Updating the SimObject topology of a cloned hierarchy is a little
dangerous, in that cloning is a "deep copy" and the clone does not
inherit SimObject updates the same way it would inherit scalar
variable assignments.
However, because of various SimObject-valued proxy parameters,
like 'memories', 'clk_domain', and 'system', it turns out that
there are a number of implicit topology changes that happen at
instantiation, which means that these changes are impossible to
avoid. So in order to make cloning systems useful, this error
has to go. Changing it to a warning produces a lot of noise,
so it seems best just to delete it.
Currently statistics are reset after the initial / checkpoint state
has been loaded. But ruby does some checkpoint processing in its
startup() function. So the stats need to be reset after the startup()
function has been called. This patch moves the class to stats.reset()
to achieve this change in functionality.
2013-12-03 10:51:40 -06:00
Steve Reinhardt ext:(%2C%20Nilay%20Vaish%20%3Cnilay%40cs.wisc.edu%3E%2C%20Ali%20Saidi%20%3CAli.Saidi%40ARM.com%3E)
This patch adds support for simulating with multiple threads, each of
which operates on an event queue. Each sim object specifies which eventq
is would like to be on. A custom barrier implementation is being added
using which eventqs synchronize.
The patch was tested in two different configurations:
1. ruby_network_test.py: in this simulation L1 cache controllers receive
requests from the cpu. The requests are replied to immediately without
any communication taking place with any other level.
2. twosys-tsunami-simple-atomic: this configuration simulates a client-server
system which are connected by an ethernet link.
We still lack the ability to communicate using message buffers or ports. But
other things like simulation start and end, synchronizing after every quantum
are working.
Committed by: Nilay Vaish
The output from the switcheroo tests is voluminous and
(because it includes timestamps) highly sensitive to
minor changes, leading to extremely large updates to the
reference outputs. This patch addresses this problem
by suppressing output from the tests. An internal
parameter can be set to enable the output. Wiring that
up to a command-line flag (perhaps even the rudimantary
-v/-q options in m5/main.py) is left for future work.
This patch changes the name the command-line options related to debug
output to all start with "debug" rather than being a mix of that and
"trace". It also makes it clear that the breakpoint time is specified
in ticks and not in cycles.
SimObjectVector objects did not provide the same interface to
the _parent attribute through get_parent() like a normal
SimObject. It also handled assigning a _parent incorrectly
if objects in a SimObjectVector were changed post-creation,
leading to errors later when the simulator tried to execute.
This patch fixes these two omissions.
The ethernet address param tries to convert a hexadecimal
string using int() in python, which defaults to base 10,
need to specify base 16 in this case.
SimObjects are expected to only generate one port reference per
port belonging to them. There is a subtle bug with using "not"
here as a VectorPort is seen as not having a reference if it is
either None or empty as per Python docs sec 9.9 for Standard operators.
Intended behavior is to only check if we have not created the reference.
This patch fixes an issue which prevented gem5 from running when built
using swig 2.0.9 and 2.0.10. The generated event.py tried to import
m5.internal which in turn relied on importing event. This patch seems
to fix the problem, and so far has not caused any other issues.
This patch adds the config ini string as a tooltip that can be
displayed in most browsers rendering the resulting svg. Certain
characters are modified for HTML output.
Tested on chrome and firefox.
This patch is adding a splash of colour to the dot output to make it
easier to distinguish objects of different types. As a bonus, the
pastel-colour palette also makes the output look like a something from
the 21st century.
This patch adds the class name to the label, creates some more space
by increasing the rank separation, and additionally outputs the graph
as an editable SVG in addition to the PDF.
This patch adds the notion of voltage domains, and groups clock
domains that operate under the same voltage (i.e. power supply) into
domains. Each clock domain is required to be associated with a voltage
domain, and the latter requires the voltage to be explicitly set.
A voltage domain is an independently controllable voltage supply being
provided to section of the design. Thus, if you wish to perform
dynamic voltage scaling on a CPU, its clock domain should be
associated with a separate voltage domain.
The current implementation of the voltage domain does not take into
consideration cases where there are derived voltage domains running at
ratio of native voltage domains, as with the case where there can be
on-chip buck/boost (charge pumps) voltage regulation logic.
The regression and configuration scripts are updated with a generic
voltage domain for the system, and one for the CPUs.
