Small fix for a warning that prevents compilation with gcc 4.8.1 due
to detecting that a variable might be uninitialised. The fix is to
assign a safe default.
The global synchronization event used to be scheduled at
simQuantum. This prevented repeated entries into gem5 from Python as
it can be scheduled in the past. This changeset ensures that the first
global synchronization happens at curTick() + simQuantum instead.
The TSL/LDT & TR/TSS segments didn't contain valid attributes. This
caused problems when transfering the state into KVM where invalid
state is a no-go. Fixup the attributes with values from AMD's
architecture programmer's manual.
When transferring segment registers into kvm, we need to find the
value of the unusable bit. We used to assume that this could be
inferred from the selector since segments are generally unusable if
their selector is 0. This assumption breaks in some weird corner
cases. Instead, we just assume that segments are always usable. This
is what qemu does so it should work.
Signal handlers in KVM are controlled per thread and should be
initialized from the thread that is going to execute the CPU. This
changeset moves the initialization call from startup() to
startupThread().
A copyRegs() function is added to MIPS utilities
to copy architectural state from the old CPU to
the new CPU during fast-forwarding. This
addition alone enables fast-forwarding for the
o3 cpu model running MIPS.
The patch also adds takeOverFrom() and
drainResume() functions to the InOrderCPU to
enable it to take over from another CPU. This
change enables fast-forwarding for the inorder
cpu model running MIPS, but not for Alpha.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
Couple of users observed segmentation fault when the simulator tries to
register the statistical variable m_IncompleteTimes. It seems that there
is some problem with the initialization of these variables when allocated
in the constructor.
Currently, the interrupt controller in x86 is connected to the io bus
directly. Therefore the packets between the io devices and the interrupt
controller do not go through ruby. This patch changes ruby port so that
these packets arrive at the ruby port first, which then routes them to their
destination. Note that the patch does not make these packets go through the
ruby network. That would happen in a subsequent patch.
This patch simplfies the retry logic in the RubyPort, avoiding
redundant attributes, and enforcing more stringent checks on the
interactions with the normal ports. The patch also simplifies the
routing done by the RubyPort, using the port identifiers instead of a
heavy-weight sender state.
The patch also fixes a bug in the sending of responses from PIO
ports. Previously these responses bypassed the queue in the queued
port, and ignored the return value, potentially leading to response
packets being lost.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
Code in two of the functions was exactly the same. This patch moves
this code to a new function which is called from the two functions
mentioned initially.
At several places, there are functions that take a cycle value as input
and performs some computation. Along with each such function, another
function was being defined that simply added one more cycle to input and
computed the same function. This patch removes this second copy of the
function. Places where these functions were being called have been updated
to use the original function with argument being current cycle + 1.
Two files had been incorrectly named with a .cache suffix.
--HG--
rename : src/mem/protocol/MESI_Three_Level-L0.cache => src/mem/protocol/MESI_Three_Level-L0cache.sm
rename : src/mem/protocol/MESI_Three_Level-L1.cache => src/mem/protocol/MESI_Three_Level-L1cache.sm
The introduction of parallel event queues added most of the support
needed to run multiple VMs (systems) within the same gem5
instance. This changeset fixes up signal delivery so that KVM's
control signals are delivered to the thread that executes the CPU's
event queue. Specifically:
* Timers and counters are now initialized from a separate method
(startupThread) that is scheduled as the first event in the
thread-specific event queue. This ensures that they are
initialized from the thread that is going to execute the CPUs
event queue and enables signal delivery to the right thread when
exiting from KVM.
* The POSIX-timer-based KVM timer (used to force exits from KVM) has
been updated to deliver signals to the thread that's executing KVM
instead of the process (thread is undefined in that case). This
assumes that the timer is instantiated from the thread that is
going to execute the KVM vCPU.
* Signal masking is now done using pthread_sigmask instead of
sigprocmask. The behavior of the latter is undefined in threaded
applications.
* Since signal masks can be inherited, make sure to actively unmask
the control signals when setting up the KVM signal mask.
