This patch defines a multi-level page table class that stores the page table in
system memory, consistent with ISA specifications. In this way, cpu models that
use the actual hardware to execute (e.g. KvmCPU), are able to traverse the page
table.
This patch ensures the cycle check is still valid even restoring from
a checkpoint. In this case the DRAMSim2 cycle count is relative to the
startTick rather than 0.
We currently use our own home-baked support for type-safe variadic
functions. This is confusing and somewhat limited (e.g., cprintf only
supports a limited number of arguments). This changeset converts all
uses of our internal varargs support to use C++11 variadic macros.
Add the macros M5_ATTR_FINAL and M5_ATTR_OVERRIDE which are defined to
final and override respectively if supported by the compiler. This is
done to allow a smooth transition to gcc >= 4.7.
If a bit field in a bit union specified as Bitfield<LSB, MSB> instead
of Bitfield<MSB, LSB> the code silently fails and the field is read as
zero. This changeset introduces a static assert that tests, at compile
time, that the bit order is correct.
The order of the MSB and LSB bit of the mm field in the PSTATE union
is wrong. Any access to this field will currently be ignored and reads
will always return zero. This patch fixes the ordering so it is <MSB,
LSB> instead of <LSB, MSB>.
This patch fixes a bug in the DRAM controller address decoding. In
cases where the DRAM burst size (e.g. 32 bytes in a rank with a single
LPDDR3 x32) was smaller than the channel interleaving size
(e.g. systems with a 64-byte cache line) one address bit effectively
got used as a channel bit when it should have been a low-order column
bit.
This patch adds a notion of "columns per stripe", and more clearly
deals with the low-order column bits and high-order column bits. The
patch also relaxes the granularity check such that it is possible to
use interleaving granularities other than the cache line size.
The patch also adds a missing M5_CLASS_VAR_USED to the tCK member as
it is only used in the debug build for now.
This patch adds a fix for older checkpoints before support for
multiple event queues were added in changeset 2cce74fe359e. The change
in checkpoint version should really hav ebeen part of the
aforementioned changeset.
Some newer binaries compiled for Versatile Express TC2 contain access
to implementation specific L2MERRSR registers. This causes an infinite
loop of undefined exceptions. This patch changes the behavior to "warn
not fail" to keep the workloads going.
Baremetal workloads are specified using the "kernel" parameter, but
don't always have the correct address mappings. This patch adds a
boolean flag to the system and bypasses the kernel addr mapping checks
when running in baremetal mode.
The branch predictor is normally only built when a CPU that uses a
branch predictor is built. The list of CPUs is currently incomplete as
the simple CPUs support branch predictors (for warming, branch stats,
etc). In practice, all CPU models now use branch predictors, so this
changeset removes the CPU model check and replaces it with a check for
the NULL ISA.
Certain versions of clang complain about unused private members if
they are not used. This changeset removes such members from the
MIPS-specific classes to silence the warning.
Certain versions of clang complain about unused private members if
they are not used. This changeset removes such members from the
POWER-specific ProcessInfo struct to silence the warning.
This changeset fixes three types of warnings that occur in clang 3.4
on Ubuntu 12.04:
* Certain versions of libstdc++ (primarily 4.8) use struct and class
interchangeably. This triggers a warning in clang.
* Swig has a tendency to generate code with the register class which
was deprecated in C++11. This triggers a deprecation warning in
clang.
* Swig sometimes generates Python wrapper code which returns
uninitialized values. It's unclear if this is actually a problem
(the cases might be limited to failure paths). We'll silence these
warnings for now since there is little we can do about the
generated code.
The M5_PRAGMA_NORETURN macro was only used in for
__exit_message. Since the macro only holds a stub definition and all
functions with noreturn semantics use the M5_ATTR_NORETURN, this
macros is completely redundant.
RefCountingPtr is sometimes forward declared to avoid having to
include refcnt.hh. This does not work since we typically return
instances of RefCountingPtr rather than references to instances. The
only reason this currently works is that we include refcnt.hh in
cprintf.hh, which "leaks" the header to most other source files. This
changeset replaces such forward declarations with an include of
refcnt.hh.
When a cacheline is written back to a lower-level cache,
tags->insertBlock() sets various status parameters. However these
status bits were cleared immediately after calling. This patch makes
it so that these status fields are not cleared by moving them outside
of the tags->insertBlock() call.
This patch does some minor house keeping of the branch predictor by
adopting STL containers, and shifting some iterator to use range-based
for loops.
The predictor history is also changed from a list to a deque as we
never to insertion/deletion other than at the front and back.
This patch adds the SubSystem container for grouping
simobjects together in logical subsystems to facilitate
building a larger system from constituent parts. The container
is simply a non-abstract empty simobject to hold the components
that will be connected as its children. In simulation the
object does not participate, its only use is during configuration
of the system.
This patch adds helper functions to SimObject.py, params.py and
simulate.py to enable the new configuration system. Functions like
enumerateParams() in SimObject lets the config system auto-generate
command line options for simobjects to be modified on the command
line.
Params in params.py have __call__() added
to their definition to allow the argparse module to use them
as a type to check command input is in the proper format.
This patch adds a check to ensure that packets which are not going to
a memory range are suppressed in the traffic generator. Thus, if a
trace is collected in full-system, the packets destined for devices
are not played back.
this patch implements a new tags class that uses a random replacement policy.
these tags prefer to evict invalid blocks first, if none are available a
replacement candidate is chosen at random.
this patch factors out the common code in the LRU class and creates a new
abstract class: the BaseSetAssoc class. any set associative tag class must
implement the functionality related to the actual replacement policy in the
following methods:
accessBlock()
findVictim()
insertBlock()
invalidate()
This patch contains a new CPU model named `Minor'. Minor models a four
stage in-order execution pipeline (fetch lines, decompose into
macroops, decompose macroops into microops, execute).
