delay) { Tick when = curTick() + delay * SimClock::Int::ns; exitSimLoop("m5_exit instruction encountered", 0, when); } void loadsymbol(ThreadContext *tc) { if (FullSystem) { const string &filename = tc->getCpuPtr()->system->params()->symbolfile; if (filename.empty()) { return; } std::string buffer; ifstream file(filename.c_str()); if (!file) fatal("file error: Can't open symbol table file %s\n", filename); while (!file.eof()) { getline(file, buffer); if (buffer.empty()) continue; string::size_type idx = buffer.find(' '); if (idx == string::npos) continue; string address = "0x" + buffer.substr(0, idx); eat_white(address); if (address.empty()) continue; // Skip over letter and space string symbol = buffer.substr(idx + 3); eat_white(symbol); if (symbol.empty()) continue; Addr addr; if (!to_number(address, addr)) continue; if (!tc->getSystemPtr()->kernelSymtab->insert(addr, symbol)) continue; DPRINTF(Loader, "Loaded symbol: %s @ %#llx\n", symbol, addr); } file.close(); } else { panicFsOnlyPseudoInst("loadsymbol"); } } void addsymbol(ThreadContext *tc, Addr addr, Addr symbolAddr) { if (FullSystem) { char symb[100]; CopyStringOut(tc, symb, symbolAddr, 100); std::string symbol(symb); DPRINTF(Loader, "Loaded symbol: %s @ %#llx\n", symbol, addr); tc->getSystemPtr()->kernelSymtab->insert(addr,symbol); debugSymbolTable->insert(addr,symbol); } else { panicFsOnlyPseudoInst("addSymbol"); } } uint64_t initParam(ThreadContext *tc) { if (FullSystem) { return tc->getCpuPtr()->system->init_param; } else { panicFsOnlyPseudoInst("initParam"); return 0; } } void resetstats(ThreadContext *tc, Tick delay, Tick period) { if (!tc->getCpuPtr()->params()->do_statistics_insts) return; Tick when = curTick() + delay * SimClock::Int::ns; Tick repeat = period * SimClock::Int::ns; Stats::schedStatEvent(false, true, when, repeat); } void dumpstats(ThreadContext *tc, Tick delay, Tick period) { if (!tc->getCpuPtr()->params()->do_statistics_insts) return; Tick when = curTick() + delay * SimClock::Int::ns; Tick repeat = period * SimClock::Int::ns; Stats::schedStatEvent(true, false, when, repeat); } void dumpresetstats(ThreadContext *tc, Tick delay, Tick period) { if (!tc->getCpuPtr()->params()->do_statistics_insts) return; Tick when = curTick() + delay * SimClock::Int::ns; Tick repeat = period * SimClock::Int::ns; Stats::schedStatEvent(true, true, when, repeat); } void m5checkpoint(ThreadContext *tc, Tick delay, Tick period) { if (!tc->getCpuPtr()->params()->do_checkpoint_insts) return; Tick when = curTick() + delay * SimClock::Int::ns; Tick repeat = period * SimClock::Int::ns; exitSimLoop("checkpoint", 0, when, repeat); } uint64_t readfile(ThreadContext *tc, Addr vaddr, uint64_t len, uint64_t offset) { if (FullSystem) { const string &file = tc->getSystemPtr()->params()->readfile; if (file.empty()) { return ULL(0); } uint64_t result = 0; int fd = ::open(file.c_str(), O_RDONLY, 0); if (fd < 0) panic("could not open file %s\n", file); if (::lseek(fd, offset, SEEK_SET) < 0) panic("could not seek: %s", strerror(errno)); char *buf = new char[len]; char *p = buf; while (len > 0) { int bytes = ::read(fd, p, len); if (bytes <= 0) break; p += bytes; result += bytes; len -= bytes; } close(fd); CopyIn(tc, vaddr, buf, result); delete [] buf; return result; } else { panicFsOnlyPseudoInst("readfile"); return 0; } } void debugbreak(ThreadContext *tc) { Debug::breakpoint(); } void switchcpu(ThreadContext *tc) { exitSimLoop("switchcpu"); } // // This function is executed when annotated work items begin. Depending on // what the user specified at the command line, the simulation may exit and/or // take a checkpoint when a certain work item begins. // void workbegin(ThreadContext *tc, uint64_t workid, uint64_t threadid) { tc->getCpuPtr()->workItemBegin(); System *sys = tc->getSystemPtr(); const System::Params *params = sys->params(); sys->workItemBegin(threadid, workid); DPRINTF(WorkItems, "Work Begin workid: %d, threadid %d\n", workid, threadid); // // If specified, determine if this is the specific work item the user // identified // if (params->work_item_id == -1 || params->work_item_id == workid) { uint64_t systemWorkBeginCount = sys->incWorkItemsBegin(); int cpuId = tc->getCpuPtr()->cpuId(); if (params->work_cpus_ckpt_count != 0 && sys->markWorkItem(cpuId) >= params->work_cpus_ckpt_count) { // // If active cpus equals checkpoint count, create checkpoint // exitSimLoop("checkpoint"); } if (systemWorkBeginCount == params->work_begin_ckpt_count) { // // Note: the string specified as the cause of the exit event must // exactly equal "checkpoint" inorder to create a checkpoint // exitSimLoop("checkpoint"); } if (systemWorkBeginCount == params->work_begin_exit_count) { // // If a certain number of work items started, exit simulation // exitSimLoop("work started count reach"); } if (cpuId == params->work_begin_cpu_id_exit) { // // If work started on the cpu id specified, exit simulation // exitSimLoop("work started on specific cpu"); } } } // // This function is executed when annotated work items end. Depending on // what the user specified at the command line, the simulation may exit and/or // take a checkpoint when a certain work item ends. // void workend(ThreadContext *tc, uint64_t workid, uint64_t threadid) { tc->getCpuPtr()->workItemEnd(); System *sys = tc->getSystemPtr(); const System::Params *params = sys->params(); sys->workItemEnd(threadid, workid); DPRINTF(WorkItems, "Work End workid: %d, threadid %d\n", workid, threadid); // // If specified, determine if this is the specific work item the user // identified // if (params->work_item_id == -1 || params->work_item_id == workid) { uint64_t systemWorkEndCount = sys->incWorkItemsEnd(); int cpuId = tc->getCpuPtr()->cpuId(); if (params->work_cpus_ckpt_count != 0 && sys->markWorkItem(cpuId) >= params->work_cpus_ckpt_count) { // // If active cpus equals checkpoint count, create checkpoint // exitSimLoop("checkpoint"); } if (params->work_end_ckpt_count != 0 && systemWorkEndCount == params->work_end_ckpt_count) { // // If total work items completed equals checkpoint count, create // checkpoint // exitSimLoop("checkpoint"); } if (params->work_end_exit_count != 0 && systemWorkEndCount == params->work_end_exit_count) { // // If total work items completed equals exit count, exit simulation // exitSimLoop("work items exit count reached"); } } } } // namespace PseudoInst