There are currently no facilities to multiplex between multiple KVM
CPUs in the same event queue, we are therefore limited to
configurations where there is only one KVM CPU per event queue. In
practice, this means that multi-system configurations can be
simulated, but not multiple CPUs in a shared-memory configuration.
This patch fixes a bug in how physical memory used to be mapped and
unmapped. Previously we unmapped and re-mapped if restoring from a
checkpoint. However, we never checked that the new mapping was
actually the same, it was just magically working as the OS seems to
fairly reliably give us the same chunk back. This patch fixes this
issue by relying entirely on the mmap call in the constructor.
This patch enbles use of the basic PIO devices as part of the NULL
build. Although it might seem counter intuitive to have a PIO device
without being able to execute a driver, this change enables us to
break a device class hierarchy into an ISA-agnostic part, and an
ISA-specific part, without requiring multiple-inheritance. The
ISA-agnostic base class is a PIO device, but does not make use of the
port.
This patch adds a filter to the cache to drop snoop requests that are
not for a range covered by the cache. This fixes an issue observed
when multiple caches are placed in parallel, covering different
address ranges. Without this patch, all the caches will forward the
snoop upwards, when only one should do so.
This patch adds DRAMSim2 as a memory controller by wrapping the
external library and creating a sublass of AbstractMemory that bridges
between the semantics of gem5 and the DRAMSim2 interface.
The DRAMSim2 wrapper extracts the clock period from the config
file. There is no way of extracting this information from DRAMSim2
itself, so we simply read the same config file and get it from there.
To properly model the response queue, the wrapper keeps track of how
many transactions are in the actual controller, and how many are
stacking up waiting to be sent back as responses (in the wrapper). The
latter requires us to move away from the queued port and manage the
packets ourselves. This is due to DRAMSim2 not having any flow control
on the response path.
DRAMSim2 assumes that the transactions it is given are matching the
burst size of the choosen memory. The wrapper checks to ensure the
cache line size of the system matches the burst size of DRAMSim2 as
there are currently no provisions to split the system requests. In
theory we could allow a cache line size smaller than the burst size,
but that would lead to inefficient use of the DRAM, so for not we
fatal also in this case.
This changesets adds branch predictor support to the
BaseSimpleCPU. The simple CPUs normally don't need a branch predictor,
however, there are at least two cases where it can be desirable:
1) A simple CPU can be used to warm the branch predictor of an O3
CPU before switching to the slower O3 model.
2) The simple CPU can be used as a quick way of evaluating/debugging
new branch predictors since it exposes branch predictor
statistics.
Limitations:
* Since the simple CPU doesn't speculate, only one instruction will
be active in the branch predictor at a time (i.e., the branch
predictor will never see speculative branches).
* The outcome of a branch prediction does not affect the performance
of the simple CPU.
Currently fatal() ends the simulation in a normal fashion. This results in
the call stack getting lost when using a debugger and it is not always
possible to debug the simulation just from the information provided by the
printed error message. Even though the error is likely due to a user's fault,
the information available should not be thrown away. Hence, this patch to
call abort() from fatal().
Changeset 7274310be1bb (isa: clean up register constants) increased
the value of NumFloatRegs, which triggered a bug in
X86ISA::copyRegs(). This bug is caused by the x87 stack being copied
twice since register indexes past NUM_FLOATREGS are mapped into the
x87 stack relative to the top of the stack, which is undefined when
the copy takes place.
This changeset updates the copyRegs() function to use access registers
using the non-flattening interface, which guarantees that undesirable
register folding does not happen.
The getRFlags and setRFlags utility functions were not updated
correctly when condition registers were separated into their own
register class. This lead to incorrect state transfer in calls from
kvm into the simulator (e.g., m5 readfile ended up in an infinite
loop) and when switching CPUs. This patch makes these utility
functions use getCCReg and setCCReg instead of getIntReg and setIntReg
which read and write the integer registers.
Reviewed-by: Andreas Sandberg <andreas@sandberg.pp.se>
Forces the prefetcher to mispredict twice in a row before resetting the
confidence of prefetching. This helps cases where a load PC strides by a
constant factor, however it may operate on different arrays at times.
