Splits the CommMonitor trace_file parameter into three parameters. Previously,
the trace was only enabled if the trace_file parameter was set, and would be
written to this file. This patch adds in a trace_enable and trace_compress
parameter to the CommMonitor.
No trace is generated if trace_enable is set to False. If it is set to True, the
trace is written to a file based on the name of the SimObject in the simulation
hierarchy. For example, system.cluster.il1_commmonitor.trc. This filename can be
overridden by additionally specifying a file name to the trace_file parameter
(more on this later).
The trace_compress parameter will append .gz to any filename if set to True.
This enables compression of the generated traces. If the file name already ends
in .gz, then no changes are made.
The trace_file parameter will override the name set by the trace_enable
parameter. In the case that the specified name does not end in .gz but
trace_compress is set to true, .gz is appended to the supplied file name.
This patch removes the notion of a peer block size and instead sets
the cache line size on the system level.
Previously the size was set per cache, and communicated through the
interconnect. There were plenty checks to ensure that everyone had the
same size specified, and these checks are now removed. Another benefit
that is not yet harnessed is that the cache line size is now known at
construction time, rather than after the port binding. Hence, the
block size can be locally stored and does not have to be queried every
time it is used.
A follow-on patch updates the configuration scripts accordingly.
This patch fixes the CommMonitor local variable names, and also
introduces a variable to capture if it expects to see a response. The
latter check considers both needsResponse and memInhibitAsserted.
This patch adds an optional flags field to the packet trace to encode
the request flags that contain information about whether the request
is (un)cacheable, instruction fetch, preftech etc.
This patch adds a predecessor field to the SenderState base class to
make the process of linking them up more uniform, and enable a
traversal of the stack without knowing the specific type of the
subclasses.
There are a number of simplifications done as part of changing the
SenderState, particularly in the RubyTest.
This patch fixes a bug in the CommMonitor caused by the packet being
modified before it is captured in the trace. By recording the fields
before passing the packet on, and then putting these values in the
trace we ensure that even if the packet is modified the trace captures
what the CommMonitor saw.
This patch adds packet tracing to the communication monitor using a
protobuf as the mechanism for creating the trace.
If no file is specified, then the tracing is disabled. If a file is
specified, then for every packet that is successfully sent, a protobuf
message is serialized to the file.
This patch adds a _curTick variable to an eventq. This variable is updated
whenever an event is serviced in function serviceOne(), or all events upto
a particular time are processed in function serviceEvents(). This change
helps when there are eventqs that do not make use of curTick for scheduling
events.
This patch adds an additional level of ports in the inheritance
hierarchy, separating out the protocol-specific and protocl-agnostic
parts. All the functionality related to the binding of ports is now
confined to use BaseMaster/BaseSlavePorts, and all the
protocol-specific parts stay in the Master/SlavePort. In the future it
will be possible to add other protocol-specific implementations.
The functions used in the binding of ports, i.e. getMaster/SlavePort
now use the base classes, and the index parameter is updated to use
the PortID typedef with the symbolic InvalidPortID as the default.
This patch makes getAddrRanges const throughout the code base. There
is no reason why it should not be, and making it const prevents adding
any unintentional side-effects.
This patch adds getAddrRanges to the master port, and thus avoids
going through getSlavePort to be able to ask the slave. Similar to the
previous patch that added isSnooping to the SlavePort, this patch aims
to introduce an additional level of hierarchy in the ports (base port
being protocol-agnostic) and getSlave/MasterPort will return port
pointers to these base classes.
The function is named getAddrRanges also on the master port, but does
nothing besides asking the connected slave port. The slave port, as
before, has to provide an implementation and actually produce a list
of address ranges. The initial design used the name getSlaveAddrRanges
for the new function, but the more verbose name was later changed.
This patch adds isSnooping to the slave port, and thus avoids going
through getMasterPort to be able to ask the master. Over the course of
the next few patches, all getMasterPort/getSlavePort in Port and
MemObject are to be protocol agnostic, and the snooping is part of the
protocol layer.
The function is already present on the master port, where it is
implemented by the module itself, e.g. a cache. On the slave side, it
is merely asking the connected master port. The same name is used by
both functions despite their difference in behaviour. The initial
design used isMasterSnooping on the slave port side, but the more
verbose function name was later changed.
This patch adds a communication monitor MemObject that can be inserted
between a master and slave port to provide a range of statistics about
the communication passing through it. The communication monitor is
non-invasive and does not change any properties or timing of the
packets, with the exception of adding a sender state to be able to
track latency. The statistics are only collected in timing mode (not
atomic) to avoid slowing down any fast forwarding.
An example of the statistics captured by the monitor are: read/write
burst lengths, bandwidth, request-response latency, outstanding
transactions, inter transaction time, transaction count, and address
distribution. The monitor can be used in combination with periodic
resetting and dumping of stats (through schedStatEvent) to study the
behaviour over time.
In future patches, a selection of convenience scripts will be added to
aid in visualising the statistics collected by the monitor.