/* * Copyright (c) 2001-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Nathan Binkert * Steve Reinhardt * Ali Saidi */ #include #include #include #include "arch/remote_gdb.hh" #include "base/intmath.hh" #include "base/loader/object_file.hh" #include "base/loader/symtab.hh" #include "base/statistics.hh" #include "config/full_system.hh" #include "cpu/thread_context.hh" #include "mem/page_table.hh" #include "mem/physical.hh" #include "mem/translating_port.hh" #include "params/Process.hh" #include "params/LiveProcess.hh" #include "sim/debug.hh" #include "sim/process.hh" #include "sim/process_impl.hh" #include "sim/stats.hh" #include "sim/syscall_emul.hh" #include "sim/system.hh" #include "arch/isa_specific.hh" #if THE_ISA == ALPHA_ISA #include "arch/alpha/linux/process.hh" #include "arch/alpha/tru64/process.hh" #elif THE_ISA == SPARC_ISA #include "arch/sparc/linux/process.hh" #include "arch/sparc/solaris/process.hh" #elif THE_ISA == MIPS_ISA #include "arch/mips/linux/process.hh" #elif THE_ISA == ARM_ISA #include "arch/arm/linux/process.hh" #elif THE_ISA == X86_ISA #include "arch/x86/linux/process.hh" #else #error "THE_ISA not set" #endif using namespace std; using namespace TheISA; // // The purpose of this code is to fake the loader & syscall mechanism // when there's no OS: thus there's no resone to use it in FULL_SYSTEM // mode when we do have an OS // #if FULL_SYSTEM #error "process.cc not compatible with FULL_SYSTEM" #endif // current number of allocated processes int num_processes = 0; template AuxVector::AuxVector(IntType type, IntType val) { a_type = TheISA::htog(type); a_val = TheISA::htog(val); } template class AuxVector; template class AuxVector; Process::Process(ProcessParams * params) : SimObject(params), system(params->system), checkpointRestored(false), max_stack_size(params->max_stack_size) { string in = params->input; string out = params->output; string err = params->errout; // initialize file descriptors to default: same as simulator int stdin_fd, stdout_fd, stderr_fd; if (in == "stdin" || in == "cin") stdin_fd = STDIN_FILENO; else if (in == "None") stdin_fd = -1; else stdin_fd = Process::openInputFile(in); if (out == "stdout" || out == "cout") stdout_fd = STDOUT_FILENO; else if (out == "stderr" || out == "cerr") stdout_fd = STDERR_FILENO; else if (out == "None") stdout_fd = -1; else stdout_fd = Process::openOutputFile(out); if (err == "stdout" || err == "cout") stderr_fd = STDOUT_FILENO; else if (err == "stderr" || err == "cerr") stderr_fd = STDERR_FILENO; else if (err == "None") stderr_fd = -1; else if (err == out) stderr_fd = stdout_fd; else stderr_fd = Process::openOutputFile(err); M5_pid = system->allocatePID(); // initialize first 3 fds (stdin, stdout, stderr) Process::FdMap *fdo = &fd_map[STDIN_FILENO]; fdo->fd = stdin_fd; fdo->filename = in; fdo->flags = O_RDONLY; fdo->mode = -1; fdo->fileOffset = 0; fdo = &fd_map[STDOUT_FILENO]; fdo->fd = stdout_fd; fdo->filename = out; fdo->flags = O_WRONLY | O_CREAT | O_TRUNC; fdo->mode = 0774; fdo->fileOffset = 0; fdo = &fd_map[STDERR_FILENO]; fdo->fd = stderr_fd; fdo->filename = err; fdo->flags = O_WRONLY; fdo->mode = -1; fdo->fileOffset = 0; // mark remaining fds as free for (int i = 3; i <= MAX_FD; ++i) { Process::FdMap *fdo = &fd_map[i]; fdo->fd = -1; } mmap_start = mmap_end = 0; nxm_start = nxm_end = 0; pTable = new PageTable(this); // other parameters will be initialized when the program is loaded } void Process::regStats() { using namespace Stats; num_syscalls .name(name() + ".PROG:num_syscalls") .desc("Number of system calls") ; } // // static