Avoids the cost of retraining. Primarily helps with small iteration loops.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
For systems with a tightly coupled L2, a stride-based prefetcher may observe
access requests from both instruction and data L1 caches. However, the PC
address of an instruction miss gives no relevant training information to the
stride based prefetcher(there is no stride to train). In theses cases, its
better if the L2 stride prefetcher simply reverted back to a simple N-block
ahead prefetcher. This patch enables this option.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
This patch extends the classic prefetcher to work on non-block aligned
addresses. Because the existing prefetchers in gem5 mask off the lower
address bits of cache accesses, many predictable strides fail to be
detected. For example, if a load were to stride by 48 bytes, with 64 byte
cachelines, the current stride based prefetcher would see an access pattern
of 0, 64, 64, 128, 192.... Thus not detecting a constant stride pattern. This
patch fixes this, by training the prefetcher on access and not masking off the
lower address bits.
It also adds the following configuration options:
1) Training/prefetching only on cache misses,
2) Training/prefetching only on data acceses,
3) Optionally tagging prefetches with a PC address.
#3 allows prefetchers to train off of prefetch requests in systems with
multiple cache levels and PC-based prefetchers present at multiple levels.
It also effectively allows a pipelining of prefetch requests (like in POWER4)
across multiple levels of cache hierarchy.
Improves performance on my gem5 configuration by 4.3% for SPECINT and 4.7% for SPECFP (geomean).
gem5 makes the incorrect assumption that by binding a socket, it
effectively has allocated a port. Linux only allocates ports once you call
listen on the given socket, not when you call bind. So even if the port was
free when bind was called, another process (gem5 instance) could race in
between the bind & listen calls and steal the port. In the current code, if
the call to bind fails due to the port being in use (EADDRINUSE), gem5 retries
for a different port. However if listen fails, gem5 just panics. The fix is
testing the return value of listen and re-trying if it was due to EADDRINUSE.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
The patch
(1) removes the redundant writeback argument from findVictim()
(2) fixes the description of access() function
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
Note: AArch64 and AArch32 interworking is not supported. If you use an AArch64
kernel you are restricted to AArch64 user-mode binaries. This will be addressed
in a later patch.
Note: Virtualization is only supported in AArch32 mode. This will also be fixed
in a later patch.
Contributors:
Giacomo Gabrielli (TrustZone, LPAE, system-level AArch64, AArch64 NEON, validation)
Thomas Grocutt (AArch32 Virtualization, AArch64 FP, validation)
Mbou Eyole (AArch64 NEON, validation)
Ali Saidi (AArch64 Linux support, code integration, validation)
Edmund Grimley-Evans (AArch64 FP)
William Wang (AArch64 Linux support)
Rene De Jong (AArch64 Linux support, performance opt.)
Matt Horsnell (AArch64 MP, validation)
Matt Evans (device models, code integration, validation)
Chris Adeniyi-Jones (AArch64 syscall-emulation)
Prakash Ramrakhyani (validation)
Dam Sunwoo (validation)
Chander Sudanthi (validation)
Stephan Diestelhorst (validation)
Andreas Hansson (code integration, performance opt.)
Eric Van Hensbergen (performance opt.)
Gabe Black
The CheckerCPU model in pre-v8 code was not checking the
updates to miscellaneous registers due to some methods
for setting misc regs were not instrumented. The v8 patches
exposed this by calling the instrumented misc reg update
methods and then invoking the checker before the main CPU had
updated its misc regs, leading to false positives about
register mismatches. This patch fixes the non-instrumented
misc reg update methods and places calls to the checker in
the proper places in the O3 model.
With ARMv8 support the same misc register id results in accessing different
registers depending on the current mode of the processor. This patch adds
the same orthogonality to the misc register file as the others (int, float, cc).
For all the othre ISAs this is currently a null-implementation.
Additionally, a system variable is added to all the ISA objects.
This patch add support for generating wake-up events in the CPU when an address
that is currently in the exclusive state is hit by a snoop. This mechanism is required
for ARMv8 multi-processor support.