The model was developed to support the ARM ISA but should be fixable
to support all the remaining gem5 ISAs. It currently also works for
Alpha, and regressions are included for ARM and Alpha (including Linux
boot).
Documentation for the model can be found in src/doc/inside-minor.doxygen and
its internal operations can be visualised using the Minorview tool
utils/minorview.py.
Minor was designed to be fairly simple and not to engage in a lot of
instruction annotation. As such, it currently has very few gathered
stats and may lack other gem5 features.
Minor is faster than the o3 model. Sample results:
Benchmark | Stat host_seconds (s)
---------------+--------v--------v--------
(on ARM, opt) | simple | o3 | minor
| timing | timing | timing
---------------+--------+--------+--------
10.linux-boot | 169 | 1883 | 1075
10.mcf | 117 | 967 | 491
20.parser | 668 | 6315 | 3146
30.eon | 542 | 3413 | 2414
40.perlbmk | 2339 | 20905 | 11532
50.vortex | 122 | 1094 | 588
60.bzip2 | 2045 | 18061 | 9662
70.twolf | 207 | 2736 | 1036
Stop setting the use_default_range flag in PioBus in order to
have random bad addresses result in a BadAddress response and
not a gem5 fatal error. This is necessary in Ruby as Ruby is
connected directly to PioBus, so misspeculated addresses will
be sent there directly. For the classic memory system, this
change has no effect, as bad addresses are caught by the
memory bus before being sent to the PioBus.
This work was done while Binh was an intern at AMD Research.
The System object has a static MemoryModeStrings array
that's (1) unused and (2) redundant, since there's an
auto-generated version in the Enums namespace. No
point in leaving it in.
When we switched getSyscallArg() from explicit arg indices to
the implicit method, some DPRINTF arguments were left as calls
to getSyscallArg(), even though C/C++ doesn't guarantee
anything about the order of invocation of these calls. As a
result, the args could be printed out in arbitrary orders.
Interestingly, this bug has been around since 2009:
http://repo.gem5.org/gem5/rev/4842482e1bd1
this operator uses memcmp() to detect if two EthAddr object have the same
address, however memcmp() will return 0 if all bytes are equal. operator==
returns the return value of memcmp() to indicate whether or not two
address are equal. this is incorrect as it will always give the opposite of
the intended behavior. this patch fixes that problem.
per the IEEE 802 spec:
1) fixed broadcast() to ensure that all bytes are equal to 0xff.
2) fixed unicast() to ensure that bit 0 of the first byte is equal to 0
3) fixed multicast() to ensure that bit 0 of the first byte is equal to 1, and
that it is not a broadcast.
also the constructors in EthAddr are fixed so that all bytes of data are
initialized.
Adds DVFS capabilities to gem5, by allowing users to specify lists for
frequencies and voltages in SrcClockDomains and VoltageDomains respectively.
A separate component, DVFSHandler, provides a small interface to change
operating points of the associated domains.
Clock domains will be linked to voltage domains and thus allow separate clock,
but shared voltage lines.
Currently all the valid performance-level updates are performed with a fixed
transition latency as specified for the domain.
Config file example:
...
vd = VoltageDomain(voltage = ['1V','0.95V','0.90V','0.85V'])
tsys.cluster1.clk_domain.clock = ['1GHz','700MHz','400MHz','230MHz']
tsys.cluster2.clk_domain.clock = ['1GHz','700MHz','400MHz','230MHz']
tsys.cluster1.clk_domain.domain_id = 0
tsys.cluster2.clk_domain.domain_id = 1
tsys.cluster1.clk_domain.voltage_domain = vd
tsys.cluster2.clk_domain.voltage_domain = vd
tsys.dvfs_handler.domains = [tsys.cluster1.clk_domain,
tsys.cluster2.clk_domain]
tsys.dvfs_handler.enable = True
This patch adds a DRAMPower flag to enable off-line DRAM power
analysis using the DRAMPower tool. A new DRAMPower flag is added
and a follow-on patch adds a Python script to post-process the output
and order it based on time stamps.
The long-term goal is to link DRAMPower as a library and provide the
commands through function calls to the model rather than first
printing and then parsing the commands. At the moment it is also up to
the user to ensure that the same DRAM configuration is used by the
gem5 controller model and DRAMPower.
This patch adds the index of the bank and rank as a field so that we can
determine the identity of a given bank (reference or pointer) for the
power tracing. We also grab the opportunity of cleaning up the
arguments used for identifying the bank when activating.
In a cycle, we could see a R and W requests corresponding to the same
page walk being sent to the memory. During the cycle that assertion
happens, we have 2 responses corresponding to the R and W above. We
also have a 'read' variable to keep track of the inflight Read
request, this gets reset to NULL right after we send out any R
request; and gets set to the next R in the page walk when a response
comes back.
The issue we are seeing here is when we get a response for W request,
assert(!read) fires because we got a response for R request right
before this, hence we set 'read' to NOT NULL value, pointing to the
next R request in the pagewalk!
This work was done while Binh was an intern at AMD Research.
Check for free entries in Load Queue and Store Queue separately to
avoid cases when load cannot be renamed due to full Store Queue and
vice versa.
This work was done while Binh was an intern at AMD Research.
This patch bumps the supported version of gcc from 4.4 to 4.6, and
clang from 2.9 to 3.0. This enables, amongst other things, range-based
for loops, lambda expressions, etc. The STL implementation shipping
with 4.6 also has a full functional implementation of unique_ptr and
shared_ptr.
The language describing the clockEdge and nextCycle functions were ambiguous,
and so were prone to misinterpretation/misuse. Clear up the comments to more
rigorously describe their functionality.
Using '== true' in a boolean expression is totally redundant,
and using '== false' is pretty verbose (and arguably less
readable in most cases) compared to '!'.