This patch removes the multiplication operator support for Clock
parameters as this functionality is now achieved by creating derived
clock domains.
Nate, this one is for you.
This patch moves the 16x APIC clock divider to the Python code to
avoid the post-instantiation modifications to the clock. The x86 APIC
was the only object setting the clock after creation time and this
required some custom functionality and configuration. With this patch,
the clock multiplier is moved to the Python code and the objects are
instantiated with the appropriate clock.
This patch adds two fuctions to m5.util, warn and inform, which mirror those
found in the C++ side of gem5. These are added in addition to the already
existing m5.util.panic and m5.util.fatal which already mirror the C++
functionality. This ensures that warning and information messages generated
by python are in the same format as those generated by C++.
Occurrences of
print "Warning: %s..." % name
have been replaced with
warn("%s...", name)
Virtualized CPUs and the fastmem mode of the atomic CPU require direct
access to physical memory. We currently require caches to be disabled
when using them to prevent chaos. This is not ideal when switching
between hardware virutalized CPUs and other CPU models as it would
require a configuration change on each switch. This changeset
introduces a new version of the atomic memory mode,
'atomic_noncaching', where memory accesses are inserted into the
memory system as atomic accesses, but bypass caches.
To make memory mode tests cleaner, the following methods are added to
the System class:
* isAtomicMode() -- True if the memory mode is 'atomic' or 'direct'.
* isTimingMode() -- True if the memory mode is 'timing'.
* bypassCaches() -- True if caches should be bypassed.
The old getMemoryMode() and setMemoryMode() methods should never be
used from the C++ world anymore.
CPU switching consists of the following steps:
1. Drain the system
2. Switch out old CPUs (cpu.switchOut())
3. Change the system timing mode to the mode the new CPUs require
4. Flush caches if switching to hardware virtualization
5. Inform new CPUs of the handover (cpu.takeOverFrom())
6. Resume the system
m5.switchCpus() previously only did step 2 & 5. Since information
about the new processors' memory system requirements is now exposed,
do all of the steps above.
This patch adds automatic memory system switching and flush (if
needed) to switchCpus(). Additionally, it adds optional draining to
switchCpus(). This has the following implications:
* changeToTiming and changeToAtomic are no longer needed, so they have
been removed.
* changeMemoryMode is only used internally, so it is has been renamed
to be private.
* switchCpus requires a reference to the system containing the CPUs as
its first parameter.
WARNING: This changeset breaks compatibility with existing
configuration scripts since it changes the signature of
m5.switchCpus().
IPython is used for the interactive gem5 shell if it exists. IPython
made API changes in version 0.11. This patch adds support for IPython
version 0.11 and above.
--HG--
extra : rebase_source : 5388d0919adb58d97f49a1a637db48cba61283a3
Prior to this changeset, we used to clear sys.argv before entering the
IPython shell. This caused some versions of IPython to crash because
they assume argv[0] to exist. The correct way of overriding the
arguments passed to IPython is to set the argv keyword argument when
initializing the shell.
This patch introduces the following sanity checks when switching
between CPUs:
* Check that the set of new and old CPUs do not overlap. Having an
overlap between the set of new CPUs and the set of old CPUs is
currently not supported. Doing such a switch used to result in the
following assertion error:
BaseCPU::takeOverFrom(BaseCPU*): \
Assertion `!new_itb_port->isConnected()' failed.
* Check that all new CPUs are in the switched out state.
* Check that all old CPUs are in the switched in state.
This patch adds support for interleaving bits for the address
ranges. What was previously just a start and end address, now has an
additional three fields, for the high bit, and number of bits to use
for interleaving, and a match value to compare against. If the number
of interleaving bits is set to zero it is effectively disabled.
A number of convenience functions are added to the range to enquire
about the interleaving, its granularity and the number of stripes it
is part of.
This patch makes the all proxy traverse any potential list that is
encountered in the object hierarchy instead of only looking at
children that are SimObjects. An example of where this is useful is
when creating a multi-channel memory system as a list of controllers,
whilst ensuring that the memories are still visible in the system.
This patch adds the following two methods to the Drainable base class:
memWriteback() - Write back all dirty cache lines to memory using
functional accesses.
memInvalidate() - Invalidate memory system buffers. Dirty data
won't be written back.
