This patch adds a --repeat-switch option that will enable repeat core
switching at a user defined period (set with --switch-freq option).
currently, a switch can only occur between like CPU types. inorder CPU
switching is not supported.
*note*
this patch simply allows a config that will perform repeat switching, it
does not fix drain/switchout functionality. if you run with repeat switching
you will hit assertion failures and/or your workload with hang or die.
This patch moves the code related to checkpointing from the run() function to
several different functions. The aim is to make the code more manageable. No
functionality changes are expected, but since the code is kind of unruly, it
is possible that some change might have creeped in.
This changes the way in which the cpu class while restoring from a checkpoint
is set. Earlier it was assumed if cpu type with which to restore is not same
as the cpu type with the which to run the simulation, then the checkpoint
should be restored with the atomic cpu. This assumption is being dropped. The
checkpoint can now be restored with any cpu type, the default being atomic cpu.
This patch changes the se and fs script to use the clock option and
not simply set the CPUs clock to 2 GHz. It also makes a minor change
to the assignment of the switch_cpus clock to allow different clocks.
1) Modifies Benchmarks.py to add support for Android ICS and BBench on Android ICS.
2) An rcS script is added for BBench on ICS.
3) Separates benchmark entries and rcS scripts for GB/ICS
4) Removes the debugging output from the existing BBench run script. These
print statements were used for debugging and they seemed to confuse users
into believing they should see some terminal output.
As status matrix, MIPS fs does not work. Hence, these options are not
required. Secondly, the function is setting param values for a CPU class.
This seems strange, should probably be done in a different way.
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
Added the options to Options.py for FS mode with backward compatibility. It is
good to provide an option to specify the disk image and the memory size from
command line since a lot of disk images are created to support different
benchmark suites as well as per user needs. Change in program also leads to
change in memory requirements. These options provide the interface to provide
both disk image and memory size from the command line and gives more
flexibility.
This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.
All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.
To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.
Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.
--HG--
rename : src/mem/PhysicalMemory.py => src/mem/AbstractMemory.py
rename : src/mem/PhysicalMemory.py => src/mem/SimpleMemory.py
rename : src/mem/physical.cc => src/mem/abstract_mem.cc
rename : src/mem/physical.hh => src/mem/abstract_mem.hh
rename : src/mem/physical.cc => src/mem/simple_mem.cc
rename : src/mem/physical.hh => src/mem/simple_mem.hh
With recent changes to the memory system, a port cannot be assigned a peer
port twice. While making use of the Ruby memory system in FS mode, DMA
ports were assigned peer twice, once for the classic memory system
and once for the Ruby memory system. This patch removes this double
assignment of peer ports.
I am not too happy with the way options are added in files se.py and fs.py
currently. This patch moves all the options to the file Options.py, functions
from which are called when required.
Enables the CheckerCPU to be selected at runtime with the --checker option
from the configs/example/fs.py and configs/example/se.py configuration
files. Also merges with the SE/FS changes.
This patch merely removes the use of the num_cpus cache parameter
which no longer exists after the introduction of the masterIds. The
affected scripts fail when trying to set the parameter. Note that this
patch does not update the regression stats.
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.
The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.
Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
In preparation for the introduction of Master and Slave ports, this
patch removes the default port parameter in the Python port and thus
forces the argument list of the Port to contain only the
description. The drawback at this point is that the config port and
dma port of PCI and DMA devices have to be connected explicitly. This
is key for future diversification as the pio and config port are
slaves, but the dma port is a master.
This patch makes the bus bridge uni-directional and specialises the
bus ports to be a master port and a slave port. This greatly
simplifies the assumptions on both sides as either port only has to
deal with requests or responses. The following patches introduce the
notion of master and slave ports, and would not be possible without
this split of responsibilities.
In making the bridge unidirectional, the address range mechanism of
the bridge is also changed. For the cases where communication is
taking place both ways, an additional bridge is needed. This causes
issues with the existing mechanism, as the busses cannot determine
when to stop iterating the address updates from the two bridges. To
avoid this issue, and also greatly simplify the specification, the
bridge now has a fixed set of address ranges, specified at creation
time.
Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.