It's somewhat of a pet peeve, perhaps, but I had some time
waiting for some tests to run and decided to clean these up.
Unfortunately, SLICC appears not to have the '!' operator,
so I had to leave the '== false' tests in the SLICC code.
This patch removes the stat totalCommittedInsts. This variable was used for
recording the total number of instructions committed across all the threads
of a core. The instructions committed by each thread are recorded invidually.
The total would now be generated by summing these individual counts.
This patch makes a more firm connection between the DDR3-1600
configuration and the corresponding datasheet, and also adds a
DDR3-2133 and a DDR4-2400 configuration. At the moment there is also
an ongoing effort to align the choice of datasheets to what is
available in DRAMPower.
This patch extends the current timing parameters with the DRAM cycle
time. This is needed as the DRAMPower tool expects timestamps in DRAM
cycles. At the moment we could get away with doing this in a
post-processing step as the DRAMPower execution is separate from the
simulation run. However, in the long run we want the tool to be called
during the simulation, and then the cycle time is needed.
This patch adds the basic ingredients for a precharge all operation,
to be used in conjunction with DRAM power modelling.
Currently we do not try and apply any cleverness when precharging all
banks, thus even if only a single bank is open we use PREA as opposed
to PRE. At the moment we only have a single tRP (tRPpb), and do not
model the slightly longer all-bank precharge constraint (tRPab).
This patch adds the tRTP timing constraint, governing the minimum time
between a read command and a precharge. Default values are provided
for the existing DRAM types.
This patch merges the two control paths used to estimate the latency
and update the bank state. As a result of this merging the computation
is now in one place only, and should be easier to follow as it is all
done in absolute (rather than relative) time.
As part of this change, the scheduling is also refined to ensure that
we look at a sensible estimate of the bank ready time in choosing the
next request. The bank latency stat is removed as it ends up being
misleading when the DRAM access code gets evaluated ahead of time (due
to the eagerness of waking the model up for scheduling the next
request).
This patch adds the write recovery time to the DRAM timing
constraints, and changes the current tRASDoneAt to a more generic
preAllowedAt, capturing when a precharge is allowed to take place.
The part of the DRAM access code that accounts for the precharge and
activate constraints is updated accordingly.
This patch adds power states to the controller. These states and the
transitions can be used together with the Micron power model. As a
more elaborate use-case, the transitions can be used to drive the
DRAMPower tool.
At the moment, the power-down modes are not used, and this patch
simply serves to capture the idle, auto refresh and active modes. The
patch adds a third state machine that interacts with the refresh state
machine.
This patch adds a state machine for the refresh scheduling to
ensure that no accesses are allowed while the refresh is in progress,
and that all banks are propely precharged.
As part of this change, the precharging of banks of broken out into a
method of its own, making is similar to how activations are dealt
with. The idle accounting is also updated to ensure that the refresh
duration is not added to the time that the DRAM is in the idle state
with all banks precharged.
This patch changes the read/write event loop to use a single event
(nextReqEvent), along with a state variable, thus joining the two
control flows. This change makes it easier to follow the state
transitions, and control what happens when.
With the new loop we modify the overly conservative switching times
such that the write-to-read switch allows bank preparation to happen
in parallel with the bus turn around. Similarly, the read-to-write
switch uses the introduced tRTW constraint.
This patch adds a the member function StaticInst::printFlags to allow all
of an instruction's flags to be printed without using the individual
is... member functions or resorting to exposing the 'flags' vector
It also replaces the enum definition StaticInst::Flags with a
Python-generated enumeration and adds to the enum generation mechanism
in src/python/m5/params.py to allow Enums to be placed in namespaces
other than Enums or, alternatively, in wrapper structs allowing them to
be inherited by other classes (so populating that class's name-space
with the enumeration element names).
This patch encompasses several interrelated and interdependent changes
to the ISA generation step. The end goal is to reduce the size of the
generated compilation units for instruction execution and decoding so
that batch compilation can proceed with all CPUs active without
exhausting physical memory.
The ISA parser (src/arch/isa_parser.py) has been improved so that it can
accept 'split [output_type];' directives at the top level of the grammar
and 'split(output_type)' python calls within 'exec {{ ... }}' blocks.
This has the effect of "splitting" the files into smaller compilation
units. I use air-quotes around "splitting" because the files themselves
are not split, but preprocessing directives are inserted to have the same
effect.
Architecturally, the ISA parser has had some changes in how it works.
In general, it emits code sooner. It doesn't generate per-CPU files,
and instead defers to the C preprocessor to create the duplicate copies
for each CPU type. Likewise there are more files emitted and the C
preprocessor does more substitution that used to be done by the ISA parser.
Finally, the build system (SCons) needs to be able to cope with a
dynamic list of source files coming out of the ISA parser. The changes
to the SCons{cript,truct} files support this. In broad strokes, the
targets requested on the command line are hidden from SCons until all
the build dependencies are determined, otherwise it would try, realize
it can't reach the goal, and terminate in failure. Since build steps
(i.e. running the ISA parser) must be taken to determine the file list,
several new build stages have been inserted at the very start of the
build. First, the build dependencies from the ISA parser will be emitted
to arch/$ISA/generated/inc.d, which is then read by a new SCons builder
to finalize the dependencies. (Once inc.d exists, the ISA parser will not
need to be run to complete this step.) Once the dependencies are known,
the 'Environments' are made by the makeEnv() function. This function used
to be called before the build began but now happens during the build.
It is easy to see that this step is quite slow; this is a known issue
and it's important to realize that it was already slow, but there was
no obvious cause to attribute it to since nothing was displayed to the
terminal. Since new steps that used to be performed serially are now in a
potentially-parallel build phase, the pathname handling in the SCons scripts
has been tightened up to deal with chdir() race conditions. In general,
pathnames are computed earlier and more likely to be stored, passed around,
and processed as absolute paths rather than relative paths. In the end,
some of these issues had to be fixed by inserting serializing dependencies
in the build.
