The new implementation uses metaclass, and gives a lot more precise control
with a lot less verbosity. The flags/no flags reg/imm variants are all handled
by the same python class now which supplies a constructor to the right C++
class based on context.
--HG--
extra : convert_revision : 712e3ec6de7a5a038da083f79635fd7a687d56e5
src/arch/x86/isa/macroop.isa:
Make microOp vs microop and macroOp vs macroop capitilization consistent. Also fill out the emulation environment handling a little more, and use an object to pass around output code.
src/arch/x86/isa/microops/base.isa:
Make microOp vs microop and macroOp vs macroop capitilization consistent. Also adjust python to C++ bool translation.
--HG--
extra : convert_revision : 6f4bacfa334c42732c845f9a7f211cbefc73f96f
1. Microops are created. These are StaticInsts use templates to provide a basic form of polymorphism without having to make the microassembler smarter.
2. An instruction class is created which has a "templated" microcode program as it's docstring. The template parameters are refernced with ^ following by a number.
3. An instruction in the decoder references an instruction template using it's mnemonic. The parameters to it's format end up replacing the placeholders. These parameters describe a source for an operand which could be memory, a register, or an immediate. It it's a register, the register index is used. If it's memory, eventually a load/store will be pre/postpended to the instruction template and it's destination register will be used in place of the ^. If it's an immediate, the immediate is used. Some operand types, specifically those that come from the ModRM byte, need to be decoded further into memory vs. register versions. This is accomplished by making the decode_block text for these instructions another case statement based off ModRM.
4. Once all of the template parameters have been handled, the instruction goes throw the microcode assembler which resolves labels and creates a list of python op objects. If an operand is a register, it uses a % prefix, an immediate uses $, and a label uses @. If the operand is just letters, numbers, and underscores, it can appear immediately after the prefix. If it's not, it can be encolsed in non nested {}s.
5. If there is a single "op" object (which corresponds to a single microop) the decoder is set up to return it directly. If not, a macroop wrapper is created around it.
In the future, I'm considering seperating the operand type specialization from the template substitution step. A problem this introduces is that either the template arguments need to be kept around for the specialization step, or they need to be re-extracted. Re-extraction might be the way to go so that the operand formats can be coded directly into the micro assembler template without having to pass them in as parameters. I don't know if that's actually useful, though.
src/arch/x86/isa/decoder/one_byte_opcodes.isa:
src/arch/x86/isa/microasm.isa:
src/arch/x86/isa/microops/microops.isa:
src/arch/x86/isa/operands.isa:
src/arch/x86/isa/microops/base.isa:
Implemented polymorphic microops and changed around the microcode assembler syntax.
--HG--
extra : convert_revision : e341f7b8ea9350a31e586a3d33250137e5954f43