Commit graph

26 commits

Author SHA1 Message Date
Andreas Hansson e1ac962939 arch: Cleanup unused ISA traits constants
This patch prunes unused values, and also unifies how the values are
defined (not using an enum for ALPHA), aligning the use of int vs Addr
etc.

The patch also removes the duplication of PageBytes/PageShift and
VMPageSize/LogVMPageSize. For all ISAs the two pairs had identical
values and the latter has been removed.
2014-09-03 07:42:21 -04:00
ARM gem5 Developers 612f8f074f arm: Add support for ARMv8 (AArch64 & AArch32)
Note: AArch64 and AArch32 interworking is not supported. If you use an AArch64
kernel you are restricted to AArch64 user-mode binaries. This will be addressed
in a later patch.

Note: Virtualization is only supported in AArch32 mode. This will also be fixed
in a later patch.

Contributors:
Giacomo Gabrielli    (TrustZone, LPAE, system-level AArch64, AArch64 NEON, validation)
Thomas Grocutt       (AArch32 Virtualization, AArch64 FP, validation)
Mbou Eyole           (AArch64 NEON, validation)
Ali Saidi            (AArch64 Linux support, code integration, validation)
Edmund Grimley-Evans (AArch64 FP)
William Wang         (AArch64 Linux support)
Rene De Jong         (AArch64 Linux support, performance opt.)
Matt Horsnell        (AArch64 MP, validation)
Matt Evans           (device models, code integration, validation)
Chris Adeniyi-Jones  (AArch64 syscall-emulation)
Prakash Ramrakhyani  (validation)
Dam Sunwoo           (validation)
Chander Sudanthi     (validation)
Stephan Diestelhorst (validation)
Andreas Hansson      (code integration, performance opt.)
Eric Van Hensbergen  (performance opt.)
Gabe Black
2014-01-24 15:29:34 -06:00
Dam Sunwoo ac161c1d72 ISA: generic Linux thread info support
This patch takes the Linux thread info support scattered across
different ISA implementations (currently in ARM, ALPHA, and MIPS), and
unifies them into a single file.

Adds a few more helper functions to read out TGID, mm, etc.

ISA-specific information (e.g., ALPHA PCBB register) is now moved to
the corresponding isa_traits.hh files.
2012-11-02 11:32:00 -05:00
Ali Saidi 20d25b9da7 ISA: Back-out NoopMachInst as a StaticInstPtr change. 2012-06-05 13:52:30 -04:00
Ali Saidi 0b0c5621ee ARM: Fix compilation on ARM after Gabe's change. 2012-06-05 01:23:08 -04:00
Gabe Black 49a7ed0397 StaticInst: Merge StaticInst and StaticInstBase.
Having two StaticInst classes, one nominally ISA dependent and the other ISA
dependent, has not been historically useful and makes the StaticInst class
more complicated that it needs to be. This change merges StaticInstBase into
StaticInst.
2011-09-09 02:40:11 -07:00
Geoffrey Blake 5f425b8bd1 Fix bugs due to interaction between SEV instructions and O3 pipeline
SEV instructions were originally implemented to cause asynchronous squashes
via the generateTCSquash() function in the O3 pipeline when updating the
SEV_MAILBOX miscReg. This caused race conditions between CPUs in an MP system
that would lead to a pipeline either going inactive indefinitely or not being
able to commit squashed instructions. Fixed SEV instructions to behave like
interrupts and cause synchronous sqaushes inside the pipeline, eliminating
the race conditions. Also fixed up the semantics of the WFE instruction to
behave as documented in the ARMv7 ISA description to not sleep if SEV_MAILBOX=1
or unmasked interrupts are pending.
2011-08-19 15:08:07 -05:00
Ali Saidi 805ad4ba41 ARM: Make Noop actually decode to a noop and set it's instflags. 2011-02-23 15:10:49 -06:00
Ali Saidi 965a01d913 ARM: Use an actual NOP instead of a instruction that happens to do nothing 2011-01-18 16:30:01 -06:00
Steve Reinhardt c69d48f007 Make commenting on close namespace brackets consistent.
Ran all the source files through 'perl -pi' with this script:

s|\s*(};?\s*)?/\*\s*(end\s*)?namespace\s*(\S+)\s*\*/(\s*})?|} // namespace $3|;
s|\s*};?\s*//\s*(end\s*)?namespace\s*(\S+)\s*|} // namespace $2\n|;
s|\s*};?\s*//\s*(\S+)\s*namespace\s*|} // namespace $1\n|;

Also did a little manual editing on some of the arch/*/isa_traits.hh files
and src/SConscript.
2011-01-03 14:35:43 -08:00
Gabe Black 672d6a4b98 Style: Replace some tabs with spaces. 2010-12-20 16:24:40 -05:00
Gabe Black 6f4bd2c1da ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.
This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.