Minor note:
For the null ISA, we just provide a dummy inc.d so SCons is never
compelled to try to generate it. While it seems slightly wrong to have
anything in src/arch/*/generated (i.e. a non-generated 'generated' file),
it's by far the simplest solution.
The unproxy code for Parent.any can generate a circular reference
in certain situations with classes hierarchies like those in ClockDomain.py.
This patch solves this by marking ouself as visited to make sure the
search does not resolve to a self-reference.
The ARM TLBs have a bootUncacheability flag used to make some loads
and stores become uncacheable when booting in FS mode. Later the
flag is cleared to let those loads and stores operate as normal. When
doing a takeOverFrom(), this flag's state is not preserved and is
momentarily reset until the CPSR is touched. On single core runs this
is a non-issue. On multi-core runs this can lead to crashes on the O3
CPU model from the following series of events:
1) takeOverFrom executed to switch from Atomic -> O3
2) All bootUncacheability flags are reset to true
3) Core2 tries to execute a load covered by bootUncacheability, it
is flagged as uncacheable
4) Core2's load needs to replay due to a pipeline flush
3) Core1 core does an action on CPSR
4) The handling code for CPSR then checks all other cores
to determine if bootUncacheability can be set to false
5) Asynchronously set bootUncacheability on all cores to false
6) Core2 replays load previously set as uncacheable and notices
it is now flagged as cacheable, leads to a panic.
This patch implements takeOverFrom() functionality for the ARM TLBs
to preserve flag values when switching from atomic -> detailed.
For the o3, add instruction mix (OpClass) histogram at commit (stats
also already collected at issue). For the simple CPUs we add a
histogram of executed instructions
This patch squashes prefetch requests from downstream caches,
so that they do not steal cachelines away from caches closer
to the cpu. It was originally coded by Mitch Hayenga and
modified by Aasheesh Kolli.
This source for stats binds an object and a method / function from the object
to a stats object. This allows pulling out stats from object methods without
needing to go through a global, or static shim.
Syntax is somewhat unpleasant, but the templates and method pointer type
specification were quite tricky. Interface is very clean though; and similar
to .functor
Allow the specification of a socket ID for every core that is reflected in the
MPIDR field in ARM systems. This allows studying multi-socket / cluster
systems with ARM CPUs.
Splits the CommMonitor trace_file parameter into three parameters. Previously,
the trace was only enabled if the trace_file parameter was set, and would be
written to this file. This patch adds in a trace_enable and trace_compress
parameter to the CommMonitor.
No trace is generated if trace_enable is set to False. If it is set to True, the
trace is written to a file based on the name of the SimObject in the simulation
hierarchy. For example, system.cluster.il1_commmonitor.trc. This filename can be
overridden by additionally specifying a file name to the trace_file parameter
(more on this later).
The trace_compress parameter will append .gz to any filename if set to True.
This enables compression of the generated traces. If the file name already ends
in .gz, then no changes are made.
The trace_file parameter will override the name set by the trace_enable
parameter. In the case that the specified name does not end in .gz but
trace_compress is set to true, .gz is appended to the supplied file name.
Unimplemented miscregs for the generic timer were guarded by panics
in arm/isa.cc which can be tripped by the O3 model if it speculatively
executes a wrong path containing a mrs instruction with a bad miscreg
index. These registers were flagged as implemented and accessible.
This patch changes the miscreg info bit vector to flag them as
unimplemented and inaccessible. In this case, and UndefinedInst
fault will be generated if the register access is not trapped
by a hypervisor.
This patch changes the default pixel clock to effectively generate
1080p resolution at 60 frames per second. It is dependent upon the
kernel device tree file using the specified resolution / display
string in the comments.
This is a quick hack to communicate a greater number of CPUs to a guest OS via
the ARM A9 SCU config register. Some OSes (Linux) just look at the bottom field
to count CPUs and with a small change can look at bits [3:0] to learn about up
to 16 CPUs.
Very much unsupported (and contains warning messages as such) but useful for
running 8 core sims without hardwiring CPU count in the guest OS.
With (upcoming) separate compilation, they are useless. Only
link-time optimization could re-inline them, but ideally
feedback-directed optimization would choose to do so only for
profitable (i.e. common) instructions.
The MicroMemOp class generates the disassembly for both integer
and floating point instructions, but it would always print its
first operand as an integer register without considering that the
op may be a floating instruction in which case a float register
should be displayed instead.
In the O3 LSQ, data read/written is printed out in DPRINTFs. However,
the data field is treated as a character string with a null terminated.
However the data field is not encoded this way. This patch removes
that possibility by removing the data part of the print.
This never actually worked since it was printing out only a word
of the cache block and not the entire thing and doubly didn't work
csprintf overrides the %#x specifier and assumes a char* array is
actually a string.
O3CPU has a compile-time maximum width set in o3/impl.hh, but checking
the configuration against this limit was not implemented anywhere
except for fetch. Configuring a wider pipe than the limit can silently
cause various issues during the simulation. This patch adds the proper
checking in the constructor of the various pipeline stages.
Without this declaration, new clangs will complain about this value
being unused. It has no explicit use in the codebase, but it can be
useful to turn on all debugging flags while in a debugger to greatly
increase simulator verbosity.
A number of calls to isEmpty() and numFreeEntries()
should be thread-specific.
In cpu.cc, the fact that tid is /*commented*/ out is a bug. Say the rob
has instructions from thread 0 (isEmpty() returns false), and none from
thread 1. If we are trying to squash all of thread 1, then
readTailInst(thread 1) will be called because rob->isEmpty() returns
false. The result is end_it is not in the list and the while
statement loops indefinitely back over the cpu's instList.
In iew_impl.hh, all threads are told they have the entire remaining IQ, when
each thread actually has a certain allocation. The result is extra stalls at
the iew dispatch stage which the rename stage usually takes care of.
