/* * Copyright (c) 2007 MIPS Technologies, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Korey Sewell * */ #include #include "arch/utility.hh" #include "config/full_system.hh" #include "config/the_isa.hh" #include "cpu/activity.hh" #include "cpu/base.hh" #include "cpu/exetrace.hh" #include "cpu/inorder/cpu.hh" #include "cpu/inorder/first_stage.hh" #include "cpu/inorder/inorder_dyn_inst.hh" #include "cpu/inorder/pipeline_traits.hh" #include "cpu/inorder/resource_pool.hh" #include "cpu/inorder/resources/resource_list.hh" #include "cpu/inorder/thread_context.hh" #include "cpu/inorder/thread_state.hh" #include "cpu/simple_thread.hh" #include "cpu/thread_context.hh" #include "mem/translating_port.hh" #include "params/InOrderCPU.hh" #include "sim/process.hh" #include "sim/stat_control.hh" #if FULL_SYSTEM #include "cpu/quiesce_event.hh" #include "sim/system.hh" #endif #if THE_ISA == ALPHA_ISA #include "arch/alpha/osfpal.hh" #endif using namespace std; using namespace TheISA; using namespace ThePipeline; InOrderCPU::TickEvent::TickEvent(InOrderCPU *c) : Event(CPU_Tick_Pri), cpu(c) { } void InOrderCPU::TickEvent::process() { cpu->tick(); } const char * InOrderCPU::TickEvent::description() { return "InOrderCPU tick event"; } InOrderCPU::CPUEvent::CPUEvent(InOrderCPU *_cpu, CPUEventType e_type, Fault fault, ThreadID _tid, DynInstPtr inst, unsigned event_pri_offset) : Event(Event::Priority((unsigned int)CPU_Tick_Pri + event_pri_offset)), cpu(_cpu) { setEvent(e_type, fault, _tid, inst); } std::string InOrderCPU::eventNames[NumCPUEvents] = { "ActivateThread", "ActivateNextReadyThread", "DeactivateThread", "HaltThread", "SuspendThread", "Trap", "InstGraduated", "SquashFromMemStall", "UpdatePCs" }; void InOrderCPU::CPUEvent::process() { switch (cpuEventType) { case ActivateThread: cpu->activateThread(tid); break; case ActivateNextReadyThread: cpu->activateNextReadyThread(); break; case DeactivateThread: cpu->deactivateThread(tid); break; case HaltThread: cpu->haltThread(tid); break; case SuspendThread: cpu->suspendThread(tid); break; case SquashFromMemStall: cpu->squashDueToMemStall(inst->squashingStage, inst->seqNum, tid); break; case Trap: cpu->trapCPU(fault, tid); break; default: fatal("Unrecognized Event Type %s", eventNames[cpuEventType]); } cpu->cpuEventRemoveList.push(this); } const char * InOrderCPU::CPUEvent::description() { return "InOrderCPU event"; } void InOrderCPU::CPUEvent::scheduleEvent(int delay) { if (squashed()) mainEventQueue.reschedule(this,curTick + cpu->ticks(delay)); else if (!scheduled()) mainEventQueue.schedule(this,curTick + cpu->ticks(delay)); } void InOrderCPU::CPUEvent::unscheduleEvent() { if (scheduled()) squash(); } InOrderCPU::InOrderCPU(Params *params) : BaseCPU(params), cpu_id(params->cpu_id), coreType("default"), _status(Idle), tickEvent(this), timeBuffer(2 , 2), removeInstsThisCycle(false), activityRec(params->name, NumStages, 10, params->activity), #if FULL_SYSTEM system(params->system), physmem(system->physmem), #endif // FULL_SYSTEM #ifdef DEBUG cpuEventNum(0), resReqCount(0), #endif // DEBUG switchCount(0), deferRegistration(false/*params->deferRegistration*/), stageTracing(params->stageTracing), instsPerSwitch(0) { ThreadID active_threads; cpu_params = params; resPool = new ResourcePool(this, params); // Resize for Multithreading CPUs thread.resize(numThreads); #if FULL_SYSTEM active_threads = 1; #else active_threads = params->workload.size(); if (active_threads > MaxThreads) { panic("Workload Size too large. Increase the 'MaxThreads'" "in your InOrder implementation or " "edit your workload size."); } if (active_threads > 1) { threadModel = (InOrderCPU::ThreadModel) params->threadModel; if (threadModel == SMT) { DPRINTF(InOrderCPU, "Setting Thread Model to SMT.\n"); } else if (threadModel == SwitchOnCacheMiss) { DPRINTF(InOrderCPU, "Setting Thread Model to " "Switch On Cache Miss\n"); } } else { threadModel = Single; } #endif // Bind the fetch & data ports from the resource pool. fetchPortIdx = resPool->getPortIdx(params->fetchMemPort); if (fetchPortIdx == 0) { fatal("Unable to find port to fetch instructions from.