The following replacements are made:
FunctionalPort > PortProxy
TranslatingPort > SETranslatingPortProxy
VirtualPort > FSTranslatingPortProxy
--HG--
rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
Currently there is an assumption that restoration from a checkpoint will
happen by first restoring to an atomic CPU and then switching to a timing
CPU. This patch adds support for directly restoring to a timing CPU. It
adds a new option '--restore-with-cpu' which is used to specify the type
of CPU to which the checkpoint should be restored to. It defaults to
'atomic' which was the case before.
This patch adds a new option for cpu type. This option is of type 'choice'
which is similar to a C++ enum, except that it takes string values as
possible choices. Following options are being removed -- detailed, timing,
inorder.
--HG--
extra : rebase_source : 58885e2e8a88b6af8e6ff884a5922059dbb1a6cb
There are two lines in O3CPU.py that set the dcache and icache
tgts_per_mshr to 20, ignoring any pre-configured value of tgts_per_mshr.
This patch removes these hardcoded lines from O3CPU.py and sets the default
L1 cache mshr targets to 20.
--HG--
extra : rebase_source : 6f92d950e90496a3102967442814e97dc84db08b
A significant contributor to the need for adoptOrphanParams()
is the practice of appending to SimObjectVectors which have
already been assigned as children. This practice sidesteps the
assignment operation for those appended SimObjects, which is
where parent/child relationships are typically established.
This patch reworks the config scripts that use append() on
SimObjectVectors, which all happen to be in the x86 system
configuration. At some point in the future, I hope to make
SimObjectVectors immutable (by deriving from tuple rather than
list), at which time this patch will be necessary for correct
operation. For now, it just avoids some of the warning
messages that get printed in adoptOrphanParams().
Frame buffer and boot linux:
./build/ARM_FS/m5.opt configs/example/fs.py --benchmark=ArmLinuxFrameBuf --kernel=vmlinux.touchkit
Linux from a CF card:
./build/ARM_FS/m5.opt configs/example/fs.py --benchmark=ArmLinuxCflash --kernel=vmlinux.touchkit
Run Android
./build/ARM_FS/m5.opt configs/example/fs.py --benchmark=ArmAndroid --kernel=vmlinux.android
Run MP
./build/ARM_FS/m5.opt configs/example/fs.py --benchmark=ArmLinuxCflash --kernel=vmlinux.mp-2.6.38
This patch moves the assignment of testsys.switch_cpus, testsys.switch_cpus_1,
switch_cpu_list, and switch_cpu_list1 outside of the for loop so they are
assigned only once, after switch_cpus and switch_cpus_1 are constructed.
This change fixes the problem for all the cases we actively use. If you want to try
more creative I/O device attachments (E.g. sharing an L2), this won't work. You
would need another level of caching between the I/O device and the cache
(which you actually need anyway with our current code to make sure writes
propagate). This is required so that you can mark the cache in between as
top level and it won't try to send ownership of a block to the I/O device.
Asserts have been added that should catch any issues.
makeArmSystem creates both bare-metal and Linux systems more cleanly.
machine_type was never optional though listed as an optional argument; a system
such as "RealView_PBX" must now be explicitly specified. Now that it is a
required argument, the placement of the arguments has changed slightly
requiring some changes to calls that create ARM systems.
It's confusing (especially to new users), when you are setting some standard
parameters (as defined in Options.py) and they aren't reflected in the simulations
so we might as well link the settings in CacheConfig.py to those in Options.py
This way things that don't care about work count options and/or aren't called
by something that has those command line options set up doesn't have to build
a fake object to carry in inert values.
This makes sure that the address ranges requested for caches and uncached ports
don't conflict with each other, and that accesses which are always uncached
(message signaled interrupts for instance) don't waste time passing through
caches.
The disk image to use was always being forced to a particular value. This
change changes what disk image is selected as the default based on the
architecture being built. In the future, a more sophisticated system might be
used that selected a path based on certain rules instead of relying on one off
file names.
Most of the messages in the config scripts that report a time value already
print "@ tick" followed by the current tick value, but a few were printing
"@ cycle". Since this is a distinction that's frequently confusing to new
users, this changes those message to the more accurate and consistent "@ tick".