helper functions // int Process::openInputFile(const string &filename) { int fd = open(filename.c_str(), O_RDONLY); if (fd == -1) { perror(NULL); cerr << "unable to open \"" << filename << "\" for reading\n"; fatal("can't open input file"); } return fd; } int Process::openOutputFile(const string &filename) { int fd = open(filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0664); if (fd == -1) { perror(NULL); cerr << "unable to open \"" << filename << "\" for writing\n"; fatal("can't open output file"); } return fd; } ThreadContext * Process::findFreeContext() { int size = contextIds.size(); ThreadContext *tc; for (int i = 0; i < size; ++i) { tc = system->getThreadContext(contextIds[i]); if (tc->status() == ThreadContext::Halted) { // inactive context, free to use return tc; } } return NULL; } void Process::startup() { if (contextIds.empty()) fatal("Process %s is not associated with any HW contexts!\n", name()); // first thread context for this process... initialize & enable ThreadContext *tc = system->getThreadContext(contextIds[0]); // mark this context as active so it will start ticking. tc->activate(0); Port *mem_port; mem_port = system->physmem->getPort("functional"); initVirtMem = new TranslatingPort("process init port", this, TranslatingPort::Always); mem_port->setPeer(initVirtMem); initVirtMem->setPeer(mem_port); } // map simulator fd sim_fd to target fd tgt_fd void Process::dup_fd(int sim_fd, int tgt_fd) { if (tgt_fd < 0 || tgt_fd > MAX_FD) panic("Process::dup_fd tried to dup past MAX_FD (%d)", tgt_fd); Process::FdMap *fdo = &fd_map[tgt_fd]; fdo->fd = sim_fd; } // generate new target fd for sim_fd int Process::alloc_fd(int sim_fd, string filename, int flags, int mode, bool pipe) { // in case open() returns an error, don't allocate a new fd if (sim_fd == -1) return -1; // find first free target fd for (int free_fd = 0; free_fd <= MAX_FD; ++free_fd) { Process::FdMap *fdo = &fd_map[free_fd]; if (fdo->fd == -1) { fdo->fd = sim_fd; fdo->filename = filename; fdo->mode = mode; fdo->fileOffset = 0; fdo->flags = flags; fdo->isPipe = pipe; fdo->readPipeSource = 0; return free_fd; } } panic("Process::alloc_fd: out of file descriptors!"); } // free target fd (e.g., after close) void Process::free_fd(int tgt_fd) { Process::FdMap *fdo = &fd_map[tgt_fd]; if (fdo->fd == -1) warn("Process::free_fd: request to free unused fd %d", tgt_fd); fdo->fd = -1; fdo->filename = "NULL"; fdo->mode = 0; fdo->fileOffset = 0; fdo->flags = 0; fdo->isPipe = false; fdo->readPipeSource = 0; } // look up simulator fd for given target fd int Process::sim_fd(int tgt_fd) { if (tgt_fd > MAX_FD) return -1; return fd_map[tgt_fd].fd; } Process::FdMap * Process::sim_fd_obj(int tgt_fd) { if (tgt_fd > MAX_FD) panic("sim_fd_obj called in fd out of range."); return &fd_map[tgt_fd]; } bool Process::checkAndAllocNextPage(Addr vaddr) { // if this is an initial write we might not have if (vaddr >= stack_min && vaddr < stack_base) { pTable->allocate(roundDown(vaddr, VMPageSize), VMPageSize); return true; } // We've accessed the next page of the stack, so extend the stack // to cover it. if (vaddr < stack_min && vaddr >= stack_base - max_stack_size) { while (vaddr < stack_min) { stack_min -= TheISA::PageBytes; if(stack_base - stack_min > max_stack_size) fatal("Maximum stack size exceeded\n"); if(stack_base - stack_min > 8*1024*1024) fatal("Over max stack size for one thread\n"); pTable->allocate(stack_min, TheISA::PageBytes); inform("Increasing stack size by one page."); }; return true; } return false; } // find all offsets for currently open