In certain actions of the L1 cache controller, while creating an outgoing
message, the machine type was not being set. This results in a
segmentation fault when trace is collected. Joseph Pusudesris provided
his patch for fixing this issue.
The patch changes the order in which L1 dcache and icache are looked up when
a request comes in. Earlier, if a request came in for instruction fetch, the
dcache was looked up before the icache, to correctly handle self-modifying
code. But, in the common case, dcache is going to report a miss and the
subsequent icache lookup is going to report a hit. Given the invariant -
caches under the same controller keep track of disjoint sets of cache blocks,
we can move the icache lookup before the dcache lookup. In case of a hit in
the icache, using our invariant, we know that the dcache would have reported
a miss. In case of a miss in the icache, we know that icache would have
missed even if the dcache was looked up before looking up the icache.
Effectively, we are doing the same thing as before, though in the common case,
we expect reduction in the number of lookups. This was empirically confirmed
for MOESI hammer. The ratio lookups to access requests is now about 1.1 to 1.
The TBE pointer in the MESI CMP implementation was not being set to NULL
when the TBE is deallocated. This resulted in segmentation fault on testing
the protocol when the ProtocolTrace was switched on.
By stalling and waiting the mandatory queue instead of recycling it, one can
ensure that no incoming messages are starved when the mandatory queue puts
signficant of pressure on the L1 cache controller (i.e. the ruby memtester).
--HG--
rename : src/mem/slicc/ast/WakeUpDependentsStatementAST.py => src/mem/slicc/ast/WakeUpAllDependentsStatementAST.py
The purpose of this patch is to change the way CacheMemory interfaces with
coherence protocols. Currently, whenever a cache controller (defined in the
protocol under consideration) needs to carry out any operation on a cache
block, it looks up the tag hash map and figures out whether or not the block
exists in the cache. In case it does exist, the operation is carried out
(which requires another lookup). As observed through profiling of different
protocols, multiple such lookups take place for a given cache block. It was
noted that the tag lookup takes anything from 10% to 20% of the simulation
time. In order to reduce this time, this patch is being posted.
I have to acknowledge that the many of the thoughts that went in to this
patch belong to Brad.
Changes to CacheMemory, TBETable and AbstractCacheEntry classes:
1. The lookup function belonging to CacheMemory class now returns a pointer
to a cache block entry, instead of a reference. The pointer is NULL in case
the block being looked up is not present in the cache. Similar change has
been carried out in the lookup function of the TBETable class.
2. Function for setting and getting access permission of a cache block have
been moved from CacheMemory class to AbstractCacheEntry class.
3. The allocate function in CacheMemory class now returns pointer to the
allocated cache entry.
Changes to SLICC:
1. Each action now has implicit variables - cache_entry and tbe. cache_entry,
if != NULL, must point to the cache entry for the address on which the action
is being carried out. Similarly, tbe should also point to the transaction
buffer entry of the address on which the action is being carried out.
2. If a cache entry or a transaction buffer entry is passed on as an
argument to a function, it is presumed that a pointer is being passed on.
3. The cache entry and the tbe pointers received __implicitly__ by the
actions, are passed __explicitly__ to the trigger function.
4. While performing an action, set/unset_cache_entry, set/unset_tbe are to
be used for setting / unsetting cache entry and tbe pointers respectively.
5. is_valid() and is_invalid() has been made available for testing whether
a given pointer 'is not NULL' and 'is NULL' respectively.
6. Local variables are now available, but they are assumed to be pointers
always.
7. It is now possible for an object of the derieved class to make calls to
a function defined in the interface.
8. An OOD token has been introduced in SLICC. It is same as the NULL token
used in C/C++. If you are wondering, OOD stands for Out Of Domain.
9. static_cast can now taken an optional parameter that asks for casting the
given variable to a pointer of the given type.
10. Functions can be annotated with 'return_by_pointer=yes' to return a
pointer.
11. StateMachine has two new variables, EntryType and TBEType. EntryType is
set to the type which inherits from 'AbstractCacheEntry'. There can only be
one such type in the machine. TBEType is set to the type for which 'TBE' is
used as the name.
All the protocols have been modified to conform with the new interface.
This patch changes the manner in which data is copied from L1 to L2 cache in
the implementation of the Hammer's cache coherence protocol. Earlier, data was
copied directly from one cache entry to another. This has been broken in to
two parts. First, the data is copied from the source cache entry to a
transaction buffer entry. Then, data is copied from the transaction buffer
entry to the destination cache entry.
This has been done to maintain the invariant - at any given instant, multiple
caches under a controller are exclusive with respect to each other.
This patch allows messages to be stalled in their input buffers and wait
until a corresponding address changes state. In order to make this work,
all in_ports must be ranked in order of dependence and those in_ports that
may unblock an address, must wake up the stalled messages. Alot of this
complexity is handled in slicc and the specification files simply
annotate the in_ports.
--HG--
rename : src/mem/slicc/ast/CheckAllocateStatementAST.py => src/mem/slicc/ast/StallAndWaitStatementAST.py
rename : src/mem/slicc/ast/CheckAllocateStatementAST.py => src/mem/slicc/ast/WakeUpDependentsStatementAST.py
Patch allows each individual message buffer to have different recycle latencies
and allows the overall recycle latency to be specified at the cmd line. The
patch also adds profiling info to make sure no one processor's requests are
recycled too much.
