Brings the CheckerCPU back to life to allow FS and SE checking of the
O3CPU. These changes have only been tested with the ARM ISA. Other
ISAs potentially require modification.
Squashes the subsequent instructions in O3 pipe after the service call, so that
they see the effect of the system call when re-executed. This isn't really an issue
with FS mode, but can show up in SE mode.
--HG--
extra : rebase_source : 613a69fe1d9834261e25a8cd340aa6b47578e1fe
By using an underscore, the "." is still available and can unambiguously be
used to refer to members of a structure if an operand is a structure, class,
etc. This change mostly just replaces the appropriate "."s with "_"s, but
there were also a few places where the ISA descriptions where handling the
extensions themselves and had their own regular expressions to update. The
regular expressions in the isa parser were updated as well. It also now
looks for one of the defined type extensions specifically after connecting "_"
where before it would look for any sequence of characters after a "."
following an operand name and try to use it as the extension. This helps to
disambiguate cases where a "_" may legitimately be part of an operand name but
not separate the name from the type suffix.
Because leaving the "_" and suffix on the variable name still leaves a valid
C++ identifier and all extensions need to be consistent in a given context, I
considered leaving them on as a breadcrumb that would show what the intended
type was for that operand. Unfortunately the operands can be referred to in
code templates, the Mem operand in particular, and since the exact type of Mem
can be different for different uses of the same template, that broke things.
SEV instructions were originally implemented to cause asynchronous squashes
via the generateTCSquash() function in the O3 pipeline when updating the
SEV_MAILBOX miscReg. This caused race conditions between CPUs in an MP system
that would lead to a pipeline either going inactive indefinitely or not being
able to commit squashed instructions. Fixed SEV instructions to behave like
interrupts and cause synchronous sqaushes inside the pipeline, eliminating
the race conditions. Also fixed up the semantics of the WFE instruction to
behave as documented in the ARMv7 ISA description to not sleep if SEV_MAILBOX=1
or unmasked interrupts are pending.
SWP and SWPB now throw an undefined instruction exception if
SCTLR.SW == 0. This also required the MIDR to be changed
slightly so programs can correctly determine that gem5 supports
the ARM v7 behavior of SWP/SWPB (in ARM v6, SWP/SWPB were
deprecated, but not disabled at CPU startup).
readBytes and writeBytes had the word "bytes" in their names because they
accessed blobs of bytes. This distinguished them from the read and write
functions which handled higher level data types. Because those functions don't
exist any more, this change renames readBytes and writeBytes to more general
names, readMem and writeMem, which reflect the fact that they are how you read
and write memory. This also makes their names more consistent with the
register reading/writing functions, although those are still read and set for
some reason.
This change further eliminates cases where condition codes were being read
just so they could be written without change because the instruction in
question was supposed to preserve them. This is done by creating the condition
code code based on the input rather than just doing a simple substitution.
If one of the condition codes isn't being used in the execution we should only
read it if the instruction might be dependent on it. With the preeceding changes
there are several more cases where we should dynamically pick instead of assuming
as we did before.
Break up the condition code bits into NZ, C, V registers. These are individually
written and this removes some incorrect dependencies between instructions.
Move the saturating bit (which is also saturating) from the renamed register
that holds the flags to the CPSR miscreg and adds a allows setting it in a
similar way to the FP saturating registers. This removes a dependency in
instructions that don't write, but need to preserve the Q bit.
This change splits out the condcodes from being one monolithic register
into three blocks that are updated independently. This allows CPUs
to not have to do RMW operations on the flags registers for instructions
that don't write all flags.
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
This patch prevents not executed conditional instructions marked as
IsQuiesce from stalling the pipeline indefinitely. If the instruction
is not executed the quiesceSkip psuedoinst is called which schedules a
wakes up call to the fetch stage.
This changes the RFE macroop into 3 microops:
URa = [sp]; URb = [sp+4]; // load CPSR,PC values from stack
sp = sp + offset; // optionally auto-increment
PC = URa; CPSR = URb; // write to the PC and CPSR.
Importantly:
- writing to PC is handled in the last micro-op.
- loading occurs prior to state changes.
Any change of control flow now resets the itstate to 0 mask and 0 condition,
except where the control flow alteration write into the cpsr register. These
case, for example return from an iterrupt, require the predecoder to recover
the itstate.
As there is a window of opportunity between the return from an interrupt
changing the control flow at the head of the pipe and the commit of the update
to the CPSR, the predecoder needs to be able to grab the ITstate early. This
is now handled by setting the forcedItState inside a PCstate for the control
flow altering instruction.
That instruction will have the correct mask/cond, but will not have a valid
itstate until advancePC is called (note this happens to advance the execution).
When the new PCstate is copy constructed it gets the itstate cond/mask, and
upon advancing the PC the itstate becomes valid.
Subsequent advancing invalidates the state and zeroes the cond/mask. This is
handled in isolation for the ARM ISA and should have no impact on other ISAs.
Refer arch/arm/types.hh and arch/arm/predecoder.cc for the details.
ARM instructions updating cumulative flags (ARM FP exceptions and saturation
flags) are not serialized.
Added aliases for ARM FP exceptions and saturation flags in FPSCR. Removed
write accesses to the FP condition codes for most ARM VFP instructions: only
VCMP and VCMPE instructions update the FP condition codes. Removed a potential
cause of seg. faults in the O3 model for NEON memory macro-ops (ARM).