files and save them void Process::fix_file_offsets() { Process::FdMap *fdo_stdin = &fd_map[STDIN_FILENO]; Process::FdMap *fdo_stdout = &fd_map[STDOUT_FILENO]; Process::FdMap *fdo_stderr = &fd_map[STDERR_FILENO]; string in = fdo_stdin->filename; string out = fdo_stdout->filename; string err = fdo_stderr->filename; // initialize file descriptors to default: same as simulator int stdin_fd, stdout_fd, stderr_fd; if (in == "stdin" || in == "cin") stdin_fd = STDIN_FILENO; else if (in == "None") stdin_fd = -1; else{ //OPEN standard in and seek to the right location stdin_fd = Process::openInputFile(in); if (lseek(stdin_fd, fdo_stdin->fileOffset, SEEK_SET) < 0) panic("Unable to seek to correct location in file: %s", in); } if (out == "stdout" || out == "cout") stdout_fd = STDOUT_FILENO; else if (out == "stderr" || out == "cerr") stdout_fd = STDERR_FILENO; else if (out == "None") stdout_fd = -1; else{ stdout_fd = Process::openOutputFile(out); if (lseek(stdout_fd, fdo_stdout->fileOffset, SEEK_SET) < 0) panic("Unable to seek to correct location in file: %s", out); } if (err == "stdout" || err == "cout") stderr_fd = STDOUT_FILENO; else if (err == "stderr" || err == "cerr") stderr_fd = STDERR_FILENO; else if (err == "None") stderr_fd = -1; else if (err == out) stderr_fd = stdout_fd; else { stderr_fd = Process::openOutputFile(err); if (lseek(stderr_fd, fdo_stderr->fileOffset, SEEK_SET) < 0) panic("Unable to seek to correct location in file: %s", err); } fdo_stdin->fd = stdin_fd; fdo_stdout->fd = stdout_fd; fdo_stderr->fd = stderr_fd; for (int free_fd = 3; free_fd <= MAX_FD; ++free_fd) { Process::FdMap *fdo = &fd_map[free_fd]; if (fdo->fd != -1) { if (fdo->isPipe){ if (fdo->filename == "PIPE-WRITE") continue; else { assert (fdo->filename == "PIPE-READ"); //create a new pipe int fds[2]; int pipe_retval = pipe(fds); if (pipe_retval < 0) { // error panic("Unable to create new pipe."); } fdo->fd = fds[0]; //set read pipe Process::FdMap *fdo_write = &fd_map[fdo->readPipeSource]; if (fdo_write->filename != "PIPE-WRITE") panic ("Couldn't find write end of the pipe"); fdo_write->fd = fds[1];//set write pipe } } else { //Open file int fd = open(fdo->filename.c_str(), fdo->flags, fdo->mode); if (fd == -1) panic("Unable to open file: %s", fdo->filename); fdo->fd = fd; //Seek to correct location before checkpoint if (lseek(fd,fdo->fileOffset, SEEK_SET) < 0) panic("Unable to seek to correct location in file: %s", fdo->filename); } } } } void Process::find_file_offsets(){ for (int free_fd = 0; free_fd <= MAX_FD; ++free_fd) { Process::FdMap *fdo = &fd_map[free_fd]; if (fdo->fd != -1) { fdo->fileOffset = lseek(fdo->fd, 0, SEEK_CUR); } else { fdo->filename = "NULL"; fdo->fileOffset = 0; } } } void Process::setReadPipeSource(int read_pipe_fd, int source_fd){ Process::FdMap *fdo = &fd_map[read_pipe_fd]; fdo->readPipeSource = source_fd; } void Process::FdMap::serialize(std::ostream &os) { SERIALIZE_SCALAR(fd); SERIALIZE_SCALAR(isPipe); SERIALIZE_SCALAR(filename); SERIALIZE_SCALAR(flags); SERIALIZE_SCALAR(readPipeSource); SERIALIZE_SCALAR(fileOffset); } void Process::FdMap::unserialize(Checkpoint *cp, const std::string §ion) { UNSERIALIZE_SCALAR(fd); UNSERIALIZE_SCALAR(isPipe); UNSERIALIZE_SCALAR(filename); UNSERIALIZE_SCALAR(flags); UNSERIALIZE_SCALAR(readPipeSource); UNSERIALIZE_SCALAR(fileOffset); } void Process::serialize(std::ostream &os) { SERIALIZE_SCALAR(initialContextLoaded); SERIALIZE_SCALAR(brk_point); SERIALIZE_SCALAR(stack_base); SERIALIZE_SCALAR(stack_size); SERIALIZE_SCALAR(stack_min); SERIALIZE_SCALAR(next_thread_stack_base); SERIALIZE_SCALAR(mmap_start); SERIALIZE_SCALAR(mmap_end); SERIALIZE_SCALAR(nxm_start); SERIALIZE_SCALAR(nxm_end); find_file_offsets(); pTable->serialize(os); for (int x = 0; x <= MAX_FD; x++) { nameOut(os, csprintf("%s.FdMap%d", name(), x)); fd_map[x].serialize(os); } } void Process::unserialize(Checkpoint *cp, const std::string §ion) { UNSERIALIZE_SCALAR(initialContextLoaded); UNSERIALIZE_SCALAR(brk_point); UNSERIALIZE_SCALAR(stack_base); UNSERIALIZE_SCALAR(stack_size); UNSERIALIZE_SCALAR(stack_min); UNSERIALIZE_SCALAR(next_thread_stack_base); UNSERIALIZE_SCALAR(mmap_start); UNSERIALIZE_SCALAR(mmap_end); UNSERIALIZE_SCALAR(nxm_start); UNSERIALIZE_SCALAR(nxm_end); pTable->unserialize(cp, section); for (int x = 0; x <= MAX_FD; x++) { fd_map[x].unserialize(cp, csprintf("%s.FdMap%d", section, x)); } fix_file_offsets(); checkpointRestored = true; } //////////////////////////////////////////////////////////////////////// // // LiveProcess member definitions // //////////////////////////////////////////////////////////////////////// LiveProcess::LiveProcess(LiveProcessParams * params, ObjectFile *_objFile) : Process(params), objFile(_objFile), argv(params->cmd), envp(params->env), cwd(params->cwd) { __uid = params->uid; __euid = params->euid; __gid = params->gid; __egid = params->egid; __pid = params->pid; __ppid = params->ppid; prog_fname = params->cmd[0]; // load up symbols, if any... these may be used for debugging or // profiling. if (!debugSymbolTable) { debugSymbolTable = new SymbolTable(); if (!objFile->loadGlobalSymbols(debugSymbolTable) || !objFile->loadLocalSymbols(debugSymbolTable)) { // didn't load any symbols delete debugSymbolTable; debugSymbolTable = NULL; } } } void LiveProcess::argsInit(int intSize, int pageSize) { Process::startup(); // load object file into target memory objFile->loadSections(initVirtMem); // Calculate how much space we need for arg & env arrays. int argv_array_size = intSize * (argv.size() + 1); int envp_array_size = intSize * (envp.size() + 1); int arg_data_size = 0; for (vector::size_type i = 0; i < argv.size(); ++i) { arg_data_size += argv[i].size() + 1; } int env_data_size = 0; for (vector::size_type i = 0; i < envp.size(); ++i) { env_data_size += envp[i].size() + 1; } int space_needed = argv_array_size + envp_array_size + arg_data_size + env_data_size; if (space_needed < 32*1024) space_needed = 32*1024; // set bottom of stack stack_min = stack_base - space_needed; // align it stack_min = roundDown(stack_min, pageSize); stack_size = stack_base - stack_min; // map memory pTable->allocate(stack_min, roundUp(stack_size, pageSize)); // map out initial stack contents Addr argv_array_base = stack_min + intSize; // room for argc Addr envp_array_base = argv_array_base + argv_array_size; Addr arg_data_base = envp_array_base + envp_array_size; Addr env_data_base = arg_data_base + arg_data_size; // write contents to stack uint64_t argc = argv.size(); if (intSize == 8) argc = htog((uint64_t)argc); else if (intSize == 4) argc = htog((uint32_t)argc); else panic("Unknown int size"); initVirtMem->writeBlob(stack_min, (uint8_t*)&argc, intSize); copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); ThreadContext *tc = system->getThreadContext(contextIds[0]); setSyscallArg(tc, 0, argc); setSyscallArg(tc, 1, argv_array_base); tc->setIntReg(StackPointerReg, stack_min); Addr prog_entry = objFile->entryPoint(); tc->setPC(prog_entry); tc->setNextPC(prog_entry + sizeof(MachInst)); #if THE_ISA != ALPHA_ISA //e.g. MIPS or Sparc tc->setNextNPC(prog_entry + (2 * sizeof(MachInst))); #endif num_processes++; } void