Commit graph

16 commits

Author SHA1 Message Date
Ali Saidi
0f9a3671b6 ARM: Add support for moving predicated false dest operands from sources. 2011-01-18 16:30:02 -06:00
Giacomo Gabrielli
719f9a6d4f O3: Make all instructions that write a misc. register not perform the write until commit.
ARM instructions updating cumulative flags (ARM FP exceptions and saturation
flags) are not serialized.

Added aliases for ARM FP exceptions and saturation flags in FPSCR.  Removed
write accesses to the FP condition codes for most ARM VFP instructions: only
VCMP and VCMPE instructions update the FP condition codes.  Removed a potential
cause of seg. faults in the O3 model for NEON memory macro-ops (ARM).
2010-12-07 16:19:57 -08:00
Gabe Black
6f4bd2c1da ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.
This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.


PC type:

Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.

These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.

Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.


Advancing the PC:

The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.

One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.


Variable length instructions:

To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.


ISA parser:

To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.


Return address stack:

The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.


Change in stats:

There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.


TODO:

Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
2010-10-31 00:07:20 -07:00
Nathan Binkert
d9f39c8ce7 arch: nuke arch/isa_specific.hh and move stuff to generated config/the_isa.hh 2009-09-23 08:34:21 -07:00
Gabe Black
25884a8773 Registers: Get rid of the float register width parameter. 2009-07-08 23:02:20 -07:00
Ali Saidi
b760b99f4d O3CPU: Undo Gabe's changes to remove hwrei and simpalcheck from O3 CPU. Removing hwrei causes
the instruction after the hwrei to be fetched before the ITB/DTB_CM register is updated in a call pal
call sys and thus the translation fails because the user is attempting to access a super page address.

Minimally, it seems as though some sort of fetch stall or refetch after a hwrei is required. I think
this works currently because the hwrei uses the exec context interface, and the o3 stalls when that occurs.

Additionally, these changes don't update the LOCK register and probably break ll/sc. Both o3 changes were
removed since a great deal of manual patching would be required to only remove the hwrei change.
2008-10-20 16:22:59 -04:00
Gabe Black
f621b7b81f CPU: Eliminate the simPalCheck funciton. 2008-10-11 12:17:24 -07:00
Gabe Black
da7209ec93 CPU: Eliminate the hwrei function. 2008-10-11 02:27:21 -07:00
Gabe Black
f57c286d2c O3: Generaize the O3 dynamic instruction class so it isn't split out by ISA.
--HG--
rename : src/cpu/o3/dyn_inst.hh => src/cpu/o3/dyn_inst_decl.hh
rename : src/cpu/o3/alpha/dyn_inst_impl.hh => src/cpu/o3/dyn_inst_impl.hh
2008-10-09 00:09:26 -07:00
Stephen Hines
0ccf9a2c37 Add base ARM code to M5
--HG--
extra : convert_revision : d811bf87d1a0bfc712942ecd3db1b48fc75257af
2008-02-05 23:44:13 -05:00
Gabe Black
c7ab9f5bb2 Added an x86 dyninst
--HG--
extra : convert_revision : 2317e9bb0bcf8010ab5d02019f7a14eeb7b1459c
2007-03-05 14:55:45 +00:00
Gabe Black
fc8b4f5253 Started to add support for O3 for sparc.
--HG--
extra : convert_revision : 3f94bda14024a09b9fbd7a5d13284d4987349ddf
2006-08-11 20:29:15 -04:00
Korey Sewell
19ca97af79 This changeset gets the MIPS ISA pretty much working in the O3CPU. It builds, runs, and gets very very close to completing the hello world
succesfully but there are some minor quirks to iron out. Who would've known a DELAY SLOT introduces that much complexity?! arrgh!

Anyways, a lot of this stuff had to do with my project at MIPS and me needing to know how I was going to get this working for the MIPS
ISA. So I figured I would try to touch it up and throw it in here (I hate to introduce non-completely working components... )

src/arch/alpha/isa/mem.isa:
    spacing
src/arch/mips/faults.cc:
src/arch/mips/faults.hh:
    Gabe really authored this
src/arch/mips/isa/decoder.isa:
    add StoreConditional Flag to instruction
src/arch/mips/isa/formats/basic.isa:
    Steven really did this file
src/arch/mips/isa/formats/branch.isa:
    fix bug for uncond/cond control
src/arch/mips/isa/formats/mem.isa:
    Adjust O3CPU memory access to use new memory model interface.
src/arch/mips/isa/formats/util.isa:
    update LoadStoreBase template
src/arch/mips/isa_traits.cc:
    update SERIALIZE partially
src/arch/mips/process.cc:
src/arch/mips/process.hh:
    no need for this for NOW. ASID/Virtual addressing handles it
src/arch/mips/regfile/misc_regfile.hh:
    add in clear() function and comments for future usage of special misc. regs
src/cpu/base_dyn_inst.hh:
    add in nextNPC variable and supporting functions.

