/* * Copyright (c) 2004-2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim */ #ifndef __CPU_O3_ALPHA_DYN_INST_HH__ #define __CPU_O3_ALPHA_DYN_INST_HH__ #include "arch/isa_traits.hh" #include "cpu/base_dyn_inst.hh" #include "cpu/inst_seq.hh" #include "cpu/o3/alpha/cpu.hh" #include "cpu/o3/alpha/impl.hh" class Packet; /** * Mostly implementation & ISA specific AlphaDynInst. As with most * other classes in the new CPU model, it is templated on the Impl to * allow for passing in of all types, such as the CPU type and the ISA * type. The AlphaDynInst serves as the primary interface to the CPU * for instructions that are executing. */ template class AlphaDynInst : public BaseDynInst { public: /** Typedef for the CPU. */ typedef typename Impl::O3CPU O3CPU; /** Binary machine instruction type. */ typedef TheISA::MachInst MachInst; /** Extended machine instruction type. */ typedef TheISA::ExtMachInst ExtMachInst; /** Logical register index type. */ typedef TheISA::RegIndex RegIndex; /** Integer register index type. */ typedef TheISA::IntReg IntReg; typedef TheISA::FloatReg FloatReg; typedef TheISA::FloatRegBits FloatRegBits; /** Misc register index type. */ typedef TheISA::MiscReg MiscReg; enum { MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs }; public: /** BaseDynInst constructor given a binary instruction. */ AlphaDynInst(ExtMachInst inst, Addr PC, Addr Pred_PC, InstSeqNum seq_num, O3CPU *cpu); /** BaseDynInst constructor given a static inst pointer. */ AlphaDynInst(StaticInstPtr &_staticInst); /** Executes the instruction.*/ Fault execute(); /** Initiates the access. Only valid for memory operations. */ Fault initiateAcc(); /** Completes the access. Only valid for memory operations. */ Fault completeAcc(PacketPtr pkt); private: /** Initializes variables. */ void initVars(); public: /** Reads a miscellaneous register. */ MiscReg readMiscReg(int misc_reg) { return this->cpu->readMiscReg(misc_reg, this->threadNumber); } /** Reads a misc. register, including any side-effects the read * might have as defined by the architecture. */ MiscReg readMiscRegWithEffect(int misc_reg) { return this->cpu->readMiscRegWithEffect(misc_reg, this->threadNumber); } /** Sets a misc. register. */ void setMiscReg(int misc_reg, const MiscReg &val) { this->instResult.integer = val; return this->cpu->setMiscReg(misc_reg, val, this->threadNumber); } /** Sets a misc. register, including any side-effects the write * might have as defined by the architecture. */ void setMiscRegWithEffect(int misc_reg, const MiscReg &val) { return this->cpu->setMiscRegWithEffect(misc_reg, val, this->threadNumber); } #if FULL_SYSTEM /** Calls hardware return from error interrupt. */ Fault hwrei(); /** Traps to handle specified fault. */ void trap(Fault fault); bool simPalCheck(int palFunc); #else /** Calls a syscall. */ void syscall(int64_t callnum); #endif private: /** Physical register index of the destination registers of this * instruction. */ PhysRegIndex _destRegIdx[MaxInstDestRegs]; /** Physical register index of the source registers of this * instruction. */ PhysRegIndex _srcRegIdx[MaxInstSrcRegs]; /** Physical register index of the previous producers of the * architected destinations. */ PhysRegIndex _prevDestRegIdx[MaxInstDestRegs]; public: // The register accessor methods provide the index of the // instruction's operand (e.g., 0 or 1), not the architectural // register index, to simplify the implementation of register // renaming. We find the architectural register index by indexing // into the instruction's own operand index table. Note that a // raw pointer to the StaticInst is provided instead of a // ref-counted StaticInstPtr to redice overhead. This is fine as // long as these methods don't copy the pointer into any long-term // storage (which is pretty hard to imagine they would have reason // to do). uint64_t readIntReg(const StaticInst *si, int idx) { return this->cpu->readIntReg(_srcRegIdx[idx]); } FloatReg readFloatReg(const StaticInst *si, int idx, int width) { return this->cpu->readFloatReg(_srcRegIdx[idx], width); } FloatReg readFloatReg(const StaticInst *si, int idx) { return this->cpu->readFloatReg(_srcRegIdx[idx]); } FloatRegBits readFloatRegBits(const StaticInst *si, int idx, int width) { return this->cpu->readFloatRegBits(_srcRegIdx[idx], width); } FloatRegBits readFloatRegBits(const StaticInst *si, int idx) { return this->cpu->readFloatRegBits(_srcRegIdx[idx]); } /** @todo: Make results into arrays so they can handle multiple dest * registers. */ void setIntReg(const StaticInst *si, int idx, uint64_t val) { this->cpu->setIntReg(_destRegIdx[idx], val); BaseDynInst::setIntReg(si, idx, val); } void setFloatReg(const StaticInst *si, int idx, FloatReg val, int width) { this->cpu->setFloatReg(_destRegIdx[idx], val, width); BaseDynInst::setFloatReg(si, idx, val, width); } void setFloatReg(const StaticInst *si, int idx, FloatReg val) { this->cpu->setFloatReg(_destRegIdx[idx], val); BaseDynInst::setFloatReg(si, idx, val); } void setFloatRegBits(const StaticInst *si, int idx, FloatRegBits val, int width) { this->cpu->setFloatRegBits(_destRegIdx[idx], val, width); BaseDynInst::setFloatRegBits(si, idx, val); } void setFloatRegBits(const StaticInst *si, int idx, FloatRegBits val) { this->cpu->setFloatRegBits(_destRegIdx[idx], val); BaseDynInst::setFloatRegBits(si, idx, val); } /** Returns the physical register index of the i'th destination * register. */ PhysRegIndex renamedDestRegIdx(int idx) const { return _destRegIdx[idx]; } /** Returns the physical register index of the i'th source register. */ PhysRegIndex renamedSrcRegIdx(int idx) const { return _srcRegIdx[idx]; } /** Returns the physical register index of the previous physical register * that remapped to the same logical register index. */ PhysRegIndex prevDestRegIdx(int idx) const { return _prevDestRegIdx[idx]; } /** Renames a destination register to a physical register. Also records * the previous physical register that the logical register mapped to. */ void renameDestReg(int idx, PhysRegIndex renamed_dest, PhysRegIndex previous_rename) { _destRegIdx[idx] = renamed_dest; _prevDestRegIdx[idx] = previous_rename; } /** Renames a source logical register to the physical register which * has/will produce that logical register's result. * @todo: add in whether or not the source register is ready. */ void renameSrcReg(int idx, PhysRegIndex renamed_src) { _srcRegIdx[idx] = renamed_src; } public: /** Calculates EA part of a memory instruction. Currently unused, * though it may be useful in the future if we want to split * memory operations into EA calculation and memory access parts. */ Fault calcEA() { return this->staticInst->eaCompInst()->execute(this, this->traceData); } /** Does the memory access part of a memory instruction. Currently unused, * though it may be useful in the future if we want to split * memory operations into EA calculation and memory access parts. */ Fault memAccess() { return this->staticInst->memAccInst()->execute(this, this->traceData); } }; #endif // __CPU_O3_ALPHA_DYN_INST_HH__