Previously we were casting the result type to the the memory type which
is incorrect for things like dual-memory operations which still return a
single result.
Adds very basic statistics on the number of tag and data accesses within the
cache, which is important for power modelling. For the tags, simply count
the associativity of the cache each time. For the data, this depends on
whether tags and data are accessed sequentially, which is given by a new
parameter. In the parallel case, all data blocks are accessed each time, but
with sequential accesses, a single data block is accessed only on a hit.
This patch enables tracking of cache occupancy per thread along with
ages (in buckets) per cache blocks. Cache occupancy stats are
recalculated on each stat dump.
The probe patch is motivated by the desire to move analytical and trace code
away from functional code. This is achieved by the probe interface which is
essentially a glorified observer model.
What this means to users:
* add a probe point and a "notify" call at the source of an "event"
* add an isolated module, that is being used to carry out *your* analysis (e.g. generate a trace)
* register that module as a probe listener
Note: an example is given for reference in src/cpu/o3/simple_trace.[hh|cc] and src/cpu/SimpleTrace.py
What is happening under the hood:
* every SimObject maintains has a ProbeManager.
* during initialization (src/python/m5/simulate.py) first regProbePoints and
the regProbeListeners is called on each SimObject. this hooks up the probe
point notify calls with the listeners.
FAQs:
Why did you develop probe points:
* to remove trace, stats gathering, analytical code out of the functional code.
* the belief that probes could be generically useful.
What is a probe point:
* a probe point is used to notify upon a given event (e.g. cpu commits an instruction)
What is a probe listener:
* a class that handles whatever the user wishes to do when they are notified
about an event.
What can be passed on notify:
* probe points are templates, and so the user can generate probes that pass any
type of argument (by const reference) to a listener.
What relationships can be generated (1:1, 1:N, N:M etc):
* there isn't a restriction. You can hook probe points and listeners up in a
1:1, 1:N, N:M relationship. They become useful when a number of modules
listen to the same probe points. The idea being that you can add a small
number of probes into the source code and develop a larger number of useful
analysis modules that use information passed by the probes.
Can you give examples:
* adding a probe point to the cpu's commit method allows you to build a trace
module (outputting assembler), you could re-use this to gather instruction
distribution (arithmetic, load/store, conditional, control flow) stats.
Why is the probe interface currently restricted to passing a const reference:
* the desire, initially at least, is to allow an interface to observe
functionality, but not to change functionality.
* of course this can be subverted by const-casting.
What is the performance impact of adding probes:
* when nothing is actively listening to the probes they should have a
relatively minor impact. Profiling has suggested even with a large number of
probes (60) the impact of them (when not active) is very minimal (<1%).
This patch adds observability to the clock period of the clock domains
by including it as a stat.
As a result of adding this, the regressions will be updated in a
separate patch.
Add some values and methods to the request object to track the translation
and access latency for a request and which level of the cache hierarchy responded
to the request.
This patch makes the Clock a TickParamValue just like
Latency/Frequency. There is no longer any need to distinguish it
(originally needed to support multiplication).
This patch fixes a memory leak in the table walker, by ensuring that
the sender state is deleted again if the request packet cannot be
successfully sent.
This patch relaxes the check performed when squashing non-speculative
instructions, as it caused problems with loads that were marked ready,
and then stalled on a blocked cache. The assertion is now allowing
memory references to be non-faulting.
This patch removes an assertion in the simpoint profiling code that
asserts that a previously-seen basic block has the exact same number
of instructions executed as before. This can be false if the basic
block generates aborts or takes interrupts at different locations
within the basic block. The basic block profiling are not affected
significantly as these events are rare in general.
This patch adds a function to the HistStor class for adding two histograms.
This functionality is required for Ruby. It also adds support for printing
histograms in a single line.
The first two levels (L0, L1) are private to the core, the third level (L2)is
possibly shared. The protocol supports clustered designs. For example, one
can have two sets of two cores. Each core has an L0 and L1 cache. There are
two L2 controllers where each set accesses only one of the L2 controllers.