\n"); } dataPortIdx = resPool->getPortIdx(params->dataMemPort); if (dataPortIdx == 0) { fatal("Unable to find port for data.\n"); } for (ThreadID tid = 0; tid < numThreads; ++tid) { #if FULL_SYSTEM // SMT is not supported in FS mode yet. assert(numThreads == 1); thread[tid] = new Thread(this, 0); #else if (tid < (ThreadID)params->workload.size()) { DPRINTF(InOrderCPU, "Workload[%i] process is %#x\n", tid, params->workload[tid]->prog_fname); thread[tid] = new Thread(this, tid, params->workload[tid]); } else { //Allocate Empty thread so M5 can use later //when scheduling threads to CPU Process* dummy_proc = params->workload[0]; thread[tid] = new Thread(this, tid, dummy_proc); } // Eventually set this with parameters... asid[tid] = tid; #endif // Setup the TC that will serve as the interface to the threads/CPU. InOrderThreadContext *tc = new InOrderThreadContext; tc->cpu = this; tc->thread = thread[tid]; // Give the thread the TC. thread[tid]->tc = tc; thread[tid]->setFuncExeInst(0); globalSeqNum[tid] = 1; // Add the TC to the CPU's list of TC's. this->threadContexts.push_back(tc); } // Initialize TimeBuffer Stage Queues for (int stNum=0; stNum < NumStages - 1; stNum++) { stageQueue[stNum] = new StageQueue(NumStages, NumStages); stageQueue[stNum]->id(stNum); } // Set Up Pipeline Stages for (int stNum=0; stNum < NumStages; stNum++) { if (stNum == 0) pipelineStage[stNum] = new FirstStage(params, stNum); else pipelineStage[stNum] = new PipelineStage(params, stNum); pipelineStage[stNum]->setCPU(this); pipelineStage[stNum]->setActiveThreads(&activeThreads); pipelineStage[stNum]->setTimeBuffer(&timeBuffer); // Take Care of 1st/Nth stages if (stNum > 0) pipelineStage[stNum]->setPrevStageQueue(stageQueue[stNum - 1]); if (stNum < NumStages - 1) pipelineStage[stNum]->setNextStageQueue(stageQueue[stNum]); } // Initialize thread specific variables for (ThreadID tid = 0; tid < numThreads; tid++) { archRegDepMap[tid].setCPU(this); nonSpecInstActive[tid] = false; nonSpecSeqNum[tid] = 0; squashSeqNum[tid] = MaxAddr; lastSquashCycle[tid] = 0; memset(intRegs[tid], 0, sizeof(intRegs[tid])); memset(floatRegs.i[tid], 0, sizeof(floatRegs.i[tid])); isa[tid].clear(); isa[tid].expandForMultithreading(numThreads, 1/*numVirtProcs*/); // Define dummy instructions and resource requests to be used. dummyInst[tid] = new InOrderDynInst(this, thread[tid], 0, tid, asid[tid]); dummyReq[tid] = new ResourceRequest(resPool->getResource(0), dummyInst[tid], 0, 0, 0, 0); } lastRunningCycle = curTick; // Reset CPU to reset state. #if FULL_SYSTEM Fault resetFault = new ResetFault(); resetFault->invoke(tcBase()); #else reset(); #endif // Schedule First Tick Event, CPU will reschedule itself from here on out. scheduleTickEvent(0); } void InOrderCPU::regStats() { /* Register the Resource Pool's stats here.*/ resPool->regStats(); #ifdef DEBUG maxResReqCount .name(name() + ".maxResReqCount") .desc("Maximum number of live resource requests in CPU") .prereq(maxResReqCount); #endif /* Register for each Pipeline Stage */ for (int stage_num=0; stage_num < ThePipeline::NumStages; stage_num++) { pipelineStage[stage_num]->regStats(); } /* Register any of the InOrderCPU's stats here.*/ instsPerCtxtSwitch .name(name() + ".instsPerContextSwitch") .desc("Instructions Committed Per Context Switch") .prereq(instsPerCtxtSwitch); numCtxtSwitches .name(name() + ".contextSwitches") .desc("Number of context switches"); timesIdled .name(name() + ".timesIdled") .desc("Number of times that the entire CPU went into an idle state and" " unscheduled itself") .prereq(timesIdled); idleCycles .name(name() + ".idleCycles") .desc("Total number of cycles that the CPU has spent unscheduled due " "to idling") .prereq(idleCycles); threadCycles .init(numThreads) .name(name() + ".threadCycles") .desc("Total Number of Cycles A Thread Was Active in CPU (Per-Thread)"); smtCycles .name(name() + ".smtCycles") .desc("Total number of cycles that the CPU was in SMT-mode"); committedInsts .init(numThreads) .name(name() + ".committedInsts") .desc("Number