These flags were being used to identify what alignment a request needed, but
the same information is available using the request size. This change also
eliminates the isMisaligned function. If more complicated alignment checks are
needed, they can be signaled using the ASI_BITS space in the flags vector like
is currently done with ARM.
This change makes the 8250 device return the value it has for the MCR when
read instead of leaving the packet data unmodified/uninitialized. The value
the UART has for the MCR may not be right, but that's a seperate issue that
apparently hasn't caused any problems to date.
In the process make add skipFuction() to handle isa specific function skipping
instead of ifdefs and other ugliness. For almost all ABIs, 64 bit arguments can
only start in even registers. Size is now passed to getArgument() so that 32
bit systems can make decisions about register selection for 64 bit arguments.
The number argument is now passed by reference because getArgument() will need
to change it based on the size of the argument and the current argument number.
For ARM, if the argument number is odd and a 64-bit register is requested the
number must first be incremented to because all 64 bit arguments are passed
in an even argument register. Then the number will be incremented again to
access both halves of the argument.
Move generated enums into internal.params, which gets
imported into object.params, restoring backward
compatibility for scripts that expect to find them there.
If we write back an exclusive copy, we now mark it
as such, so the cache receiving the writeback can
mark its copy as exclusive. This avoids some
unnecessary upgrade requests when a cache later
tries to re-acquire exclusive access to the block.
It's not the right fix for the checkpoint deadlock problem
Brad was having, and creates another bug where the system can
deadlock on restore. Brad can't reproduce the original bug
right now, so we'll wait until it arises again and then try
to fix it the right way then.
This reduces the scope of those includes and makes it less likely for there to
be a dependency loop. This also moves the hashing functions associated with
ExtMachInst objects to be with the ExtMachInst definitions and out of
utility.hh.
This code is no longer needed because of the preceeding change which adds a
StaticInstPtr parameter to the fault's invoke method, obviating the only use
for this pair of functions.
Also move the "Fault" reference counted pointer type into a separate file,
sim/fault.hh. It would be better to name this less similarly to sim/faults.hh
to reduce confusion, but fault.hh matches the name of the type. We could change
Fault to FaultPtr to match other pointer types, and then changing the name of
the file would make more sense.
This is necessary because versions of swig older than 1.3.39 fail to
do the right thing and try to do relative imports for everything (even
with the package= option to %module). Instead of putting params in
the m5.internal.params package, put params in the m5.internal package
and make all param modules start with param_. Same thing for
m5.internal.enums.
Also, stop importing all generated params into m5.objects. They are
not necessary and now with everything using relative imports we wound
up with pollution of the namespace (where builtin-range got overridden).
--HG--
rename : src/python/m5/internal/enums/__init__.py => src/python/m5/internal/enums.py
rename : src/python/m5/internal/params/__init__.py => src/python/m5/internal/params.py
Instead of putting all object files into m5/object/__init__.py, interrogate
the importer to find out what should be imported.
Instead of creating a single file that lists all of the embedded python
modules, use static object construction to put those objects onto a list.
Do something similar for embedded swig (C++) code.
It doesn't appear to be necessary and it is somewhat odd. I'm pretty
sure that the package parameter to %module does whatever this might
have been before. It's necessary in future revisions anyway.
Corrects an oversight in cset f97b62be544f. The fix there only
failed queued SCUpgradeReq packets that encountered an
invalidation, which meant that the upgrade had to reach the L2
cache. To handle pending requests in the L1 we must similarly
fail StoreCondReq packets too.
Allow lower-level caches (e.g., L2 or L3) to pass exclusive
copies to higher levels (e.g., L1). This eliminates a lot
of unnecessary upgrade transactions on read-write sequences
to non-shared data.
Also some cleanup of MSHR coherence handling and multiple
bug fixes.
Don't assert that the response packet is marked as a response
since it won't always be so for functional accesses.
Also cleanup code to refer to functional accesses rather
than "probes" (old terminology), and mention in the
DPRINTF which type of access we're doing.
Without this flag set, page-crossing requests were not split into two mem
request.
Depending on the alignment bit in the SCTLR, misaligned access could
raise a fault. However it seems unnecessary to implement that.
This fault can used to flush the pipe, not including the faulting instruction.
The particular case I needed this was for a self-modifying code. It needed to
drain the store queue and force the following instruction to refetch from
icache. DCCMVAC cp15 mcr instruction is modified to raise this fault.
When decoding a srs instruction, invalid mode encoding returns invalid instruction.