The previous slower ruby latencies created a mismatch between the faster M5
cpu models and the much slower ruby memory system. Specifically smp
interrupts were much slower and infrequent, as well as cpus moving in and out
of spin locks. The result was many cpus were idle for large periods of time.
These changes fix the latency mismatch.
The separate restoreCheckpoint() call is gone; just pass
the checkpoint dir as an optional arg to instantiate().
This change is a precursor to some more extensive
reworking of the startup code.
Enforce that the Python Root SimObject is instantiated only
once. The C++ Root object already panics if more than one is
created. This change avoids the need to track what the root
object is, since it's available from Root.getInstance() (if it
exists). It's now redundant to have the user pass the root
object to functions like instantiate(), checkpoint(), and
restoreCheckpoint(), so that arg is gone. Users who use
configs/common/Simulate.py should not notice.
Most of these frontend configurations share cache configuration code, pull it out so that
changes to caches don't have to require changing multiple config files.
Reorganized ruby python configuration so that protocol and ruby memory system
configuration code can be shared by multiple front-end configuration files
(i.e. memory tester, full system, and hopefully the regression tester). This
code works for memory tester, but have not tested fs mode.
Connects M5 cpu and dma ports directly to ruby sequencers and dma
sequencers. Rubymem also includes a pio port so that pio requests
and be forwarded to a special pio bus connecting to device pio
ports.
Get rid of misc.py and just stick misc things in __init__.py
Move utility functions out of SCons files and into m5.util
Move utility type stuff from m5/__init__.py to m5/util/__init__.py
Remove buildEnv from m5 and allow access only from m5.defines
Rename AddToPath to addToPath while we're moving it to m5.util
Rename read_command to readCommand while we're moving it
Rename compare_versions to compareVersions while we're moving it.
--HG--
rename : src/python/m5/convert.py => src/python/m5/util/convert.py
rename : src/python/m5/smartdict.py => src/python/m5/util/smartdict.py
-option to allow threads to run to a max_inst_any_thread which is more useful/quicker in a lot of
cases then always having to figure out what tick to run your simulation to.
this was double scheduling itself (once in constructor and once in cpu code). also add support for stopping / starting
progress events through repeatEvent flag and also changing the interval of the progress event as well
Previously there was one per bus, which caused some coherence problems
when more than one decided to respond. Now there is just one on
the main memory bus. The default bus responder on all other buses
is now the downstream cache's cpu_side port. Caches no longer need
to do address range filtering; instead, we just have a simple flag
to prevent snoops from propagating to the I/O bus.
set the latency parameter in terms of a latency
add caches to tsunami-simple configs
configs/common/Caches.py:
tests/configs/memtest.py:
tests/configs/o3-timing-mp.py:
tests/configs/o3-timing.py:
tests/configs/simple-atomic-mp.py:
tests/configs/simple-timing-mp.py:
tests/configs/simple-timing.py:
set the latency parameter in terms of a latency
configs/common/FSConfig.py:
give the bridge a default latency too
src/mem/cache/cache_builder.cc:
src/python/m5/objects/BaseCache.py:
remove hit_latency and make latency do the right thing
tests/configs/tsunami-simple-atomic-dual.py:
tests/configs/tsunami-simple-atomic.py:
tests/configs/tsunami-simple-timing-dual.py:
tests/configs/tsunami-simple-timing.py:
add caches to tsunami-simple configs
--HG--
extra : convert_revision : 37bef7c652e97c8cdb91f471fba62978f89019f1
figure out the block size from devices attached to the bus otherwise use a default block size when no devices that care are attached
configs/common/FSConfig.py:
src/mem/bridge.cc:
src/mem/bridge.hh:
src/python/m5/objects/Bridge.py:
fix partial writes with a functional memory hack
src/mem/bus.cc:
src/mem/bus.hh:
src/python/m5/objects/Bus.py:
figure out the block size from devices attached to the bus otherwise use a default block size when no devices that care are attached
src/mem/packet.cc:
fix WriteInvalidateResp to not be a request that needs a response since it isn't
src/mem/port.hh:
by default return 0 for deviceBlockSize instead of panicing. This makes finding the block size the bus should use easier
--HG--
extra : convert_revision : 3fcfe95f9f392ef76f324ee8bd1d7f6de95c1a64
directly configured by python. Move stuff from root.(cc|hh) to
core.(cc|hh) since it really belogs there now.