In commit_impl.hh, rob->readHeadInst(thread 1) can be called if the rob only
contains instructions from thread 0. This returns a dummyInst (which may work
since we are trying to squash all instructions, but hardly seems like the right
way to do it).
In rob_impl.hh this fix skips the rest of the function more frequently and is
more efficient.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
Upon aggregating records, serialize system's cache-block size, as the
cache-block size can be different when restoring from a checkpoint. This way,
we can correctly read all records when restoring from a checkpoints, even if
the cache-block size is different.
Note, that it is only possible to restore from a checkpoint if the
desired cache-block size is smaller or equal to the cache-block size
when the checkpoint was taken; we can split one larger request into
multiple small ones, but it is not reliable to do the opposite.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
Simulating a SMP or multicore requires devices to be shared between
multiple KVM vCPUs. This means that locking is required when accessing
devices. This changeset adds the necessary locking to allow devices to
execute correctly. It is implemented by temporarily migrating the KVM
CPU to the VM's (and devices) event queue when handling
MMIO. Similarly, the VM migrates to the interrupt controller's event
queue when delivering an interrupt.
The support for fast-forwarding of multicore simulations added by this
changeset assumes that all devices in a system are simulated in the
same thread and each vCPU has its own thread. Special care must be
taken to ensure that devices living under the CPU in the object
hierarchy (e.g., the interrupt controller) do not inherit the parent
CPUs thread and are assigned to device thread. The KvmVM object is
assumed to live in the same thread as the other devices in the system.
The calling thread is undefined when the PollQueue services events.
This implies that PollEvents need to handle the case where they are
processed from a different thread than the thread that created the
event. This changeset adds temporary event queue migrations to the VNC
server, the ethernet tap device, and the terminal to protect them from
inter-thread calls.
As of now, the enqueue statement can take in any number of 'pairs' as
argument. But we only use the pair in which latency is the key. This
latency is allowed to be either a fixed integer or a member variable of
controller in which the expression appears. This patch drops the use of pairs
in an enqueue statement. Instead, an expression is allowed which will be
interpreted to be the latency of the enqueue. This expression can anything
allowed by slicc including a constant integer or a member variable.
We need the ability to lock event queues to enable device accesses
across threads. The serviceOne() method now takes a service lock prior
to handling a new event. By locking an event queue, a different
thread/eq can effectively execute in the context of the locked event
queue. To simplify temporary event queue migrations, this changeset
introduces the EventQueue::ScopedMigration class that unlocks the
current event queue, locks a new event queue, and updates the current
event queue variable.
In order to prevent deadlocks, event queues need to be released when
waiting on barriers. This is implemented using the
EventQueue::ScopedRelease class. An instance of this class is, for
example, used in the BaseGlobalEvent class to release the event queue
when waiting on the synchronization barrier.
The intended use for this functionality is when devices need to be
accessed across thread boundaries. For example, when fast-forwarding,
it might be useful to run devices and CPUs in separate threads. In
such a case, the CPU locks the device queue whenever it needs to
perform IO. This functionality is primarily intended for KVM.
Note: Migrating between event queues can lead to non-deterministic
timing. Use with extreme care!
--HG--
extra : rebase_source : 23e3a741a1fd73861d1339782dbbe1bc76285315
This patch fixes violation of TSO in the O3CPU, as all loads must be
ordered with all other loads. In the LQ, if a snoop is observed, all
subsequent loads need to be squashed if the system is TSO.
Prior to this patch, the following case could be violated:
P0 | P1 ;
MOV [x],mail=/usr/spool/mail/nilay | MOV EAX,[y] ;
MOV [y],mail=/usr/spool/mail/nilay | MOV EBX,[x] ;
exists (1:EAX=1 /\ 1:EBX=0) [is a violation]
The problem was found using litmus [http://diy.inria.fr].
Committed by: Nilay Vaish <nilay@cs.wisc.edu
This patch adds stats for tracking the number of reads/writes per bus
turn around, and also adds hysteresis to the write-to-read switching
to ensure that the queue does not oscilate around the low threshold.
This patch renames the not-so-simple SimpleDRAM to a more suitable
DRAMCtrl. The name change is intended to ensure that we do not send
the wrong message (although the "simple" in SimpleDRAM was originally
intended as in cleverly simple, or elegant).
As the DRAM controller modelling work is being presented at ISPASS'14
our hope is that a broader audience will use the model in the future.
--HG--
rename : src/mem/SimpleDRAM.py => src/mem/DRAMCtrl.py
rename : src/mem/simple_dram.cc => src/mem/dram_ctrl.cc
rename : src/mem/simple_dram.hh => src/mem/dram_ctrl.hh
Make the default memory type DDR3-1600 x64, and use the open-adaptive
page policy. This change is aiming to ensure that users by default are
using a realistic memory system.
This patch adds a basic starvation-prevention mechanism where a DRAM
page is forced to close after a certain number of accesses. The limit
is combined with the open and open-adaptive page policy and if reached
causes an auto-precharge.
This patch changes the triggering condition for the write draining
such that we grab the opportunity to issue writes if there are no
reads waiting (as opposed to waiting for the writes to reach the high
threshold). As a result, we potentially drain some of the writes in read
idle periods (if any).
A low threshold is added to be able to control how many write bursts
are kept in the memory controller queue (acting as on-chip storage).
The high and low thresholds are updated to sensible values for a 32/64
size write buffer. Note that the thresholds should be adjusted along
with the queue sizes.
This patch also adds some basic initialisation sanity checks and moves
part of the initialisation to the constructor.
This patch enables a new 'DRAM' mode to the existing traffic
generator, catered to generate specific requests to DRAM based on
required hit length (stride size) and bank utilization. It is an add on
to the Random mode.