PC type:

Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.

These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.

Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.


Advancing the PC:

The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.

One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.


Variable length instructions:

To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.


ISA parser:

To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.


Return address stack:

The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.


Change in stats:

There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.


TODO:

Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
2010-10-31 00:07:20 -07:00
Ali Saidi b331b02669 ARM: Clean up use of TBit and JBit.
Rather tha constantly using ULL(1) << PcXBitShift define those directly.
Additionally, add some helper functions to further clean up the code.
2010-10-01 16:02:45 -05:00
Min Kyu Jeong dee8f3d500 ARM: Support unaligned memory access.
Without this flag set, page-crossing requests were not split into two mem
request.

Depending on the alignment bit in the SCTLR, misaligned access could
raise a fault. However it seems unnecessary to implement that.
2010-08-25 19:10:43 -05:00
William Wang 8376f7bca3 ARM: Remove ALPHA KSeg functions.
These were erronously copied years ago into the ARM directory.
2010-08-25 19:10:43 -05:00
Ali Saidi f2642e2055 Loader: Make the load address mask be a parameter of the system rather than a constant.
This allows one two different OS requirements for the same ISA to be handled.
Some OSes are compiled for a virtual address and need to be loaded into physical
memory that starts at address 0, while other bare metal tools generate
images that start at address 0.
2010-08-23 11:18:39 -05:00
Ali Saidi b8ec214553 ARM: Implement ARM CPU interrupts 2010-06-02 12:58:16 -05:00
Ali Saidi 5e6d28996a ARM: Move PC mode bits around so they can be used for exectrace 2010-06-02 12:58:13 -05:00
Gabe Black 3430b34cff ARM: Add base classes for multiply instructions. 2010-06-02 12:58:03 -05:00
Timothy M. Jones 29e8bcead5 O3PCU: Split loads and stores that cross cache line boundaries.
When each load or store is sent to the LSQ, we check whether it will cross a
cache line boundary and, if so, split it in two. This creates two TLB
translations and two memory requests. Care has to be taken if the first
packet of a split load is sent but the second blocks the cache. Similarly,
for a store, if the first packet cannot be sent, we must store the second
one somewhere to retry later.

This modifies the LSQSenderState class to record both packets in a split
load or store.

Finally, a new const variable, HasUnalignedMemAcc, is added to each ISA
to indicate whether unaligned memory accesses are allowed. This is used
throughout the changed code so that compiler can optimise away code dealing
with split requests for ISAs that don't need them.
2010-02-12 19:53:20 +00:00
Gabe Black 2e28da5583 ARM: Implement fault classes.
Implement some fault classes using the curriously recurring template pattern,
similar to SPARCs.
2009-11-10 20:34:38 -08:00
Gabe Black b398b8ff1b Registers: Add a registers.hh file as an ISA switched header.
This file is for register indices, Num* constants, and register types.
copyRegs and copyMiscRegs were moved to utility.hh and utility.cc.

--HG--
rename : src/arch/alpha/regfile.hh => src/arch/alpha/registers.hh
rename : src/arch/arm/regfile.hh => src/arch/arm/registers.hh
rename : src/arch/mips/regfile.hh => src/arch/mips/registers.hh
rename : src/arch/sparc/regfile.hh => src/arch/sparc/registers.hh
rename : src/arch/x86/regfile.hh => src/arch/x86/registers.hh
2009-07-08 23:02:21 -07:00
Gabe Black 1b29f1621d ARM, Simple CPU: Fix an index and add assert checks. 2009-07-08 23:02:21 -07:00
Nathan Binkert eef3a2e142 types: Move stuff for global types into src/base/types.hh
--HG--
rename : src/sim/host.hh => src/base/types.hh
2009-05-17 14:34:50 -07:00
Gabe Black d080581db1 Merge ARM into the head. ARM will compile but may not actually work. 2009-04-06 10:19:36 -07:00
Stephen Hines 7a7c4c5fca arm: add ARM support to M5 2009-04-05 18:53:15 -07:00