Specifying calling memWriteback() after draining will allow us to
checkpoint systems with caches. memInvalidate() can be used to drop
memory system buffers in preparation for switching to an accelerated
CPU model that bypasses the gem5 memory system (e.g., hardware
virtualized CPUs).
Note: This patch only adds the methods to Drainable, the code for
flushing the TLB and the cache is committed separately.
This changeset adds a SWIG interface for the Serializable class, which
fixes a warning when compiling the SWIG interface for the event
queue. Currently, the only method exported is the name() method.
There is no point in exporting the old drain() method in
Simulate.py. It should only be used internally by doDrain(). This
patch moves the old drain() method into doDrain() and renames
doDrain() to drain().
changeToAtomic and changeToTiming both do essentially the same thing,
they check the type of their input argument, drain the system, and
switch to the desired memory mode. This patch moves all of that code
to a separate method (changeMemoryMode) and calls that from both
changeToAtomic and changeToTiming.
This patch moves the draining interface from SimObject to a separate
class that can be used by any object needing draining. However,
objects not visible to the Python code (i.e., objects not deriving
from SimObject) still depend on their parents informing them when to
drain. This patch also gets rid of the CountedDrainEvent (which isn't
really an event) and replaces it with a DrainManager.
When casting objects in the generated SWIG interfaces, SWIG uses
classical C-style casts ( (Foo *)bar; ). In some cases, this can
degenerate into the equivalent of a reinterpret_cast (mainly if only a
forward declaration of the type is available). This usually works for
most compilers, but it is known to break if multiple inheritance is
used anywhere in the object hierarchy.
This patch introduces the cxx_header attribute to Python SimObject
definitions, which should be used to specify a header to include in
the SWIG interface. The header should include the declaration of the
wrapped object. We currently don't enforce header the use of the
header attribute, but a warning will be generated for objects that do
not use it.
Changeset 4f54b0f229b5 removed the call to doDrain in changeToTiming
based on the assumption that the system does not need draining when
running in atomic mode. This is a false assumption since at least the
System class requires the system to be drained before it allows
switching of memory modes. This patch reverts that part of the
changeset.
This patch modifies how proxies are traversed and unproxied to allow
chained proxies. The issue that is solved manifested itself when a
proxy during its evaluation ended up being hitting another proxy, and
the second one got evaluated using the object that was originally used
for the first proxy.
For a more tangible example, see the following patch on making the
default clock being inherited from the parent. In this patch, the CPU
clock is a proxy Parent.clock, which is overridden in the system to be
an actual value. This all works fine, but the AlphaLinuxSystem has a
boot_cpu_frequency parameter that is Self.cpu[0].clock.frequency. When
the latter is evaluated, it all happens relative to the current object
of the proxy, i.e. the system. Thus the cpu.clock is evaluated as
Parent.clock, but using the system rather than the cpu as the object
to enquire.
This patch adds a function, periodicStatDump(long long period), which will dump
and reset the statistics every period. This function is designed to be called
from the python configuration scripts. This allows the periodic stats dumping to
be configured more easilly at run time.
The period is currently specified as a long long as there are issues passing
Tick into the C++ from the python as they have conflicting definitions. If the
period is less than curTick, the first occurance occurs at curTick. If the
period is set to 0, then the event is descheduled and the stats are not
periodically dumped.
Due to issues when resumung from a checkpoint, the StatDump event must be moved
forward such that it occues AFTER the current tick. As the function is called
from the python, the event is scheduled before the system resumes from the
checkpoint. Therefore, the event is moved using the updateEvents() function.
This is called from simulate.py once the system has resumed from the checkpoint.
NOTE: It should be noted that this is a fairly temporary patch which re-adds the
capability to extract temporal information from the communication monitors. It
should not be used at the same time as anything that relies on dumping the
statistics based on in simulation events i.e. a context switch.
Remove SimObject::setMemoryMode from the main SimObject class since it
is only valid for the System class. In addition to removing the method
from the C++ sources, this patch also removes getMemoryMode and
changeTiming from SimObject.py and updates the simulation code to call
the (get|set)MemoryMode method on the System object instead.
This patch takes the final plunge and transitions from the templated
Range class to the more specific AddrRange. In doing so it changes the
obvious Range<Addr> to AddrRange, and also bumps the range_map to be
AddrRangeMap.