of Instructions Simulated (Per-Thread)"); smtCommittedInsts .init(numThreads) .name(name() + ".smtCommittedInsts") .desc("Number of SMT Instructions Simulated (Per-Thread)"); totalCommittedInsts .name(name() + ".committedInsts_total") .desc("Number of Instructions Simulated (Total)"); cpi .name(name() + ".cpi") .desc("CPI: Cycles Per Instruction (Per-Thread)") .precision(6); cpi = threadCycles / committedInsts; smtCpi .name(name() + ".smt_cpi") .desc("CPI: Total SMT-CPI") .precision(6); smtCpi = smtCycles / smtCommittedInsts; totalCpi .name(name() + ".cpi_total") .desc("CPI: Total CPI of All Threads") .precision(6); totalCpi = numCycles / totalCommittedInsts; ipc .name(name() + ".ipc") .desc("IPC: Instructions Per Cycle (Per-Thread)") .precision(6); ipc = committedInsts / threadCycles; smtIpc .name(name() + ".smt_ipc") .desc("IPC: Total SMT-IPC") .precision(6); smtIpc = smtCommittedInsts / smtCycles; totalIpc .name(name() + ".ipc_total") .desc("IPC: Total IPC of All Threads") .precision(6); totalIpc = totalCommittedInsts / numCycles; BaseCPU::regStats(); } void InOrderCPU::tick() { DPRINTF(InOrderCPU, "\n\nInOrderCPU: Ticking main, InOrderCPU.\n"); ++numCycles; //Tick each of the stages for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) { pipelineStage[stNum]->tick(); } // Now advance the time buffers one tick timeBuffer.advance(); for (int sqNum=0; sqNum < NumStages - 1; sqNum++) { stageQueue[sqNum]->advance(); } activityRec.advance(); // Any squashed requests, events, or insts then remove them now cleanUpRemovedReqs(); cleanUpRemovedEvents(); cleanUpRemovedInsts(); // Re-schedule CPU for this cycle if (!tickEvent.scheduled()) { if (_status == SwitchedOut) { // increment stat lastRunningCycle = curTick; } else if (!activityRec.active()) { DPRINTF(InOrderCPU, "sleeping CPU.\n"); lastRunningCycle = curTick; timesIdled++; } else { //Tick next_tick = curTick + cycles(1); //tickEvent.schedule(next_tick); mainEventQueue.schedule(&tickEvent, nextCycle(curTick + 1)); DPRINTF(InOrderCPU, "Scheduled CPU for next tick @ %i.\n", nextCycle(curTick + 1)); } } tickThreadStats(); updateThreadPriority(); } void InOrderCPU::init() { if (!deferRegistration) { registerThreadContexts(); } // Set inSyscall so that the CPU doesn't squash when initially // setting up registers. for (ThreadID tid = 0; tid < numThreads; ++tid) thread[tid]->inSyscall = true; #if FULL_SYSTEM for (ThreadID tid = 0; tid < numThreads; tid++) { ThreadContext *src_tc = threadContexts[tid]; TheISA::initCPU(src_tc, src_tc->contextId()); } #endif // Clear inSyscall. for (ThreadID tid = 0; tid < numThreads; ++tid) thread[tid]->inSyscall = false; // Call Initializiation Routine for Resource Pool resPool->init(); } void InOrderCPU::reset() { for (int i = 0; i < numThreads; i++) { isa[i].reset(coreType, numThreads, 1/*numVirtProcs*/, dynamic_cast(this)); } } Port* InOrderCPU::getPort(const std::string &if_name, int idx) { return resPool->getPort(if_name, idx); } #if FULL_SYSTEM Fault InOrderCPU::hwrei(ThreadID tid) { panic("hwrei: Unimplemented"); return NoFault; } bool InOrderCPU::simPalCheck(int palFunc, ThreadID tid) { panic("simPalCheck: Unimplemented"); return true; } Fault InOrderCPU::getInterrupts() { // Check if there are any outstanding interrupts return this->interrupts->getInterrupt(this->threadContexts[0]); } void InOrderCPU::processInterrupts(Fault interrupt) { // Check for interrupts here. For now can copy the code that // exists within isa_fullsys_traits.hh. Also assume that thread 0 // is the one that handles the interrupts. // @todo: Possibly consolidate the interrupt checking code. // @todo: Allow other threads to handle interrupts. assert(interrupt != NoFault); this->interrupts->updateIntrInfo(this->threadContexts[0]); DPRINTF(InOrderCPU, "Interrupt %s being handled\n", interrupt->name()); this->trap(interrupt, 0); } void InOrderCPU::updateMemPorts() { // Update all ThreadContext's memory ports (Functional/Virtual // Ports) ThreadID size = thread.size(); for (ThreadID i = 0; i < size; ++i) thread[i]->connectMemPorts(thread[i]->getTC()); } #endif void InOrderCPU::trap(Fault fault, ThreadID tid, int delay) { //@ Squash Pipeline during TRAP scheduleCpuEvent(Trap, fault, tid, dummyInst[tid], delay); } void InOrderCPU::trapCPU(Fault fault, ThreadID tid) { fault->invoke(tcBase(tid)); } void InOrderCPU::squashFromMemStall(DynInstPtr inst, ThreadID tid, int delay) { scheduleCpuEvent(SquashFromMemStall, NoFault, tid, inst, delay); } void InOrderCPU::squashDueToMemStall(int stage_num, InstSeqNum seq_num, ThreadID tid) { DPRINTF(InOrderCPU, "Squashing Pipeline Stages Due to Memory Stall...