A cluster over here means a set of controllers that can be accessed only by a
certain set of cores. For example, consider a two level hierarchy. Assume
there are 4 L1 controllers (private) and 2 L2 controllers. We can have two
different hierarchies here:
a. the address space is partitioned between the two L2 controllers. Each L1
controller accesses both the L2 controllers. In this case, each L1 controller
is a cluster initself.
b. both the L2 controllers can cache any address. An L1 controller has access
to only one of the L2 controllers. In this case, each L2 controller
along with the L1 controllers that access it, form a cluster.
This patch allows for each controller to have a cluster ID, which is 0 by
default. By setting the cluster ID properly, one can instantiate hierarchies
with clusters. Note that the coherence protocol might have to be changed as
well.
If you successfully export a C++ SimObject method, but try to
invoke it from Python before the C++ object is created, you
get a confusing error that says the attribute does not exist,
making you question whether you successfully exported the
method at all. In reality, your only problem is that you're
calling the method too soon. This patch enhances the error
message to give you a better clue.
Updating the SimObject topology of a cloned hierarchy is a little
dangerous, in that cloning is a "deep copy" and the clone does not
inherit SimObject updates the same way it would inherit scalar
variable assignments.
However, because of various SimObject-valued proxy parameters,
like 'memories', 'clk_domain', and 'system', it turns out that
there are a number of implicit topology changes that happen at
instantiation, which means that these changes are impossible to
avoid. So in order to make cloning systems useful, this error
has to go. Changing it to a warning produces a lot of noise,
so it seems best just to delete it.
This patch provides support for DFS by having ClockedObjects register
themselves with their clock domain at construction time in a member list.
Using this list, a clock domain can update each member's tick to the
curTick() before modifying the clock period.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
In mips architecture, floating point convert instructions use the
FloatConvertOp format defined in src/arch/mips/isa/formats/fp.isa. The type
of the operands in the ISA description file (_sw for signed word, or _sf for
signed float, etc.) is used to create a type for the operand in C++. Then the
operand is converted using the fpConvert() function in src/arch/mips/utility.cc.
If we are converting from a word to a float, and we want to convert 0xffffffff,
we expect -1 to be passed into fpConvert(). Instead, we see MAX_INT passed in.
Then fpConvert() converts _val_ to MAX_INT in single-precision floating point,
and we get the wrong value.
To fix it, the signs of the convert operands are being changed from unsigned to
signed in the MIPS ISA description.
Then, the FloatConvertOp format is being changed to insert a int32_t into the
C++ code instead of a uint32_t.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
This patch fixes couple of bugs in the L2 controller of the mesi cmp
directory protocol.
1. The state MT_I was transitioning to NP on receiving a clean writeback
from the L1 controller. This patch makes it inform the directory controller
about the writeback.
2. The L2 controller was sending the dirty bit to the L1 controller and the
L2 controller used writeback from the L1 controller to update the dirty bit
unconditionally. Now, the L1 controller always assumes that the incoming
data is clean. The L2 controller updates the dirty bit only when the L1
controller writes to the block.
3. Certain unused functions and events are being removed.
This patch replaces max_in_port_rank with the number of inports. The use of
max_in_port_rank was causing spurious re-builds and incorrect initialization
of variables in ruby related regression tests. This was due to the variable
value being used across threads while compiling when it was not meant to be.
Since the number of inports is state machine specific value, this problem
should get solved.
The directory controller should not have the sharer field since there is
only one level 2 cache. Anyway the field was not in use. The owner field
was being used to track the l2 cache version (in case of distributed l2) that
has the cache block under consideration. The information is not required
since the version of the level 2 cache can be obtained from a subset of the
address bits.
Currently statistics are reset after the initial / checkpoint state
has been loaded. But ruby does some checkpoint processing in its
startup() function. So the stats need to be reset after the startup()
function has been called. This patch moves the class to stats.reset()
to achieve this change in functionality.
