Remove sparc V8 TBR register from list of registers since it is not part of
sparc V9. This brings the number of registers in sync with what gdb expects
Without this patch gdb complains about receoved packet too long.
with this patch gdb is able to work properly with gem5 for remote debugging.
Note: gdb is version 7.8
Note: gdb is configured with --target=sparc64-sun-solaris2.8
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
The new single stepping implementation for x86 doesn't rely on any ISA
specific properties or functionality. This change pulls out the per ISA
implementation of those functions and promotes the X86 implementation to the
base class.
One drawback of that implementation is that the CPU might stop on an
instruction twice if it's affected by both breakpoints and single stepping.
While that might be a little surprising, it's harmless and would only happen
under somewhat unlikely circumstances.
This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.
All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.
To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.
Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.
--HG--
rename : src/mem/PhysicalMemory.py => src/mem/AbstractMemory.py
rename : src/mem/PhysicalMemory.py => src/mem/SimpleMemory.py
rename : src/mem/physical.cc => src/mem/abstract_mem.cc
rename : src/mem/physical.hh => src/mem/abstract_mem.hh
rename : src/mem/physical.cc => src/mem/simple_mem.cc
rename : src/mem/physical.hh => src/mem/simple_mem.hh
src/arch/alpha/vtophys.cc:
src/arch/alpha/vtophys.hh:
src/arch/sparc/arguments.hh:
move Copy* to vport since it's generic for all the ISAs
src/arch/sparc/isa_traits.hh:
the Solaris kernel sets up a virtual-> real mapping for all memory starting at SegKPMBase
src/arch/sparc/pagetable.hh:
add a class for getting bits out of the TteTag
src/arch/sparc/remote_gdb.cc:
add 32bit support kinda.... If its 32 bit
src/arch/sparc/remote_gdb.hh:
Add 32bit register offsets too.
src/arch/sparc/tlb.cc:
cleanup generation of tsb pointers
src/arch/sparc/tlb.hh:
add function to return tsb pointers for an address
make lookup public so vtophys can use it
src/arch/sparc/vtophys.cc:
src/arch/sparc/vtophys.hh:
write vtophys for sparc
src/base/bitfield.hh:
return a mask of bits first->last
src/mem/vport.cc:
src/mem/vport.hh:
move Copy* here since it's ISA generic
--HG--
extra : convert_revision : c42c331e396c0d51a2789029d8e232fe66995d0f