In addition to the obvious changes, including the removal of redundant
includes, this patch also does some house keeping in preparing for the
introduction of address interleaving support in the ranges. The Range
class is also stripped of all the functionality that is never used.
--HG--
rename : src/base/range.hh => src/base/addr_range.hh
rename : src/base/range_map.hh => src/base/addr_range_map.hh
This patch simplifies the Range object hierarchy in preparation for an
address range class that also allows striping (e.g. selecting a few
bits as matching in addition to the range).
To extend the AddrRange class to an AddrRegion, the first step is to
simplify the hierarchy such that we can make it as lean as possible
before adding the new functionality. The only class using Range and
MetaRange is AddrRange, and the three classes are now collapsed into
one.
When switching from an atomic CPU to any of the timing CPUs, a drain is
unnecessary since no events are scheduled in atomic mode. However, when
trying to switch CPUs starting with a timing CPU, there may be events
scheduled. This change ensures that all events are drained from the system
by calling m5.drain before switching CPUs.
Simulation objects normally register derived statistics, presumably
what regFormulas originally was meant for, in regStats(). This patch
removes regRegformulas since there is no need to have a separate
method call to register formulas.
This patch is a first step to using Cycles as a parameter type. The
main affected modules are the CPUs and the Ruby caches. There are
definitely plenty more places that are affected, but this patch serves
as a starting point to making the transition.
An important part of this patch is to actually enable parameters to be
specified as Param.Cycles which involves some changes to params.py.
This patch addresses the comments and feedback on the preceding patch
that reworks the clocks and now more clearly shows where cycles
(relative cycle counts) are used to express time.
Instead of bumping the existing patch I chose to make this a separate
patch, merely to try and focus the discussion around a smaller set of
changes. The two patches will be pushed together though.
This changes done as part of this patch are mostly following directly
from the introduction of the wrapper class, and change enough code to
make things compile and run again. There are definitely more places
where int/uint/Tick is still used to represent cycles, and it will
take some time to chase them all down. Similarly, a lot of parameters
should be changed from Param.Tick and Param.Unsigned to
Param.Cycles.
In addition, the use of curTick is questionable as there should not be
an absolute cycle. Potential solutions can be built on top of this
patch. There is a similar situation in the o3 CPU where
lastRunningCycle is currently counting in Cycles, and is still an
absolute time. More discussion to be had in other words.
An additional change that would be appropriate in the future is to
perform a similar wrapping of Tick and probably also introduce a
Ticks class along with suitable operators for all these classes.
Instead of just passing a list of controllers to the makeTopology function
in src/mem/ruby/network/topologies/<Topo>.py we pass in a function pointer
which knows how to make the topology, possibly with some extra state set
in the configs/ruby/<protocol>.py file. Thus, we can move all of the files
from network/topologies to configs/topologies. A new class BaseTopology
is added which all topologies in configs/topologies must inheirit from and
follow its API.
--HG--
rename : src/mem/ruby/network/topologies/Crossbar.py => configs/topologies/Crossbar.py
rename : src/mem/ruby/network/topologies/Mesh.py => configs/topologies/Mesh.py
rename : src/mem/ruby/network/topologies/MeshDirCorners.py => configs/topologies/MeshDirCorners.py
rename : src/mem/ruby/network/topologies/Pt2Pt.py => configs/topologies/Pt2Pt.py
rename : src/mem/ruby/network/topologies/Torus.py => configs/topologies/Torus.py
This patch changes the organisation of the JSON output slightly to
make it easier to traverse and use the files. Most importantly, the
hierarchical dictionaries now use keys that correspond to the
attribute names also in the case of VectorParams (used to be
e.f. "cpu0 cpu1"). It also adds the name and the path to each
SimObject directory entry. Before this patch, to get cpu0, you would
have to query dict['system']['cpu0 cpu1'][0] and this could be a dict
with 'cpu0' : { cpu parameters }. Now you use dict['system']['cpu'][0]
and get { cpu parameters } (where one is "name" : "cpu0").
Additionally this patch includes more verbose information about the
ports, specifying their role, and using a JSON array rather than a
concatenated string for the peer.