There is a race between enabling asynchronous IO for a file descriptor
and IO events happening on that descriptor. A SIGIO won't normally be
delivered if an event is pending when asynchronous IO is
enabled. Instead, the signal will be raised the next time there is an
event on the FD. This changeset simulates a SIGIO by setting the
async_io flag when setting up asynchronous IO for an FD. This causes
the main event loop to poll all file descriptors to check for pending
IO. As a consequence of this, the old SIGALRM hack should no longer be
needed and is therefore removed.
The PollEvent class dynamically installs a SIGIO and SIGALRM handler
when a file handler is registered. Most signal handlers currently get
registered in the initSignals() function. This changeset moves the
SIGIO/SIGALRM handlers to initSignals() to live with the other signal
handlers. The original code installs SIGIO and SIGALRM with the
SA_RESTART option to prevent syscalls from returning EINTR. This
changeset consistently uses this flag for all signal handlers to
ensure that other signals that trigger asynchronous behavior (e.g.,
statistics dumping) do not cause undesirable EINTR returns.
The performance counting framework in Linux 3.2 and onwards supports
an attribute to exclude events generated by the host when running
KVM. Setting this attribute allows us to get more reliable
measurements of the guest machine. For example, on a highly loaded
system, the instruction counts from the guest can be severely
distorted by the host kernel (e.g., by page fault handlers).
This changeset introduces a check for the attribute and enables it in
the KVM CPU if present.
This patch adds support for simulating with multiple threads, each of
which operates on an event queue. Each sim object specifies which eventq
is would like to be on. A custom barrier implementation is being added
using which eventqs synchronize.
The patch was tested in two different configurations:
1. ruby_network_test.py: in this simulation L1 cache controllers receive
requests from the cpu. The requests are replied to immediately without
any communication taking place with any other level.
2. twosys-tsunami-simple-atomic: this configuration simulates a client-server
system which are connected by an ethernet link.
We still lack the ability to communicate using message buffers or ports. But
other things like simulation start and end, synchronizing after every quantum
are working.
Committed by: Nilay Vaish
the current implementation of the fetch buffer in the o3 cpu
is only allowed to be the size of a cache line. some
architectures, e.g., ARM, have fetch buffers smaller than a cache
line, see slide 22 at:
http://www.arm.com/files/pdf/at-exploring_the_design_of_the_cortex-a15.pdf
this patch allows the fetch buffer to be set to values smaller
than a cache line.
This patch fixes an issue in the checker CPU register indexing. The
code will not even compile using LTO as deep inlining causes the used
index to be outside the array bounds.
The output from the switcheroo tests is voluminous and
(because it includes timestamps) highly sensitive to
minor changes, leading to extremely large updates to the
reference outputs. This patch addresses this problem
by suppressing output from the tests. An internal
parameter can be set to enable the output. Wiring that
up to a command-line flag (perhaps even the rudimantary
-v/-q options in m5/main.py) is left for future work.
This patch fixes a number of stats accounting issues in the DRAM
controller. Most importantly, it separates the system interface and
DRAM interface so that it is clearer what the actual DRAM bandwidth
(and consequently utilisation) is.
This patch unifies the request selection across read and write queues
for FR-FCFS scheduling policy. It also fixes the request selection
code to prioritize the row hits present in the request queues over the
selection based on earliest bank availability.
This patch adds a basic adaptive version of the open-page policy that
guides the decision to keep open or close by looking at the contents
of the controller queues. If no row hits are found, and bank conflicts
are present, then the row is closed by means of an auto
precharge. This is a well-known technique that should improve
performance in most use-cases.
This patch removes the untimed while loop in the write scheduling
mechanism and now schedule commands taking into account the minimum
timing constraint. It also introduces an optimization to track write
queue size and switch from writes to reads if the number of write
requests fall below write low threshold.
This patch adds the tRRD parameter to the DRAM controller. With the
recent addition of the actAllowedAt member for each bank, this
addition is trivial.
This patch changes the tXAW constraint so that it is enforced per rank
rather than globally for all ranks in the channel. It also avoids
using the bank freeAt to enforce the activation limit, as doing so
also precludes performing any column or row command to the
DRAM. Instead the patch introduces a new variable actAllowedAt for the
banks and use this to track when a potential activation can occur.