In the process, simplify how ticks are used in the python code.
--HG--
extra : convert_revision : cf82ee1ea20f9343924f30bacc2a38d4edee8df3
configs/common/FSConfig.py:
add an attachOnChipIO to force people to think about where "onchip" i/o should be connected in their hierarchy
--HG--
extra : convert_revision : cf79a9a00760b7daf28063f407a04bd38b956843
configs/common/FSConfig.py:
Use binaries we've compiled instead of the ones that come with Legion
src/arch/alpha/interrupts.hh:
get rid of post(int int_type) and add a get_vec function that gets the interrupt vector for an interrupt number
src/arch/sparc/asi.cc:
Add AsiIsInterrupt() to AsiIsMmu()
src/arch/sparc/faults.cc:
src/arch/sparc/faults.hh:
Add InterruptVector type
src/arch/sparc/interrupts.hh:
rework interrupts. They are no longer cleared when created... A I/O or ASI read/write needs to happen before they are cleared
src/arch/sparc/isa_traits.hh:
Add the "interrupt" trap types to isa traits
src/arch/sparc/miscregfile.cc:
add names for all the misc registers and possible post an interrupt when TL is changed.
src/arch/sparc/miscregfile.hh:
Add a helper function to post an interrupt when pil < some set softint
src/arch/sparc/regfile.cc:
src/arch/sparc/regfile.hh:
InterruptLevel shouldn't really live here, moved to interrupt.hh
src/arch/sparc/tlb.cc:
Add interrupt ASIs to TLB
src/arch/sparc/ua2005.cc:
Add checkSoftInt to check if a softint needs to be posted
Check that a tickCompare isn't scheduled before scheduling one
Post and clear interrupts on queue writes and what not
src/base/bitfield.hh:
Add an helper function to return the msb that is set
src/cpu/base.cc:
src/cpu/base.hh:
get rid of post_interrupt(type) since it's no longer needed.. Add a way to see what interrupts are pending
src/cpu/intr_control.cc:
src/cpu/intr_control.hh:
src/dev/alpha/tsunami_cchip.cc:
src/python/m5/objects/IntrControl.py:
Make IntrControl have a system pointer rather than using a cpu pointer to get one
src/dev/sparc/SConscript:
add iob to SConsscrip
tests/quick/10.linux-boot/ref/alpha/linux/tsunami-simple-atomic-dual/config.ini:
tests/quick/10.linux-boot/ref/alpha/linux/tsunami-simple-atomic-dual/config.out:
tests/quick/10.linux-boot/ref/alpha/linux/tsunami-simple-atomic/config.ini:
tests/quick/10.linux-boot/ref/alpha/linux/tsunami-simple-atomic/config.out:
tests/quick/10.linux-boot/ref/alpha/linux/tsunami-simple-timing-dual/config.ini:
tests/quick/10.linux-boot/ref/alpha/linux/tsunami-simple-timing-dual/config.out:
tests/quick/10.linux-boot/ref/alpha/linux/tsunami-simple-timing/config.ini:
tests/quick/10.linux-boot/ref/alpha/linux/tsunami-simple-timing/config.out:
tests/quick/80.netperf-stream/ref/alpha/linux/twosys-tsunami-simple-atomic/config.ini:
tests/quick/80.netperf-stream/ref/alpha/linux/twosys-tsunami-simple-atomic/config.out:
update config.ini/out for intrcntrl not having a cpu pointer anymore
--HG--
extra : convert_revision : 38614f6b9ffc8f3c93949a94ff04b7d2987168dd
relevant code directly into the SimConsole object. Now,
you can easily turn off the listen port by just specifying
0 as the port.