\n"); // Squash all instructions in each stage including // instruction that caused the squash (seq_num - 1) // NOTE: The stage bandwidth needs to be cleared so thats why // the stalling instruction is squashed as well. The stalled // instruction is previously placed in another intermediate buffer // while it's stall is being handled. InstSeqNum squash_seq_num = seq_num - 1; for (int stNum=stage_num; stNum >= 0 ; stNum--) { pipelineStage[stNum]->squashDueToMemStall(squash_seq_num, tid); } } void InOrderCPU::scheduleCpuEvent(CPUEventType c_event, Fault fault, ThreadID tid, DynInstPtr inst, unsigned delay, unsigned event_pri_offset) { CPUEvent *cpu_event = new CPUEvent(this, c_event, fault, tid, inst, event_pri_offset); if (delay >= 0) { DPRINTF(InOrderCPU, "Scheduling CPU Event (%s) for cycle %i, [tid:%i].\n", eventNames[c_event], curTick + delay, tid); mainEventQueue.schedule(cpu_event,curTick + delay); } else { cpu_event->process(); cpuEventRemoveList.push(cpu_event); } // Broadcast event to the Resource Pool // Need to reset tid just in case this is a dummy instruction inst->setTid(tid); resPool->scheduleEvent(c_event, inst, 0, 0, tid); } bool InOrderCPU::isThreadActive(ThreadID tid) { list::iterator isActive = std::find(activeThreads.begin(), activeThreads.end(), tid); return (isActive != activeThreads.end()); } bool InOrderCPU::isThreadReady(ThreadID tid) { list::iterator isReady = std::find(readyThreads.begin(), readyThreads.end(), tid); return (isReady != readyThreads.end()); } bool InOrderCPU::isThreadSuspended(ThreadID tid) { list::iterator isSuspended = std::find(suspendedThreads.begin(), suspendedThreads.end(), tid); return (isSuspended != suspendedThreads.end()); } void InOrderCPU::activateNextReadyThread() { if (readyThreads.size() >= 1) { ThreadID ready_tid = readyThreads.front(); // Activate in Pipeline activateThread(ready_tid); // Activate in Resource Pool resPool->activateAll(ready_tid); list::iterator ready_it = std::find(readyThreads.begin(), readyThreads.end(), ready_tid); readyThreads.erase(ready_it); } else { DPRINTF(InOrderCPU, "Attempting to activate new thread, but No Ready Threads to" "activate.\n"); DPRINTF(InOrderCPU, "Unable to switch to next active thread.\n"); } } void InOrderCPU::activateThread(ThreadID tid) { if (isThreadSuspended(tid)) { DPRINTF(InOrderCPU, "Removing [tid:%i] from suspended threads list.\n", tid); list::iterator susp_it = std::find(suspendedThreads.begin(), suspendedThreads.end(), tid); suspendedThreads.erase(susp_it); } if (threadModel == SwitchOnCacheMiss && numActiveThreads() == 1) { DPRINTF(InOrderCPU, "Ignoring activation of [tid:%i], since [tid:%i] is " "already running.\n", tid, activeThreadId()); DPRINTF(InOrderCPU,"Placing [tid:%i] on ready threads list\n", tid); readyThreads.push_back(tid); } else if (!isThreadActive(tid)) { DPRINTF(InOrderCPU, "Adding [tid:%i] to active threads list.\n", tid); activeThreads.push_back(tid); activateThreadInPipeline(tid); thread[tid]->lastActivate = curTick; tcBase(tid)->setStatus(ThreadContext::Active); wakeCPU(); numCtxtSwitches++; } } void InOrderCPU::activateThreadInPipeline(ThreadID tid) { for (int stNum=0; stNum < NumStages; stNum++) { pipelineStage[stNum]->activateThread(tid); } } void InOrderCPU::deactivateContext(ThreadID tid, int delay) { DPRINTF(InOrderCPU,"[tid:%i]: Deactivating ...