This patch turns the existing warning into a fatal, as there should
never be any cases where a (non-vector) port is assigned to and then
later connected to something else. If this behaviour is allowed, as it
used to be, there are cases where the wrong number of C++ ports are
created when instantiating objects with VectorPorts (obviously that
could be fixed, but the better approach is to simply not allow it).
Revised system visualization to reflect structure and memory hierarchy.
Improved visualization: less congested and cluttered; more colorful.
Nodes reflect components; directed edges reflect dirctional relation, from
a master port to a slave port. Requires pydot.
Fixed broken code which visualizes the system configuration by generating a
tree from each component's children, starting from root.
Requires DOT (hence pydot).
Track the point in the initialization where statistics have been registered.
After this point registering new masterIds can no longer work as some
SimObjects may have sized stats vectors based on the previous value. If someone
tries to register a masterId after this point the simulator executes fatal().
This patch adds a very basic pretty-printing of the test status
(passed or failed) to highlight failing tests even more: green for
passed, and red for failed. The printing only uses ANSI it the target
output is a tty and supports ANSI colours. Hence, any regression
scripts that are outputting to files or sending e-mails etc should
still be fine.
This patch changes the behaviour of the All proxy parameter to not
only consider the direct children, but also do a pre-order depth-first
traversal of the object tree and append all results from the
children.
This is used in a later patch to find all the memories in the system,
independent of where they are located in the hierarchy.
This patch cleans up a number of minor issues aiming to get closer to
compliance with the C++0x standard as interpreted by gcc and clang
(compile with std=c++0x and -pedantic-errors). In particular, the
patch cleans up enums where the last item was succeded by a comma,
namespaces closed by a curcly brace followed by a semi-colon, and the
use of the GNU-extension typeof (replaced by templated functions). It
does not address variable-length arrays, zero-size arrays, anonymous
structs, range expressions in switch statements, and the use of long
long. The generated CPU code also has a large number of issues that
remain to be fixed, mainly related to overflows in implicit constant
conversion (due to shifts).
This patch fixes a compilation error that occurs with gcc >= 4.6.1,
caused by swig not including cstddef and not using the std:: namespace
prefix for ptrdiff_t. There is an old patch,
http://reviews.m5sim.org/r/913/ that no longer applies cleanly and
this might be re-iterating the same issue.
We work around the problem by always enforcing the inclusion of
cstddef in all swig interface declarations, and also by explicitly
using std::ptrdiff_t.
Without this patch, undefined params cause a cryptic KeyError
in multidict inside get_config_as_dict(). This patch lets
undefined params through get_config_as_dict() so they can
once again generate meaningful error messages later on in
the configuration process.
This patch adds basic information about the ports in the parameter
classes to be passed from the Python world to the corresponding C++
object. Currently, the only information passed is the number of
connected peers, which for a Port is either 0 or 1, and for a
VectorPort reflects the size of the VectorPort. The default port of
the bus had to be renamed to avoid using the name "default" as a field
in the parameter class. It is possible to extend the Swig'ed
information further and add e.g. a pair with a description and size.
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.
The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.
Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).
clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
In preparation for the introduction of Master and Slave ports, this
patch removes the default port parameter in the Python port and thus
forces the argument list of the Port to contain only the
description. The drawback at this point is that the config port and
dma port of PCI and DMA devices have to be connected explicitly. This
is key for future diversification as the pio and config port are
slaves, but the dma port is a master.
This patch adds a mechanism to collect run time samples for specific portions
of a benchmark, using work_begin and work_end pseudo instructions.It also enhances
the histogram stat to report geometric mean.
To make gem5 compile and run with swig 2.0.4 a few minor fixes are
necessary, the fail label issues by swig must not be treated as an
error by gcc (tested with gcc 4.2.1), and the vector wrappers must
have SWIGPY_SLICE_ARG defined which happens in pycontainer.swg,
included through std_container.i. By adding the aforementioned include
to the vector wrappers everything seems to work.
Replace the (broken as of previous changeset) swig_objdecl() method
that allowed/forced you to substitute a whole new C++ struct
definition for SWIG to wrap with a set of export_method* hooks
that let you just declare a set of C++ methods (or other declarations)
that get inserted in the auto-generated struct.
Restore the System get/setMemoryMode methods, and use this mechanism
to specialize SimObject as well, eliminating teh need for sim_object.i.