This patch fixes the controller when a write threshold of 100% is
used. Earlier for 100% write threshold no data is written to memory
as writes never get triggered since this corner case is not
considered.
This patch changes the FCFS bit of FR-FCFS such that requests that
target the earliest available bank are picked first (as suggested in
the original work on FR-FCFS by Rixner et al). To accommodate this we
add functionality to identify a bank through a one-dimensional
identifier (bank id). The member names of the DRAMPacket are also
update to match the style guide.
This patch changes the time the controller is woken up to take the
next scheduling decisions. tRAS is now handled in estimateLatency and
doDRAMAccess and we do not need to worry about it at scheduling
time. The earliest we need to wake up is to do a pre-charge, row
access and column access before the bus becomes free for use.
This patch adds an explicit tRAS parameter to the DRAM controller
model. Previously tRAS was, rather conservatively, assumed to be tRCD
+ tCL + tRP. The default values for tRAS are chosen to match the
previous behaviour and will be updated later.
This patch changes the name the command-line options related to debug
output to all start with "debug" rather than being a mix of that and
"trace". It also makes it clear that the breakpoint time is specified
in ticks and not in cycles.
Thumb2 ARM kernels may access the TEEHBR via thumbee_notifier
in arch/arm/kernel/thumbee.c. The Linux kernel code just seems
to be saving and restoring the register. This patch adds support
for the TEEHBR cp14 register. Note, this may be a special case
when restoring from an image that was run on a system that
supports ThumbEE.
The VE motherboard provides a set of system control registers through which
various motherboard and coretile registers are accessed. Voltage regulators and
oscillator (DLL/PLL) config are examples. These registers must be impleted to
boot Linux 3.9+ kernels.
Newer linux kernels and distros exercise more functionality in the IDE device
than previously, exposing 2 races. The first race is the handling of aborted
DMA commands would immediately report the device is ready back to the kernel
and cause already in flight commands to assert the simulator when they returned
and discovered an inconsitent device state. The second race was due to the
Status register not being handled correctly, the interrupt status bit would get
stuck at 1 and the driver eventually views this as a bad state and logs the
condition to the terminal. This patch fixes these two conditions by making the
device handle aborted commands gracefully and properly handles clearing the
interrupt status bit in the Status register.
SimObjectVector objects did not provide the same interface to
the _parent attribute through get_parent() like a normal
SimObject. It also handled assigning a _parent incorrectly
if objects in a SimObjectVector were changed post-creation,
leading to errors later when the simulator tried to execute.
This patch fixes these two omissions.
SimLoopExitEvents weren't serialized by default. Some benchmarks
utilize a delayed m5 exit pseudo op call to terminate the simulation
and this event was lost when resuming from a checkpoint generated
after the pseudo op call. This patch adds the capability to serialize
the SimLoopExitEvents and enable serialization for m5_exit and m5_fail
pseudo ops by default. Does not affect other generic
SimLoopExitEvents.
Fix a problem in the O3 CPU for instructions that are both
memory loads and memory barriers (e.g. load acquire) and
to uncacheable memory. This combination can confuse the
commit stage into commitng an instruction that hasn't
executed and got it's value yet. At the same time refactor
the code slightly to remove duplication between two of
the cases.
This patch adds missing initializations of the SenderMachine field of
out_msg's when thery are created in the L2 cache controller of the
MOESI_CMP_directory coherence protocol. When an out_msg is created and this
field is left uninitialized, it is set to the default value MachineType_NUM.
This causes a panic in the MachineType_to_string function when gem5 is
executed with the Ruby debug flag on and it tries to print the message.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
This patch fixes a problem where in Garnet, the enqueue time in the
VCallocator and the SWallocator which is of type Cycles was being stored
inside a variable with int type.