The basic idea is to control how many successive packets target the
same page, and how many banks are being used in parallel. This gives a
two-dimensional space that stresses different aspects of the DRAM
timing.
The configuration file needed to use this patch has to be changed as
follow: (reference to Random Mode, LPDDR3 memory type)
'STATE 0 10000000000 RANDOM 50 0 134217728 64 3004 5002 0'
-> 'STATE 0 10000000000 DRAM 50 0 134217728 32 3004 5002 0 96 1024 8 6 1'
The last 4 parameters to be added are:
<stride size (bytes), page size(bytes), number of banks available in DRAM,
number of banks to be utilized, address mapping scheme>
The address mapping information is used to get the stride address
stream of the specified size and to know where to find the bank
bits. The configuration file has a parameter where '0'-> RoCoRaBaCh,
'1'-> RoRaBaCoCh/RoRaBaChCo address-mapping schemes. Note that the
generator currently assumes a single channel and a single rank. This
is to avoid overwhelming the traffic generator with information about
the memory organisation.
This patch adds the row bits to the name of the address mapping
schemes to make it more clear that all the current schemes places the
row bits as the most significant bits.
This patch moves the Ruby-related debug flags to the ruby
sub-directory, and also removes the state SConsopts that add the
no-longer-used NO_VECTOR_BOUNDS_CHECK.
Prevent incomplete configuration of TrafficGen class from causing
segmentation faults. If an 'INIT' line is not present in the
configuration file then the currState variable will remain
uninitialized which may result in a crash.
There were several sections of the m5ops code which were
essentially copy/pasted versions of the 32-bit code. The
problem is that some of these didn't account fo4 64-bit
registers leading to arguments being in the wrong registers.
This patch addresses the args for readfile64, writefile64,
and addsymbol64 -- all of which seemed to suffer from a
similar set of problems when moving to 64-bit.
Each consumer object maintains a set of tick values when the object is supposed
to wakeup and do some processing. As of now, the object accesses this set both
when scheduling a wakeup event and when the object actually wakes up. The set
is accessed during wakeup to remove the current tick value from the set. This
functionality is now being moved to the scheduling function where ticks are
removed at a later time.
This helps in configuring the network interfaces from the python script and
these objects no longer rely on the network object for the timing information.
Piobus was recently added to se scripts for ruby so that the interrupt
controller can be connected to something (required since the interrupt
controller sends address range messages). This patch removes the piobus
and instead, the pio port of ruby port will now ignore the range change
messages in se mode.
KVM used to use two signals, one for instruction count exits and one
for timer exits. There is really no need to distinguish between the
two since they only trigger exits from KVM. This changeset unifies and
renames the signals and adds a method, kick(), that can be used to
raise the control signal in the vCPU thread. It also removes the early
timer warning since we do not normally see if the signal was
delivered.
--HG--
extra : rebase_source : cd0e45ca90894c3d6f6aa115b9b06a1d8f0fda4d
gem5 seems to store the PC as RIP+CS_BASE. This is not what KVM
expects, so we need to subtract CS_BASE prior to transferring the PC
into KVM. This changeset adds the necessary PC manipulation and
refactors thread context updates slightly to avoid reading registers
multiple times from KVM.
--HG--
extra : rebase_source : 3f0569dca06a1fcd8694925f75c8918d954ada44
This changeset adds support for INIT and STARTUP IPI handling. We
currently handle both of these interrupts in gem5 and transfer the
state to KVM. Since we do not have a BIOS loaded, we pretend that the
INIT interrupt suspends the CPU after reset.
--HG--
extra : rebase_source : 7f3b25f3801d68f668b6cd91eaf50d6f48ee2a6a
The table walker code currently accounts for two types of walks,
Atomic and Timing, and treats them differently. Atomic walks keep a
single instance of WalkerState around for all walks to use in
currState. Timing mode keeps a queue of in-flight WalkerStates and
maintains currState as NULL between walks.
If a functional walk is done during Timing mode, it is treated as an
atomic walk and either creates a persistent WalkerState if in between
Timing walks, or stomps an existing currState for an in-progress
Timing walk.
This patch distinguishes functional walks as being able to exist at
any time and sets up a temporary WalkerState for its exclusive use and
then cleans up when finished, leaving any in progress Atomic or Timing
walks undisturbed.
This patch fixes an assert condition that is not true at all
times. There are valid situations that arise in dual-core
dual-workload runs where the assert condition is false. The function
call following the assert however needs to be called only when the
condition is true (a block cannot be invalidated in the tags structure
if has not been allocated in the structure, and the tempBlock is never
allocated). Hence the 'assert' has been replaced with an 'if'.
This patch changes the decode script to output the optional fields of
the proto message Packet, namely id and flags. The flags field is set
by the communication monitor.
The id field is useful for CPU trace experiments, e.g. linking the
fetch side to decode side. It had to be renamed because it clashes
with a built in python function id() for getting the "identity" of an
object.
This patch also takes a few common function definitions out from the
multiple scripts and adds them to a protolib python module.
This snippet can be used to replace if + {panics, fatals, asserts} constructs.
The idea is to have both the condition checking and a verbose printout in a single statement. The interface is as follows:
panic_if(foo != bar, "These should be equal: foo %i bar %i", foo, bar);
fatal_if(foo != bar, "These should be equal: foo %i bar %i", foo, bar);
chatty_assert(foo == bar, "These should be equal: foo %i bar %i", foo, bar);
Small fix for a warning that prevents compilation with gcc 4.8.1 due
to detecting that a variable might be uninitialised. The fix is to
assign a safe default.
The global synchronization event used to be scheduled at
simQuantum. This prevented repeated entries into gem5 from Python as
it can be scheduled in the past. This changeset ensures that the first
global synchronization happens at curTick() + simQuantum instead.
The TSL/LDT & TR/TSS segments didn't contain valid attributes. This
caused problems when transfering the state into KVM where invalid
state is a no-go. Fixup the attributes with values from AMD's
architecture programmer's manual.