Needed bits of sim_object.i are moved to the new pyobject.i.
Also sucked a little SimObject specialization into cxx_param_decl()
allowing us to get rid of src/sim/sim_object_params.hh. Now the
generation and wrapping of the base SimObject param struct is more
in line with how derived objects are handled.
--HG--
rename : src/python/swig/sim_object.i => src/python/swig/pyobject.i
- Move the random bits of SWIG code generation out of src/SConscript
file and into methods on the objects being wrapped.
- Cleaned up some variable naming and added some comments to make
the process a little clearer.
- Did a little generated file/module renaming:
- vptype_Foo now Foo_vector
- init_Foo is now Foo_init
This makes it easier to see all the Foo-related files in a
sorted directory listing.
- Made cxx_predecls and swig_predecls normal SimObject classmethods.
- Got rid of swig_objdecls hook, even though this breaks the System
objects get/setMemoryMode method exports. Will be fixing this in
a future changeset.
Print IpAddress params in dot notation for readability.
Properly compare IpAddress objects (by value and not object identity).
Also fix up derived param classes (IpNetmask and IpWithPort)
similarly.
This makes it possible to use the grammar multiple times and use the multiple
instances concurrently. This makes implementing an include statement as part
of a grammar possible.
The end of the COPYING file was generated with:
% python ./util/find_copyrights.py configs src system tests util
Update -C command line option to spit out COPYING file
Last summer's big rewrite of the initialization code (in
particular cset 6efc3672733b) got rid of the implicit parenting
that used to occur when an unparented SimObject was assigned as
a parameter value to another SimObject. The idea was that the
new adoptOrphanParams() step would catch these anyway so it was
unnecessary.
Unfortunately it turns out that adoptOrphanParams() has some
inherent instability in that the parent that does the adoption
depends on the config tree traversal order. Even making this
order deterministic (e.g., by traversing children in
alphabetical order) can introduce unwanted and unexpected
hierarchy changes between similar configs (e.g., when adding a
switch_cpu in place of a cpu), causing problems when trying to
restore checkpoints across similar configs. The hierarchy
created by implicit parenting is more stable and more
controllable, so this patch turns that behavior back on.
This patch also cleans up some long-standing holes regarding
parenting of SimObjects that are created in class definitions
(either in the body of the class, or as default parameters).
To avoid breaking some existing config files, this necessitated
changing the error on reparenting children to a warning. This
change fixes another bug where attempting to print the prior
error message would fail on reparenting SimObjectVectors
because they lack a _parent attribute. Some further issues
with SimObjectVectors were cleaned up by getting rid of the
get_parent() call (which could cause errors with some
SimObjectVectors where there was no single parent to return)
with has_parent() (since all the uses of get_parent() were just
boolean tests anyway).
Finally, since the adoptOrphanParam() step turned out to be so
problematic, we now issue a warning when it actually has to do
an adoption. Future cleanup of config files will get rid of
current warnings.
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
This is basically like the range_map stuff in src/base (range already
exists in Python). This code is like a set of ranges. I'm using it
to keep track of changed lines in source code, but it could be use to
keep track of memory ranges and holes in memory regions. It could
also be used in memory allocation type stuff. (Though it's not at all
optimized.)
This causes a lot of rebuilds that could have otherwise possibly been
avoided, and, more annoyingly, a lot of unnecessary rerunning of the
regressions. The benefits of having the revision in the output haven't
materialized, so this change removes it.
I like the brevity of Ali's recent change, but the ambiguity of
sometimes showing the source and sometimes the target is a little
confusing. This patch makes scons typically list all sources and
all targets for each action, with the common path prefix factored
out for brevity. It's a little more verbose now but also more
informative.
Somehow Ali talked me into adding colors too, which is a whole
'nother story.
Ran all the source files through 'perl -pi' with this script:
s|\s*(};?\s*)?/\*\s*(end\s*)?namespace\s*(\S+)\s*\*/(\s*})?|} // namespace $3|;
s|\s*};?\s*//\s*(end\s*)?namespace\s*(\S+)\s*|} // namespace $2\n|;
s|\s*};?\s*//\s*(\S+)\s*namespace\s*|} // namespace $1\n|;
Also did a little manual editing on some of the arch/*/isa_traits.hh files
and src/SConscript.