--HG--
extra : convert_revision : c8937fa45b429d8a0728e6c720a599e38972aaf0
configs/common/FSConfig.py:
src/python/m5/objects/T1000.py:
add configuration for memory mapped disk
src/dev/sparc/SConscript:
add memory mapped disk to sconscript
--HG--
extra : convert_revision : d8df4a455cf48000042d0ff93a274985f4dbe905
getting touched.
configs/common/FSConfig.py:
Physical memory on the T1 starts at 1MB, The first megabyte is unmapped to catch bugs
src/arch/isa_parser.py:
we should readmiscregwitheffect not readmiscreg
src/arch/sparc/asi.cc:
Fix AsiIsNucleus spelling with respect to header file
Add ASI_LSU_CONTROL_REG to AsiSiMmu
src/arch/sparc/asi.hh:
Fix spelling of two ASIs
src/arch/sparc/isa/decoder.isa:
switch back to defaults letting the isa_parser insert readMiscRegWithEffect
src/arch/sparc/isa/formats/mem/util.isa:
Flesh out priviledgedString with hypervisor checks
Make load alternate set the flags correctly
src/arch/sparc/miscregfile.cc:
insert some forgotten break statements
src/arch/sparc/miscregfile.hh:
Add some comments to make it easier to find which misc register is which number
src/arch/sparc/tlb.cc:
flesh out the tlb memory mapped registers a lot more
src/base/traceflags.py:
add an IPR traceflag
src/mem/request.hh:
Fix a bad assert() in request
--HG--
extra : convert_revision : 1e11aa004e8f42c156e224c1d30d49479ebeed28
configs/common/FSConfig.py:
seperate the hypervisor memory and the guest0 memory. In reality we're going to need a better way to do this at some point. Perhaps auto generating the hv-desc image based on the specified config.
src/arch/sparc/isa/decoder.isa:
change reads/writes to the [hs]tick(cmpr) registers to use readmiscregwitheffect
src/arch/sparc/miscregfile.cc:
For niagra stick and tick are aliased to one value (if we end up doing mps we might not want this).
Use instruction count from cpu rather than cycles because that is what legion does
we can change it back after were done with legion
src/base/bitfield.hh:
add a new function mbits() that just masks off bits of interest but doesn't shift
src/cpu/base.cc:
src/cpu/base.hh:
add instruction count to cpu
src/cpu/exetrace.cc:
src/cpu/m5legion_interface.h:
compare instruction count between legion and m5 too
src/cpu/simple/atomic.cc:
change asserts of packet success to if panics wrapped with NDEBUG defines
so we can get some more useful information when we have a bad address
src/dev/isa_fake.cc:
src/dev/isa_fake.hh:
src/python/m5/objects/Device.py:
expand isa fake a bit more having data for each size request, the ability to have writes update the data and to warn on accesses
src/python/m5/objects/System.py:
convert some tabs to spaces
src/python/m5/objects/T1000.py:
add more fake devices for each l1 bank and each memory controller
--HG--
extra : convert_revision : 8024ae07b765a04ff6f600e5875b55d8a7d3d276
Add the ability to use an address mask for symbol loading
Rather then silently failing on platform accesses panic
Move BadAddr/IsaFake no Device from Tsunami
Let the system kernel be none, but warn about it
configs/common/FSConfig.py:
We don't have a kernel for sparc yet
src/arch/sparc/system.cc:
Load the hypervisor symbols twice, once with an address mask so that we can get symbols for where it's copied to in memory
src/base/loader/aout_object.cc:
src/base/loader/aout_object.hh:
src/base/loader/ecoff_object.cc:
src/base/loader/ecoff_object.hh:
src/base/loader/elf_object.cc:
src/base/loader/elf_object.hh:
src/base/loader/object_file.hh:
src/base/loader/raw_object.cc:
src/base/loader/raw_object.hh:
Add the ability to use an address mask for symbol loading
src/dev/sparc/t1000.cc:
Rather then silently failing on platform accesses panic
src/dev/sparc/t1000.hh:
fix up a couple of platform comments
src/python/m5/objects/Bus.py:
src/python/m5/objects/Device.py:
src/python/m5/objects/T1000.py:
src/python/m5/objects/Tsunami.py:
Move BadAddr/IsaFake no Device from Tsunami
src/python/m5/objects/System.py:
Let kernel be none
src/sim/system.cc:
Let the system kernel be none, but warn about it
--HG--
extra : convert_revision : 92f6afef599a3d3c7c5026d03434102c41c7b5f4
into zower.eecs.umich.edu:/eecshome/m5/newmemmid
src/arch/sparc/isa_traits.hh:
src/arch/sparc/miscregfile.hh:
hand merge
--HG--
extra : convert_revision : 34f50dc5e6e22096cb2c08b5888f2b0fcd418f3e
configs/common/FSConfig.py:
Make a SPARC system create an IO bus.
