Commit graph

9 commits

Author SHA1 Message Date
Mrinmoy Ghosh
6fc0094337 Cache: add a response latency to the caches
In the current caches the hit latency is paid twice on a miss. This patch lets
a configurable response latency be set of the cache for the backward path.
2012-09-25 11:49:41 -05:00
Andreas Hansson
0d32940711 Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.

A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.

A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.

The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.

A bit of minor tidying up has also been done.

--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 13:30:04 -04:00
Ali Saidi
eaa994e7f6 cache: Allow main memory to be at disjoint address ranges. 2012-03-09 09:59:25 -05:00
Andreas Hansson
32eae8094d CPU: Check that the interrupt controller is created when needed
This patch adds a creation-time check to the CPU to ensure that the
interrupt controller is created for the cases where it is needed,
i.e. if the CPU is not being switched in later and not a checker CPU.

The patch also adds the "createInterruptController" call to a number
of the regression scripts.
2012-03-02 09:21:48 -05:00
Andreas Hansson
5a9a743cfc MEM: Introduce the master/slave port roles in the Python classes
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.

The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.

Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
2012-02-13 06:43:09 -05:00
Gabe Black
ec20ee2f7c SE/FS: Make SE vs. FS mode a runtime parameter. 2012-01-28 07:24:34 -08:00
Andreas Hansson
2208ea049f MEM: Make the bus bridge unidirectional and fixed address range
This patch makes the bus bridge uni-directional and specialises the
bus ports to be a master port and a slave port. This greatly
simplifies the assumptions on both sides as either port only has to
deal with requests or responses. The following patches introduce the
notion of master and slave ports, and would not be possible without
this split of responsibilities.

In making the bridge unidirectional, the address range mechanism of
the bridge is also changed. For the cases where communication is
taking place both ways, an additional bridge is needed. This causes
issues with the existing mechanism, as the busses cannot determine
when to stop iterating the address updates from the two bridges. To
avoid this issue, and also greatly simplify the specification, the
bridge now has a fixed set of address ranges, specified at creation
time.
2012-01-17 12:55:09 -06:00
Ali Saidi
a432d8e085 Mem: Fix issue with dirty block being lost when entire block transferred to non-cache.
This change fixes the problem for all the cases we actively use. If you want to try
more creative I/O device attachments (E.g. sharing an L2), this won't work. You
would need another level of caching between the I/O device and the cache
(which you actually need anyway with our current code to make sure writes
propagate). This is required so that you can mark the cache in between as
top level and it won't try to send ownership of a block to the I/O device.
Asserts have been added that should catch any issues.
2011-03-17 19:20:19 -05:00
Gabe Black
dd53743797 X86: Add scripts to support X86 FS configurations in the regressions. 2011-02-07 01:23:02 -08:00