This can happen when garbage instructions are fetched from mispredicted path
Allow some loads that update the base register to use just two micro-ops. three
micro-ops are only used if the destination register matches the offset register
or the PC is the destination regsiter. If the PC is updated it needs to be
the last micro-op otherwise O3 will mispredict.
inUserMode now can take either a threadcontext or a CPSR value directly. If
given a thread context it just extracts the CPSR and calls the other version.
An inPrivelegedMode function was also implemented which just returns the
opposite of inUserMode.
This is to help tidy up arch/x86. These files should not be used external to
the ISA.
--HG--
rename : src/arch/x86/apicregs.hh => src/arch/x86/regs/apic.hh
rename : src/arch/x86/floatregs.hh => src/arch/x86/regs/float.hh
rename : src/arch/x86/intregs.hh => src/arch/x86/regs/int.hh
rename : src/arch/x86/miscregs.hh => src/arch/x86/regs/misc.hh
rename : src/arch/x86/segmentregs.hh => src/arch/x86/regs/segment.hh
This single parameter replaces the collection of bools that set up various
flavors of microops. A flag parameter also allows other flags to be set like
the serialize before/after flags, etc., without having to change the
constructor.
Since miscellaneous registers bypass wakeup logic, force serialization
to resolve data dependencies through them
* * *
ARM: adding non-speculative/serialize flags for instructions change CPSR
THis allows the CPU to handle predicated-false instructions accordingly.
This particular patch makes loads that are predicated-false to be sent
straight to the commit stage directly, not waiting for return of the data
that was never requested since it was predicated-false.
This allows one two different OS requirements for the same ISA to be handled.
Some OSes are compiled for a virtual address and need to be loaded into physical
memory that starts at address 0, while other bare metal tools generate
images that start at address 0.
This was being done in read(), but if readBytes was called directly it
wouldn't happen. Also, instead of setting the memory blob being read to -1
which would (I believe) require using memset with -1 as a parameter, this now
uses bzero. It's hoped that it's more specialized behavior will make it
slightly faster.
bkt size isn't evenly divisible by max-min and it would round down,
it's possible to sample a distribution and have no place to put the sample.
When this case occured the simulator would assert.
This patch allows messages to be stalled in their input buffers and wait
until a corresponding address changes state. In order to make this work,
all in_ports must be ranked in order of dependence and those in_ports that
may unblock an address, must wake up the stalled messages. Alot of this
complexity is handled in slicc and the specification files simply
annotate the in_ports.
--HG--
rename : src/mem/slicc/ast/CheckAllocateStatementAST.py => src/mem/slicc/ast/StallAndWaitStatementAST.py
rename : src/mem/slicc/ast/CheckAllocateStatementAST.py => src/mem/slicc/ast/WakeUpDependentsStatementAST.py
Patch allows each individual message buffer to have different recycle latencies
and allows the overall recycle latency to be specified at the cmd line. The
patch also adds profiling info to make sure no one processor's requests are
recycled too much.
The main purpose for clearing stats in the unserialize process is so
that the profiler can correctly set its start time to the unserialized
value of curTick.
This patch allows one to disable migratory sharing for those cache blocks that
are accessed by atomic requests. While the implementations are different
between the token and hammer protocols, the motivation is the same. For
Alpha, LLSC semantics expect that normal loads do not unlock cache blocks that
have been locked by LL accesses. Therefore, locked blocks should not transfer
write permissions when responding to these load requests. Instead, only they
only transfer read permissions so that the subsequent SC access can possibly
succeed.
Added drain functions to the RTC and 8254 timer so that periodic interrupts
stop when the system is draining. This patch is needed to checkpoint in
timing mode. Otherwise under certain situations, the event queue will never
be completely empty.
This patch fixes several bugs related to previous inconsistent assumptions on
how many tokens the Owner had. Mike Marty should have fixes these bugs years
ago. :)
Previously, the MOESI_hammer protocol calculated the same latency for L1 and
L2 hits. This was because the protocol was written using the old ruby
assumption that L1 hits used the sequencer fast path. Since ruby no longer
uses the fast-path, the protocol delays L2 hits by placing them on the
trigger queue.
The previous slower ruby latencies created a mismatch between the faster M5
cpu models and the much slower ruby memory system. Specifically smp
interrupts were much slower and infrequent, as well as cpus moving in and out
of spin locks. The result was many cpus were idle for large periods of time.
These changes fix the latency mismatch.