This lead to a known problem restoring checkpoints with garnet & the fixed
pipeline enabled. That value was really big and didn't fit in the variable
overflowing it, therefore some conditions on the VC allocation stage & the
SW allocation stage were not met and the packets didn't advance through the
network, leading to a deadlock panic right after the checkpoint was restored.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
The CoherentBus eventually got virtual methods for its interface. The
"virtuality" of the CoherentBus, however, comes already from the virtual
interface of the bus' ports. There is no need to add another layer of virtual
functions, here.
The underlying assumption that all PPIs must be edge-triggered is
strained when the architected timers and VGIC interfaces make
level-behaviour observable. For example, a virtual timer interrupt
'goes away' when the hypervisor is entered and the vtimer is disabled;
this requires a PPI to be de-activated.
The new method simply clears the interrupt pending state.
The ethernet address param tries to convert a hexadecimal
string using int() in python, which defaults to base 10,
need to specify base 16 in this case.
SimObjects are expected to only generate one port reference per
port belonging to them. There is a subtle bug with using "not"
here as a VectorPort is seen as not having a reference if it is
either None or empty as per Python docs sec 9.9 for Standard operators.
Intended behavior is to only check if we have not created the reference.
There is an option to enable/disable all framebuffer dumps, but the
last frame always gets dumped in the run folder with no other way to
disable it. These files can add up very quickly running many experiments.
This patch adds an option to disable them. The default behavior
remains unchanged.
LSQSenderState represents the LQ/SQ index using uint8_t, which supports up to
256 entries (including the sentinel entry). Sending packets to memory with a
higher index than 255 truncates the index, such that the response matches the
wrong entry. For instance, this can result in a deadlock if a store completion
does not clear the head entry.
This change fixes an issue in the O3 CPU where an uncachable instruction
is attempted to be executed before it reaches the head of the ROB. It is
determined to be uncacheable, and is replayed, but a PanicFault is attached
to the instruction to make sure that it is properly executed before
committing. If the TLB entry it was using is replaced in the interveaning
time, the TLB returns a delayed translation when the load is replayed at
the head of the ROB, however the LSQ code can't differntiate between the
old fault and the new one. If the translation isn't complete it can't
be faulting, so clear the fault.
This patch changes the ProtoBuf builder such that the generated source
and header is placed in the build directory of the proto file. This
was previously not the case for the directories included as EXTRAS. To
make this work, we also ensure that the build directory for the EXTRAS
are added to the include path (which does not seem to automatically be
the case).
When handling IPR accesses in doMMIOAccess, the KVM CPU used
clockEdge() to convert between cycles and ticks. This is incorrect
since doMMIOAccess is supposed to return a latency in ticks rather
than when the access is done. This changeset fixes this issue by
returning clockPeriod() * ipr_delay instead.
Get rid of non-deterministic "stats" in ruby.stats output
such as time & date of run, elapsed & CPU time used,
and memory usage. These values cause spurious
miscomparisons when looking at output diffs (though
they don't affect regressions, since the regressions
pass/fail status currently ignores ruby.stats entirely).
Most of this information is already captured in other
places (time & date in stdout, elapsed time & mem usage
in stats.txt), where the regression script is smart
enough to filter it out. It seems easier to get rid of
the redundant output rather than teaching the
regression tester to ignore the same information in
two different places.
Convert condition code registers from being specialized
("pseudo") integer registers to using the recently
added CC register class.
Nilay Vaish also contributed to this patch.
Restructured rename map and free list to clean up some
extraneous code and separate out common code that can
be reused across different register classes (int and fp
at this point). Both components now consist of a set
of Simple* objects that are stand-alone rename map &
free list for each class, plus a Unified* object that
presents a unified interface across all register
classes and then redirects accesses to the appropriate
Simple* object as needed.
Moved free list initialization to PhysRegFile to better
isolate knowledge of physical register index mappings
to that class (and remove the need to pass a number
of parameters to the free list constructor).
Causes a small change to these stats:
cpu.rename.int_rename_lookups
cpu.rename.fp_rename_lookups
because they are now categorized on a per-operand basis
rather than a per-instruction basis.
That is, an instruction with mixed fp/int/misc operand
types will have each operand categorized independently,
where previously the lookup was categorized based on
the instruction type.