\n", tid); scheduleCpuEvent(DeactivateThread, NoFault, tid, dummyInst[tid], delay); // Be sure to signal that there's some activity so the CPU doesn't // deschedule itself. activityRec.activity(); _status = Running; } void InOrderCPU::deactivateThread(ThreadID tid) { DPRINTF(InOrderCPU, "[tid:%i]: Calling deactivate thread.\n", tid); if (isThreadActive(tid)) { DPRINTF(InOrderCPU,"[tid:%i]: Removing from active threads list\n", tid); list::iterator thread_it = std::find(activeThreads.begin(), activeThreads.end(), tid); removePipelineStalls(*thread_it); activeThreads.erase(thread_it); // Ideally, this should be triggered from the // suspendContext/Thread functions tcBase(tid)->setStatus(ThreadContext::Suspended); } assert(!isThreadActive(tid)); } void InOrderCPU::removePipelineStalls(ThreadID tid) { DPRINTF(InOrderCPU,"[tid:%i]: Removing all pipeline stalls\n", tid); for (int stNum = 0; stNum < NumStages ; stNum++) { pipelineStage[stNum]->removeStalls(tid); } } void InOrderCPU::updateThreadPriority() { if (activeThreads.size() > 1) { //DEFAULT TO ROUND ROBIN SCHEME //e.g. Move highest priority to end of thread list list::iterator list_begin = activeThreads.begin(); list::iterator list_end = activeThreads.end(); unsigned high_thread = *list_begin; activeThreads.erase(list_begin); activeThreads.push_back(high_thread); } } inline void InOrderCPU::tickThreadStats() { /** Keep track of cycles that each thread is active */ list::iterator thread_it = activeThreads.begin(); while (thread_it != activeThreads.end()) { threadCycles[*thread_it]++; thread_it++; } // Keep track of cycles where SMT is active if (activeThreads.size() > 1) { smtCycles++; } } void InOrderCPU::activateContext(ThreadID tid, int delay) { DPRINTF(InOrderCPU,"[tid:%i]: Activating ...\n", tid); scheduleCpuEvent(ActivateThread, NoFault, tid, dummyInst[tid], delay); // Be sure to signal that there's some activity so the CPU doesn't // deschedule itself. activityRec.activity(); _status = Running; } void InOrderCPU::activateNextReadyContext(int delay) { DPRINTF(InOrderCPU,"Activating next ready thread\n"); // NOTE: Add 5 to the event priority so that we always activate // threads after we've finished deactivating, squashing,etc. // other threads scheduleCpuEvent(ActivateNextReadyThread, NoFault, 0/*tid*/, dummyInst[0], delay, 5); // Be sure to signal that there's some activity so the CPU doesn't // deschedule itself. activityRec.activity(); _status = Running; } void InOrderCPU::haltContext(ThreadID tid, int delay) { DPRINTF(InOrderCPU, "[tid:%i]: Calling Halt Context...\n", tid); scheduleCpuEvent(HaltThread, NoFault, tid, dummyInst[tid], delay); activityRec.activity(); } void InOrderCPU::haltThread(ThreadID tid) { DPRINTF(InOrderCPU, "[tid:%i]: Placing on Halted Threads List...\n", tid); deactivateThread(tid); squashThreadInPipeline(tid); haltedThreads.push_back(tid); tcBase(tid)->setStatus(ThreadContext::Halted); if (threadModel == SwitchOnCacheMiss) { activateNextReadyContext(); } } void InOrderCPU::suspendContext(ThreadID tid, int delay) { scheduleCpuEvent(SuspendThread, NoFault, tid, dummyInst[tid], delay); } void InOrderCPU::suspendThread(ThreadID tid) { DPRINTF(InOrderCPU, "[tid:%i]: Placing on Suspended Threads List...\n", tid); deactivateThread(tid); suspendedThreads.push_back(tid); thread[tid]->lastSuspend = curTick; tcBase(tid)->setStatus(ThreadContext::Suspended); } void InOrderCPU::squashThreadInPipeline(ThreadID tid) { //Squash all instructions in each stage for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) { pipelineStage[stNum]->squash(0 /*seq_num*/, tid); } } PipelineStage* InOrderCPU::getPipeStage(int stage_num) { return pipelineStage[stage_num]; } uint64_t InOrderCPU::readPC(ThreadID tid) { return PC[tid]; } void InOrderCPU::setPC(Addr new_PC, ThreadID tid) { PC[tid] = new_PC; } uint64_t InOrderCPU::readNextPC(ThreadID tid) { return nextPC[tid]; } void InOrderCPU::setNextPC(uint64_t new_NPC, ThreadID tid) { nextPC[tid] = new_NPC; } uint64_t InOrderCPU::readNextNPC(ThreadID tid) { return nextNPC[tid]; } void InOrderCPU::setNextNPC(uint64_t new_NNPC, ThreadID tid) { nextNPC[tid] = new_NNPC; } uint64_t InOrderCPU::readIntReg(int reg_idx, ThreadID tid) { return