LiveProcess::syscall(int64_t callnum, ThreadContext *tc) { num_syscalls++; SyscallDesc *desc = getDesc(callnum); if (desc == NULL) fatal("Syscall %d out of range", callnum); desc->doSyscall(callnum, this, tc); } LiveProcess * LiveProcess::create(LiveProcessParams * params) { LiveProcess *process = NULL; string executable = params->executable == "" ? params->cmd[0] : params->executable; ObjectFile *objFile = createObjectFile(executable); if (objFile == NULL) { fatal("Can't load object file %s", executable); } if (objFile->isDynamic()) fatal("Object file is a dynamic executable however only static " "executables are supported!\n Please recompile your " "executable as a static binary and try again.\n"); #if THE_ISA == ALPHA_ISA if (objFile->getArch() != ObjectFile::Alpha) fatal("Object file architecture does not match compiled ISA (Alpha)."); switch (objFile->getOpSys()) { case ObjectFile::Tru64: process = new AlphaTru64Process(params, objFile); break; case ObjectFile::UnknownOpSys: warn("Unknown operating system; assuming Linux."); // fall through case ObjectFile::Linux: process = new AlphaLinuxProcess(params, objFile); break; default: fatal("Unknown/unsupported operating system."); } #elif THE_ISA == SPARC_ISA if (objFile->getArch() != ObjectFile::SPARC64 && objFile->getArch() != ObjectFile::SPARC32) fatal("Object file architecture does not match compiled ISA (SPARC)."); switch (objFile->getOpSys()) { case ObjectFile::UnknownOpSys: warn("Unknown operating system; assuming Linux."); // fall through case ObjectFile::Linux: if (objFile->getArch() == ObjectFile::SPARC64) { process = new Sparc64LinuxProcess(params, objFile); } else { process = new Sparc32LinuxProcess(params, objFile); } break; case ObjectFile::Solaris: process = new SparcSolarisProcess(params, objFile); break; default: fatal("Unknown/unsupported operating system."); } #elif THE_ISA == X86_ISA if (objFile->getArch() != ObjectFile::X86_64 && objFile->getArch() != ObjectFile::I386) fatal("Object file architecture does not match compiled ISA (x86)."); switch (objFile->getOpSys()) { case ObjectFile::UnknownOpSys: warn("Unknown operating system; assuming Linux."); // fall through case ObjectFile::Linux: if (objFile->getArch() == ObjectFile::X86_64) { process = new X86_64LinuxProcess(params, objFile); } else { process = new I386LinuxProcess(params, objFile); } break; default: fatal("Unknown/unsupported operating system."); } #elif THE_ISA == MIPS_ISA if (objFile->getArch() != ObjectFile::Mips) fatal("Object file architecture does not match compiled ISA (MIPS)."); switch (objFile->getOpSys()) { case ObjectFile::UnknownOpSys: warn("Unknown operating system; assuming Linux."); // fall through case ObjectFile::Linux: process = new MipsLinuxProcess(params, objFile); break; default: fatal("Unknown/unsupported operating system."); } #elif THE_ISA == ARM_ISA if (objFile->getArch() != ObjectFile::Arm) fatal("Object file architecture does not match compiled ISA (ARM)."); switch (objFile->getOpSys()) { case ObjectFile::UnknownOpSys: warn("Unknown operating system; assuming Linux."); // fall through case ObjectFile::Linux: process = new ArmLinuxProcess(params, objFile); break; case ObjectFile::LinuxArmOABI: fatal("M5 does not support ARM OABI binaries. Please recompile with an" " EABI compiler."); default: fatal("Unknown/unsupported operating system."); } #else #error "THE_ISA not set" #endif if (process == NULL) fatal("Unknown error creating process object."); return process; } LiveProcess * LiveProcessParams::create() { return LiveProcess::create(this); }