When transferring segment registers into kvm, we need to find the
value of the unusable bit. We used to assume that this could be
inferred from the selector since segments are generally unusable if
their selector is 0. This assumption breaks in some weird corner
cases. Instead, we just assume that segments are always usable. This
is what qemu does so it should work.
Signal handlers in KVM are controlled per thread and should be
initialized from the thread that is going to execute the CPU. This
changeset moves the initialization call from startup() to
startupThread().
A copyRegs() function is added to MIPS utilities
to copy architectural state from the old CPU to
the new CPU during fast-forwarding. This
addition alone enables fast-forwarding for the
o3 cpu model running MIPS.
The patch also adds takeOverFrom() and
drainResume() functions to the InOrderCPU to
enable it to take over from another CPU. This
change enables fast-forwarding for the inorder
cpu model running MIPS, but not for Alpha.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
Couple of users observed segmentation fault when the simulator tries to
register the statistical variable m_IncompleteTimes. It seems that there
is some problem with the initialization of these variables when allocated
in the constructor.
Currently, the interrupt controller in x86 is connected to the io bus
directly. Therefore the packets between the io devices and the interrupt
controller do not go through ruby. This patch changes ruby port so that
these packets arrive at the ruby port first, which then routes them to their
destination. Note that the patch does not make these packets go through the
ruby network. That would happen in a subsequent patch.
This patch simplfies the retry logic in the RubyPort, avoiding
redundant attributes, and enforcing more stringent checks on the
interactions with the normal ports. The patch also simplifies the
routing done by the RubyPort, using the port identifiers instead of a
heavy-weight sender state.
The patch also fixes a bug in the sending of responses from PIO
ports. Previously these responses bypassed the queue in the queued
port, and ignored the return value, potentially leading to response
packets being lost.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
Code in two of the functions was exactly the same. This patch moves
this code to a new function which is called from the two functions
mentioned initially.
At several places, there are functions that take a cycle value as input
and performs some computation. Along with each such function, another
function was being defined that simply added one more cycle to input and
computed the same function. This patch removes this second copy of the
function. Places where these functions were being called have been updated
to use the original function with argument being current cycle + 1.
Two files had been incorrectly named with a .cache suffix.
--HG--
rename : src/mem/protocol/MESI_Three_Level-L0.cache => src/mem/protocol/MESI_Three_Level-L0cache.sm
rename : src/mem/protocol/MESI_Three_Level-L1.cache => src/mem/protocol/MESI_Three_Level-L1cache.sm
The introduction of parallel event queues added most of the support
needed to run multiple VMs (systems) within the same gem5
instance. This changeset fixes up signal delivery so that KVM's
control signals are delivered to the thread that executes the CPU's
event queue. Specifically:
* Timers and counters are now initialized from a separate method
(startupThread) that is scheduled as the first event in the
thread-specific event queue. This ensures that they are
initialized from the thread that is going to execute the CPUs
event queue and enables signal delivery to the right thread when
exiting from KVM.
* The POSIX-timer-based KVM timer (used to force exits from KVM) has
been updated to deliver signals to the thread that's executing KVM
instead of the process (thread is undefined in that case). This
assumes that the timer is instantiated from the thread that is
going to execute the KVM vCPU.
* Signal masking is now done using pthread_sigmask instead of
sigprocmask. The behavior of the latter is undefined in threaded
applications.
* Since signal masks can be inherited, make sure to actively unmask
the control signals when setting up the KVM signal mask.
There are currently no facilities to multiplex between multiple KVM
CPUs in the same event queue, we are therefore limited to
configurations where there is only one KVM CPU per event queue. In
practice, this means that multi-system configurations can be
simulated, but not multiple CPUs in a shared-memory configuration.
This patch fixes a bug in how physical memory used to be mapped and
unmapped. Previously we unmapped and re-mapped if restoring from a
checkpoint. However, we never checked that the new mapping was
actually the same, it was just magically working as the OS seems to
fairly reliably give us the same chunk back. This patch fixes this
issue by relying entirely on the mmap call in the constructor.
This patch enbles use of the basic PIO devices as part of the NULL
build. Although it might seem counter intuitive to have a PIO device
without being able to execute a driver, this change enables us to
break a device class hierarchy into an ISA-agnostic part, and an
ISA-specific part, without requiring multiple-inheritance. The
ISA-agnostic base class is a PIO device, but does not make use of the
port.
This patch adds a filter to the cache to drop snoop requests that are
not for a range covered by the cache. This fixes an issue observed
when multiple caches are placed in parallel, covering different
address ranges. Without this patch, all the caches will forward the
snoop upwards, when only one should do so.
This patch adds DRAMSim2 as a memory controller by wrapping the
external library and creating a sublass of AbstractMemory that bridges
between the semantics of gem5 and the DRAMSim2 interface.
The DRAMSim2 wrapper extracts the clock period from the config
file. There is no way of extracting this information from DRAMSim2
itself, so we simply read the same config file and get it from there.
To properly model the response queue, the wrapper keeps track of how
many transactions are in the actual controller, and how many are
stacking up waiting to be sent back as responses (in the wrapper). The
latter requires us to move away from the queued port and manage the
packets ourselves. This is due to DRAMSim2 not having any flow control
on the response path.
DRAMSim2 assumes that the transactions it is given are matching the
burst size of the choosen memory. The wrapper checks to ensure the
cache line size of the system matches the burst size of DRAMSim2 as
there are currently no provisions to split the system requests. In
theory we could allow a cache line size smaller than the burst size,
but that would lead to inefficient use of the DRAM, so for not we
fatal also in this case.
This changesets adds branch predictor support to the
BaseSimpleCPU. The simple CPUs normally don't need a branch predictor,
however, there are at least two cases where it can be desirable:
1) A simple CPU can be used to warm the branch predictor of an O3
CPU before switching to the slower O3 model.