    add isCondDelaySlot function

    Update predTaken and mispredicted functions
src/cpu/base_dyn_inst_impl.hh:
    init nextNPC
src/cpu/o3/SConscript:
    add MIPS files to compile
src/cpu/o3/alpha/thread_context.hh:
    no need for my name on this file
src/cpu/o3/bpred_unit_impl.hh:
    Update RAS appropriately for MIPS
src/cpu/o3/comm.hh:
    add some extra communication variables to aid in handling the
    delay slots
src/cpu/o3/commit.hh:
    minor name fix for nextNPC functions.
src/cpu/o3/commit_impl.hh:
src/cpu/o3/decode_impl.hh:
src/cpu/o3/fetch_impl.hh:
src/cpu/o3/iew_impl.hh:
src/cpu/o3/inst_queue_impl.hh:
src/cpu/o3/rename_impl.hh:
    Fix necessary variables and functions for squashes with delay slots
src/cpu/o3/cpu.cc:
    Update function interface ...

    adjust removeInstsNotInROB function to recognize delay slots insts
src/cpu/o3/cpu.hh:
    update removeInstsNotInROB
src/cpu/o3/decode.hh:
    declare necessary variables for handling delay slot
src/cpu/o3/dyn_inst.hh:
    Add in MipsDynInst
src/cpu/o3/fetch.hh:
src/cpu/o3/iew.hh:
src/cpu/o3/rename.hh:
    declare necessary variables and adjust functions for handling delay slot
src/cpu/o3/inst_queue.hh:
src/cpu/simple/base.cc:
    no need for my name here
src/cpu/o3/isa_specific.hh:
    add in MIPS files
src/cpu/o3/scoreboard.hh:
    dont include alpha specific isa traits!
src/cpu/o3/thread_context.hh:
    no need for my name here, i just rearranged where the file goes
src/cpu/static_inst.hh:
    add isCondDelaySlot function
src/cpu/o3/mips/cpu.cc:
src/cpu/o3/mips/cpu.hh:
src/cpu/o3/mips/cpu_builder.cc:
src/cpu/o3/mips/cpu_impl.hh:
src/cpu/o3/mips/dyn_inst.cc:
src/cpu/o3/mips/dyn_inst.hh:
src/cpu/o3/mips/dyn_inst_impl.hh:
src/cpu/o3/mips/impl.hh:
src/cpu/o3/mips/params.hh:
src/cpu/o3/mips/thread_context.cc:
src/cpu/o3/mips/thread_context.hh:
    MIPS file for O3CPU...mirrors ALPHA definition

--HG--
extra : convert_revision : 9bb199b4085903e49ffd5a4c8ac44d11460d988c
2006-07-23 13:39:42 -04:00
Korey Sewell
e60f998e29 Had to add this because for some reason gcc wasnt recognizing "THE_ISA == ALPHA_ISA"... wierd but OK
--HG--
extra : convert_revision : f847d6c01212e32200a319c16596b8e1c1d15c7d
2006-07-06 12:29:34 -04:00
Korey Sewell
03fa13b27c Use O3DynInst in cpu_models.py and in static_inst_exec_sigs.hh instead of a specific ISA dyn. inst.
src/cpu/cpu_models.py:
    Use O3DynInst
src/cpu/o3/dyn_inst.hh:
    declare O3DynInst here based off of ISA ... this must be updated for each ISA.
src/cpu/static_inst.hh:
    take out O3 forward declarations here and include header file to keep this file clean

--HG--
extra : convert_revision : 0d65463479c3cfc2d1154935b1032dae32c5efd0
2006-07-06 12:18:55 -04:00
Korey Sewell
215041215b more steps toward O3 SMT
src/arch/mips/isa/formats/fp.isa:
    Adjust for newmem
src/cpu/cpu_models.py:
    Use O3DynInst instead of convoluted way
src/cpu/o3/alpha/impl.hh:
    take out O3DynInst typedef here ...
src/cpu/o3/cpu.cc:
    open up the SMT functions in the O3CPU
src/cpu/static_inst.hh:
    Add O3DynInst
src/cpu/o3/dyn_inst.hh:
    Use to get ISA-specific O3DynInst

--HG--
extra : convert_revision : 3713187ead93e336e80889e23a1f1d2f36d664fe
2006-07-06 11:25:44 -04:00