intRegs[tid][reg_idx]; } FloatReg InOrderCPU::readFloatReg(int reg_idx, ThreadID tid) { return floatRegs.f[tid][reg_idx]; } FloatRegBits InOrderCPU::readFloatRegBits(int reg_idx, ThreadID tid) {; return floatRegs.i[tid][reg_idx]; } void InOrderCPU::setIntReg(int reg_idx, uint64_t val, ThreadID tid) { intRegs[tid][reg_idx] = val; } void InOrderCPU::setFloatReg(int reg_idx, FloatReg val, ThreadID tid) { floatRegs.f[tid][reg_idx] = val; } void InOrderCPU::setFloatRegBits(int reg_idx, FloatRegBits val, ThreadID tid) { floatRegs.i[tid][reg_idx] = val; } uint64_t InOrderCPU::readRegOtherThread(unsigned reg_idx, ThreadID tid) { // If Default value is set, then retrieve target thread if (tid == InvalidThreadID) { tid = TheISA::getTargetThread(tcBase(tid)); } if (reg_idx < FP_Base_DepTag) { // Integer Register File return readIntReg(reg_idx, tid); } else if (reg_idx < Ctrl_Base_DepTag) { // Float Register File reg_idx -= FP_Base_DepTag; return readFloatRegBits(reg_idx, tid); } else { reg_idx -= Ctrl_Base_DepTag; return readMiscReg(reg_idx, tid); // Misc. Register File } } void InOrderCPU::setRegOtherThread(unsigned reg_idx, const MiscReg &val, ThreadID tid) { // If Default value is set, then retrieve target thread if (tid == InvalidThreadID) { tid = TheISA::getTargetThread(tcBase(tid)); } if (reg_idx < FP_Base_DepTag) { // Integer Register File setIntReg(reg_idx, val, tid); } else if (reg_idx < Ctrl_Base_DepTag) { // Float Register File reg_idx -= FP_Base_DepTag; setFloatRegBits(reg_idx, val, tid); } else { reg_idx -= Ctrl_Base_DepTag; setMiscReg(reg_idx, val, tid); // Misc. Register File } } MiscReg InOrderCPU::readMiscRegNoEffect(int misc_reg, ThreadID tid) { return isa[tid].readMiscRegNoEffect(misc_reg); } MiscReg InOrderCPU::readMiscReg(int misc_reg, ThreadID tid) { return isa[tid].readMiscReg(misc_reg, tcBase(tid)); } void InOrderCPU::setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid) { isa[tid].setMiscRegNoEffect(misc_reg, val); } void InOrderCPU::setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid) { isa[tid].setMiscReg(misc_reg, val, tcBase(tid)); } InOrderCPU::ListIt InOrderCPU::addInst(DynInstPtr &inst) { ThreadID tid = inst->readTid(); instList[tid].push_back(inst); return --(instList[tid].end()); } void InOrderCPU::updateContextSwitchStats() { // Set Average Stat Here, then reset to 0 instsPerCtxtSwitch = instsPerSwitch; instsPerSwitch = 0; } void InOrderCPU::instDone(DynInstPtr inst, ThreadID tid) { // Set the CPU's PCs - This contributes to the precise state of the CPU // which can be used when restoring a thread to the CPU after after any // type of context switching activity (fork, exception, etc.) setPC(inst->readPC(), tid); setNextPC(inst->readNextPC(), tid); setNextNPC(inst->readNextNPC(), tid); if (inst->isControl()) { thread[tid]->lastGradIsBranch = true; thread[tid]->lastBranchPC = inst->readPC(); thread[tid]->lastBranchNextPC = inst->readNextPC(); thread[tid]->lastBranchNextNPC = inst->readNextNPC(); } else { thread[tid]->lastGradIsBranch = false; } // Finalize Trace Data For Instruction if (inst->traceData) { //inst->traceData->setCycle(curTick); inst->traceData->setFetchSeq(inst->seqNum); //inst->traceData->setCPSeq(cpu->tcBase(tid)->numInst); inst->traceData->dump(); delete inst->traceData; inst->traceData = NULL; } // Increment active thread's instruction count instsPerSwitch++; // Increment thread-state's instruction count thread[tid]->numInst++; // Increment thread-state's instruction stats thread[tid]->numInsts++; // Count committed insts per thread stats committedInsts[tid]++; // Count total insts committed stat totalCommittedInsts++; // Count SMT-committed insts per thread stat if (numActiveThreads() > 1) { smtCommittedInsts[tid]++; } // Check for instruction-count-based events. comInstEventQueue[tid]->serviceEvents(thread[tid]->numInst); // Broadcast to other resources an instruction // has been completed resPool->scheduleEvent((CPUEventType)ResourcePool::InstGraduated, inst, 0, 0, tid); // Finally, remove instruction from CPU removeInst(inst); } void InOrderCPU::addToRemoveList(DynInstPtr &inst) { removeInstsThisCycle = true; removeList.push(inst->getInstListIt()); } void InOrderCPU::removeInst(DynInstPtr &inst) { DPRINTF(InOrderCPU, "Removing graduated instruction [tid:%i] PC %#x " "[sn:%lli]\n", inst->threadNumber, inst->readPC(), inst->seqNum); removeInstsThisCycle = true; // Remove the instruction. removeList.push(inst->getInstListIt()); } void InOrderCPU::removeInstsUntil(const InstSeqNum &seq_num, ThreadID tid) { //assert(!instList[tid].empty()); removeInstsThisCycle = true; ListIt inst_iter = instList[tid].end(); inst_iter--; DPRINTF(InOrderCPU, "Deleting instructions from CPU instruction " "list that are from [tid:%i] and above [sn:%lli] (end=%lli).\n", tid, seq_num, (*inst_iter)->seqNum); while ((*inst_iter)->seqNum > seq_num) { bool break_loop = (inst_iter == instList[tid].begin()); squashInstIt(inst_iter, tid); inst_iter--; if (break_loop) break; } } inline void InOrderCPU::squashInstIt(const ListIt &instIt, ThreadID tid) { if ((*instIt)->threadNumber == tid) { DPRINTF(InOrderCPU, "Squashing instruction, " "[tid:%i] [sn:%lli] PC %#x\n", (*instIt)->threadNumber, (*instIt)->seqNum, (*instIt)->readPC()); (*instIt)->setSquashed(); removeList.push(instIt); } } void InOrderCPU::cleanUpRemovedInsts() { while (!removeList.empty()) { DPRINTF(InOrderCPU, "Removing instruction, " "[tid:%i] [sn:%lli] PC %#x\n", (*removeList.front())->threadNumber, (*removeList.front())->seqNum, (*removeList.front())->readPC()); DynInstPtr inst = *removeList.front(); ThreadID tid = inst->threadNumber; // Make Sure Resource Schedule Is Emptied Out ThePipeline::ResSchedule *inst_sched = &inst->resSched; while (!inst_sched->empty()) { ThePipeline::ScheduleEntry* sch_entry = inst_sched->top(); inst_sched->pop(); delete sch_entry; } // Remove From Register Dependency Map, If Necessary archRegDepMap[(*removeList.front())->threadNumber]. remove((*removeList.front())); // Clear if Non-Speculative if (inst->staticInst && inst->seqNum == nonSpecSeqNum[tid] && nonSpecInstActive[tid] == true) { nonSpecInstActive[tid] = false; } instList[tid].erase(removeList.front()); removeList.pop(); DPRINTF(RefCount, "pop from remove list: [sn:%i]: Refcount = %i.\n", inst->seqNum, 0/*inst->curCount()*/); } removeInstsThisCycle = false; } void InOrderCPU::cleanUpRemovedReqs() { while (!reqRemoveList.empty()) { ResourceRequest *res_req = reqRemoveList.front(); DPRINTF(RefCount, "[tid:%i]: Removing Request, " "[sn:%lli] [slot:%i] [stage_num:%i] [res:%s] [refcount:%i].\n", res_req->inst->threadNumber, res_req->inst->seqNum, res_req->getSlot(), res_req->getStageNum(), res_req->res->name(), 0/*res_req->inst->curCount()*/); reqRemoveList.pop(); delete res_req; DPRINTF(RefCount, "after remove request: [sn:%i]: Refcount = %i.\n", res_req->inst->seqNum, 0/*res_req->inst->curCount()*/); } } void InOrderCPU::cleanUpRemovedEvents() { while (!cpuEventRemoveList.empty()) { Event *cpu_event = cpuEventRemoveList.front(); cpuEventRemoveList.pop(); delete cpu_event; } } void InOrderCPU::dumpInsts() { int num = 0; ListIt inst_list_it = instList[0].begin(); cprintf("Dumping Instruction List\n"); while (inst_list_it != instList[0].end()) { cprintf("Instruction:%i\nPC:%#x\n[tid:%i]\n[sn:%lli]\nIssued:%i\n" "Squashed:%i\n\n", num, (*inst_list_it)->readPC(), (*inst_list_it)->threadNumber, (*inst_list_it)->seqNum, (*inst_list_it)->isIssued(), (*inst_list_it)->isSquashed()); inst_list_it++; ++num; } } void InOrderCPU::wakeCPU() { if (/*activityRec.active() || */tickEvent.scheduled()) { DPRINTF(Activity, "CPU already running.\n"); return; } DPRINTF(Activity, "Waking up CPU\n"); Tick extra_cycles = tickToCycles((curTick - 1) - lastRunningCycle); idleCycles += extra_cycles; for (int stage_num = 0; stage_num < NumStages; stage_num++) { pipelineStage[stage_num]->idleCycles += extra_cycles; } numCycles += extra_cycles; mainEventQueue.schedule(&tickEvent, curTick); } #if FULL_SYSTEM void InOrderCPU::wakeup() { if (this->thread[0]->status() != ThreadContext::Suspended) return; this->wakeCPU(); DPRINTF(Quiesce, "Suspended Processor woken\n"); this->threadContexts[0]->activate(); } #endif #if !FULL_SYSTEM void InOrderCPU::syscall(int64_t callnum, ThreadID tid) { DPRINTF(InOrderCPU, "[tid:%i] Executing syscall().