src/python/m5/objects/T1000.py:
Create a T1000 platform
src/arch/sparc/miscregfile.cc:
Initialize the strand status register to the value legion provides.
src/cpu/exetrace.cc:
Truncate an ExtMachInst to a MachInst before comparing with Legion.
--HG--
extra : convert_revision : e4189b572a5297e8362f5bd26d87b74736c8e5f1
Since we don't have a platform yet, you need to comment out the default responder stuff in Bus.py to make it work.
SConstruct:
Add TARGET_ISA to the list of environment variables that end up in the build_env for python
configs/common/FSConfig.py:
add a simple SPARC system to being testing with, you'll need to change makeLinuxAlphaSystem to makeSparcSystem in fs.py for now
src/SConscript:
add a raw file object, at least until we get more info about how to compile openboot properly
src/arch/sparc/system.cc:
src/arch/sparc/system.hh:
add parameters for ROM files (OBP/Reset/Hypervisor), a ROM, load files into ROM
src/base/loader/object_file.cc:
src/base/loader/object_file.hh:
add option to try raw when nothing works
src/cpu/exetrace.cc:
cleanup lockstep printing a little bit
src/cpu/m5legion_interface.h:
change the instruction to be 32 bits because it is
src/mem/physical.cc:
fix assert that doesn't work if memory starts somewhere above 0
src/python/m5/objects/BaseCPU.py:
Add if statement to choose between sparc tlbs and alpha tlbs
src/python/m5/objects/System.py:
Add a sparc system that sets the rom addresses correctly
src/python/m5/params.py:
add the ability to add Addr() together
--HG--
extra : convert_revision : bbbd8a56134f2dda2728091f740e2f7119b0c4af
configs/common/Simulation.py:
Atomic CPU now works properly with caches, so we don't have to do extra parsing to hook up caches only to the timing CPU.
However the O3CPU must always use caches, so a check for that must still exist.
Also change the switch_cpus to be placed at the system level, now that Steve changed how the IntrController gets its CPU.
configs/example/fs.py:
configs/example/se.py:
Atomic CPU now handles caches.
--HG--
extra : convert_revision : 534ded558ef96cafd76b4b5c5317bd8f4d05076e
configs/common/Simulation.py:
simplify maxtick code a little bit - instead of checking for -1, just set it at MaxTick.
src/python/m5/__init__.py:
make a new m5 param called MaxTick.
src/sim/host.hh:
fix the M5 def. of MaxTick
src/sim/main.cc:
Simplify the MaxTick/num_cycles parsing within main.cc
--HG--
extra : convert_revision : f800addfbc1323591c2e05b892276b439b671668
configs/common/Simulation.py:
enable going from checkpoint into arbitrary CPU with or without caches.
--HG--
extra : convert_revision : 02e7ff8982fdb3a08bc609f89bd58df5b3a581b2
configs/common/Simulation.py:
Remove mem parameter.
configs/example/se.py:
Remove debug output that got included in my other push.
--HG--
extra : convert_revision : 643c34147f6c6cbb98b8e6d6e8206b9859593ab0
Accidentally committed this last time
configs/common/FSConfig.py:
Accidentally committed this last time
--HG--
extra : convert_revision : 32d49c17c661b57a9aa9c3b057258f6e037ba745
configs/common/Options.py:
make the warmup period in a standard switch part of the option.
configs/common/Simulation.py:
add some comments and also make the warmup period an option.
--HG--
extra : convert_revision : 0fa587291b97ff87c3b3a617e7359ac6d9bed7a5