This patch allows one to disable migratory sharing for those cache blocks that
are accessed by atomic requests. While the implementations are different
between the token and hammer protocols, the motivation is the same. For
Alpha, LLSC semantics expect that normal loads do not unlock cache blocks that
have been locked by LL accesses. Therefore, locked blocks should not transfer
write permissions when responding to these load requests. Instead, only they
only transfer read permissions so that the subsequent SC access can possibly
succeed.
This patch fixes several bugs related to previous inconsistent assumptions on
how many tokens the Owner had. Mike Marty should have fixes these bugs years
ago. :)
Previously, the MOESI_hammer protocol calculated the same latency for L1 and
L2 hits. This was because the protocol was written using the old ruby
assumption that L1 hits used the sequencer fast path. Since ruby no longer
uses the fast-path, the protocol delays L2 hits by placing them on the
trigger queue.
The previous slower ruby latencies created a mismatch between the faster M5
cpu models and the much slower ruby memory system. Specifically smp
interrupts were much slower and infrequent, as well as cpus moving in and out
of spin locks. The result was many cpus were idle for large periods of time.
These changes fix the latency mismatch.
This patch adds back to ruby the capability to understand the response time
for messages that hit in different levels of the cache heirarchy.
Specifically add support for the MI_example, MOESI_hammer, and MOESI_CMP_token
protocols.
In addition to obvious changes, this required a slight change to the slicc
grammar to allow types with :: in them. Otherwise slicc barfs on std::string
which we need for the headers that slicc generates.
This patch includes the necessary regression updates to test the new ruby
configuration system. The patch includes support for multiple ruby protocols
and adds the ruby random tester. The patch removes atomic mode test for
ruby since ruby does not support atomic mode acceses. These tests can be
added back in when ruby supports atomic mode for real.
--HG--
rename : tests/quick/50.memtest/test.py => tests/quick/60.rubytest/test.py
Renamed the MESI directory file to be consistent with all other protocols.
--HG--
rename : src/mem/protocol/MESI_CMP_directory-mem.sm => src/mem/protocol/MESI_CMP_directory-dir.sm
Reorganized ruby python configuration so that protocol and ruby memory system
configuration code can be shared by multiple front-end configuration files
(i.e. memory tester, full system, and hopefully the regression tester). This
code works for memory tester, but have not tested fs mode.
This patch includes the necessary changes to connect ruby objects using
the python configuration system. Mainly it consists of removing
unnecessary ruby object pointers and connecting the necessary object
pointers using the generated param objects. This patch includes the
slicc changes necessary to connect generated ruby objects together using
the python configuraiton system.
This patch changes the way that Ruby handles atomic RMW instructions. This implementation, unlike the prior one, is protocol independent. It works by locking an address from the sequencer immediately after the read portion of an RMW completes. When that address is locked, the coherence controller will only satisfy requests coming from one port (e.g., the mandatory queue) and will ignore all others. After the write portion completed, the line is unlocked. This should also work with multi-line atomics, as long as the blocks are always acquired in the same order.
Right now .cc and .hh files are handled separately, but then
they're just munged together at the end by scons, so it
doesn't buy us anything. Might as well munge from the start
since we'll eventually be adding generated Python files
to the list too.
This is simply a translation of the C++ slicc into python with very minimal
reorganization of the code. The output can be verified as nearly identical
by doing a "diff -wBur".
Slicc can easily be run manually by using util/slicc
This changeset contains a lot of different changes that are too
mingled to separate. They are:
1. Added MOESI_CMP_directory
I made the changes necessary to bring back MOESI_CMP_directory,
including adding a DMA controller. I got rid of MOESI_CMP_directory_m
and made MOESI_CMP_directory use a memory controller. Added a new
configuration for two level protocols in general, and
MOESI_CMP_directory in particular.
2. DMA Sequencer uses a generic SequencerMsg
I will eventually make the cache Sequencer use this type as well. It
doesn't contain an offset field, just a physical address and a length.
MI_example has been updated to deal with this.
3. Parameterized Controllers
SLICC controllers can now take custom parameters to use for mapping,
latencies, etc. Currently, only int parameters are supported.
Caches are now responsible for their own statistic gathering. This
requires a direct callback from the protocol on misses, and so all
future protocols need to take this into account.
The DMASequencer was still using a parameter from the old RubyConfig,
causing an offset error when the requested data wasn't block aligned.
This changeset also includes a fix to MI_example for a similar bug.
This was done with an automated process, so there could be things that were
done in this tree in the past that didn't make it. One known regression
is that atomic memory operations do not seem to work properly anymore.
Add the PROTOCOL sticky option sets the coherence protocol that slicc
will parse and therefore ruby will use. This whole process was made
difficult by the fact that the set of files that are output by slicc
are not easily known ahead of time. The easiest thing wound up being
to write a parser for slicc that would tell me. Incidentally this
means we now have a slicc grammar written in python.
1) Removing files from the ruby build left some unresovled
symbols. Those have been fixed.
2) Most of the dependencies on Simics data types and the simics
interface files have been removed.
3) Almost all mention of opal is gone.
4) Huge chunks of LogTM are now gone.
5) Handling 1-4 left ~hundreds of unresolved references, which were
fixed, yielding a snowball effect (and the massive size of this
delta).