\n\n", tid); DPRINTF(Activity,"Activity: syscall() called.\n"); // Temporarily increase this by one to account for the syscall // instruction. ++(this->thread[tid]->funcExeInst); // Execute the actual syscall. this->thread[tid]->syscall(callnum); // Decrease funcExeInst by one as the normal commit will handle // incrementing it. --(this->thread[tid]->funcExeInst); // Clear Non-Speculative Block Variable nonSpecInstActive[tid] = false; } #endif void InOrderCPU::prefetch(DynInstPtr inst) { Resource *mem_res = resPool->getResource(dataPortIdx); return mem_res->prefetch(inst); } void InOrderCPU::writeHint(DynInstPtr inst) { Resource *mem_res = resPool->getResource(dataPortIdx); return mem_res->writeHint(inst); } TheISA::TLB* InOrderCPU::getITBPtr() { CacheUnit *itb_res = dynamic_cast(resPool->getResource(fetchPortIdx)); return itb_res->tlb(); } TheISA::TLB* InOrderCPU::getDTBPtr() { CacheUnit *dtb_res = dynamic_cast(resPool->getResource(dataPortIdx)); return dtb_res->tlb(); } template Fault InOrderCPU::read(DynInstPtr inst, Addr addr, T &data, unsigned flags) { //@TODO: Generalize name "CacheUnit" to "MemUnit" just in case // you want to run w/out caches? CacheUnit *cache_res = dynamic_cast(resPool->getResource(dataPortIdx)); return cache_res->read(inst, addr, data, flags); } #ifndef DOXYGEN_SHOULD_SKIP_THIS template Fault InOrderCPU::read(DynInstPtr inst, Addr addr, Twin32_t &data, unsigned flags); template Fault InOrderCPU::read(DynInstPtr inst, Addr addr, Twin64_t &data, unsigned flags); template Fault InOrderCPU::read(DynInstPtr inst, Addr addr, uint64_t &data, unsigned flags); template Fault InOrderCPU::read(DynInstPtr inst, Addr addr, uint32_t &data, unsigned flags); template Fault InOrderCPU::read(DynInstPtr inst, Addr addr, uint16_t &data, unsigned flags); template Fault InOrderCPU::read(DynInstPtr inst, Addr addr, uint8_t &data, unsigned flags); #endif //DOXYGEN_SHOULD_SKIP_THIS template<> Fault InOrderCPU::read(DynInstPtr inst, Addr addr, double &data, unsigned flags) { return read(inst, addr, *(uint64_t*)&data, flags); } template<> Fault InOrderCPU::read(DynInstPtr inst, Addr addr, float &data, unsigned flags) { return read(inst, addr, *(uint32_t*)&data, flags); } template<> Fault InOrderCPU::read(DynInstPtr inst, Addr addr, int32_t &data, unsigned flags) { return read(inst, addr, (uint32_t&)data, flags); } template Fault InOrderCPU::write(DynInstPtr inst, T data, Addr addr, unsigned flags, uint64_t *write_res) { //@TODO: Generalize name "CacheUnit" to "MemUnit" just in case // you want to run w/out caches? CacheUnit *cache_res = dynamic_cast(resPool->getResource(dataPortIdx)); return cache_res->write(inst, data, addr, flags, write_res); } #ifndef DOXYGEN_SHOULD_SKIP_THIS template Fault InOrderCPU::write(DynInstPtr inst, Twin32_t data, Addr addr, unsigned flags, uint64_t *res); template Fault InOrderCPU::write(DynInstPtr inst, Twin64_t data, Addr addr, unsigned flags, uint64_t *res); template Fault InOrderCPU::write(DynInstPtr inst, uint64_t data, Addr addr, unsigned flags, uint64_t *res); template Fault InOrderCPU::write(DynInstPtr inst, uint32_t data, Addr addr, unsigned flags, uint64_t *res); template Fault InOrderCPU::write(DynInstPtr inst, uint16_t data, Addr addr, unsigned flags, uint64_t *res); template Fault InOrderCPU::write(DynInstPtr inst, uint8_t data, Addr addr, unsigned flags, uint64_t *res); #endif //DOXYGEN_SHOULD_SKIP_THIS template<> Fault InOrderCPU::write(DynInstPtr inst, double data, Addr addr, unsigned flags, uint64_t *res) { return write(inst, *(uint64_t*)&data, addr, flags, res); } template<> Fault InOrderCPU::write(DynInstPtr inst, float data, Addr addr, unsigned flags, uint64_t *res) { return write(inst, *(uint32_t*)&data, addr, flags, res); } template<> Fault InOrderCPU::write(DynInstPtr inst, int32_t data, Addr addr, unsigned flags, uint64_t *res) { return write(inst, (uint32_t)data, addr, flags, res); }