2) The simple CPU can be used as a quick way of evaluating/debugging
new branch predictors since it exposes branch predictor
statistics.
Limitations:
* Since the simple CPU doesn't speculate, only one instruction will
be active in the branch predictor at a time (i.e., the branch
predictor will never see speculative branches).
* The outcome of a branch prediction does not affect the performance
of the simple CPU.
Currently fatal() ends the simulation in a normal fashion. This results in
the call stack getting lost when using a debugger and it is not always
possible to debug the simulation just from the information provided by the
printed error message. Even though the error is likely due to a user's fault,
the information available should not be thrown away. Hence, this patch to
call abort() from fatal().
Changeset 7274310be1bb (isa: clean up register constants) increased
the value of NumFloatRegs, which triggered a bug in
X86ISA::copyRegs(). This bug is caused by the x87 stack being copied
twice since register indexes past NUM_FLOATREGS are mapped into the
x87 stack relative to the top of the stack, which is undefined when
the copy takes place.
This changeset updates the copyRegs() function to use access registers
using the non-flattening interface, which guarantees that undesirable
register folding does not happen.
The getRFlags and setRFlags utility functions were not updated
correctly when condition registers were separated into their own
register class. This lead to incorrect state transfer in calls from
kvm into the simulator (e.g., m5 readfile ended up in an infinite
loop) and when switching CPUs. This patch makes these utility
functions use getCCReg and setCCReg instead of getIntReg and setIntReg
which read and write the integer registers.
Reviewed-by: Andreas Sandberg <andreas@sandberg.pp.se>
Forces the prefetcher to mispredict twice in a row before resetting the
confidence of prefetching. This helps cases where a load PC strides by a
constant factor, however it may operate on different arrays at times.
Avoids the cost of retraining. Primarily helps with small iteration loops.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
For systems with a tightly coupled L2, a stride-based prefetcher may observe
access requests from both instruction and data L1 caches. However, the PC
address of an instruction miss gives no relevant training information to the
stride based prefetcher(there is no stride to train). In theses cases, its
better if the L2 stride prefetcher simply reverted back to a simple N-block
ahead prefetcher. This patch enables this option.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
This patch extends the classic prefetcher to work on non-block aligned
addresses. Because the existing prefetchers in gem5 mask off the lower
address bits of cache accesses, many predictable strides fail to be
detected. For example, if a load were to stride by 48 bytes, with 64 byte
cachelines, the current stride based prefetcher would see an access pattern
of 0, 64, 64, 128, 192.... Thus not detecting a constant stride pattern. This
patch fixes this, by training the prefetcher on access and not masking off the
lower address bits.
It also adds the following configuration options:
1) Training/prefetching only on cache misses,
2) Training/prefetching only on data acceses,
3) Optionally tagging prefetches with a PC address.
#3 allows prefetchers to train off of prefetch requests in systems with
multiple cache levels and PC-based prefetchers present at multiple levels.
It also effectively allows a pipelining of prefetch requests (like in POWER4)
across multiple levels of cache hierarchy.
Improves performance on my gem5 configuration by 4.3% for SPECINT and 4.7% for SPECFP (geomean).
gem5 makes the incorrect assumption that by binding a socket, it
effectively has allocated a port. Linux only allocates ports once you call
listen on the given socket, not when you call bind. So even if the port was
free when bind was called, another process (gem5 instance) could race in
between the bind & listen calls and steal the port. In the current code, if
the call to bind fails due to the port being in use (EADDRINUSE), gem5 retries
for a different port. However if listen fails, gem5 just panics. The fix is
testing the return value of listen and re-trying if it was due to EADDRINUSE.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
The patch
(1) removes the redundant writeback argument from findVictim()
(2) fixes the description of access() function
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
Note: AArch64 and AArch32 interworking is not supported. If you use an AArch64
kernel you are restricted to AArch64 user-mode binaries. This will be addressed
in a later patch.
Note: Virtualization is only supported in AArch32 mode. This will also be fixed
in a later patch.
Contributors:
Giacomo Gabrielli (TrustZone, LPAE, system-level AArch64, AArch64 NEON, validation)
Thomas Grocutt (AArch32 Virtualization, AArch64 FP, validation)
Mbou Eyole (AArch64 NEON, validation)
Ali Saidi (AArch64 Linux support, code integration, validation)
Edmund Grimley-Evans (AArch64 FP)
William Wang (AArch64 Linux support)
Rene De Jong (AArch64 Linux support, performance opt.)
Matt Horsnell (AArch64 MP, validation)
Matt Evans (device models, code integration, validation)
Chris Adeniyi-Jones (AArch64 syscall-emulation)
Prakash Ramrakhyani (validation)
Dam Sunwoo (validation)
Chander Sudanthi (validation)
Stephan Diestelhorst (validation)
Andreas Hansson (code integration, performance opt.)
Eric Van Hensbergen (performance opt.)
Gabe Black
The CheckerCPU model in pre-v8 code was not checking the
updates to miscellaneous registers due to some methods
for setting misc regs were not instrumented. The v8 patches
exposed this by calling the instrumented misc reg update
methods and then invoking the checker before the main CPU had
updated its misc regs, leading to false positives about
register mismatches. This patch fixes the non-instrumented
misc reg update methods and places calls to the checker in
the proper places in the O3 model.
With ARMv8 support the same misc register id results in accessing different
registers depending on the current mode of the processor. This patch adds
the same orthogonality to the misc register file as the others (int, float, cc).
For all the othre ISAs this is currently a null-implementation.
Additionally, a system variable is added to all the ISA objects.
This patch add support for generating wake-up events in the CPU when an address
that is currently in the exclusive state is hit by a snoop. This mechanism is required
for ARMv8 multi-processor support.
Previously we were casting the result type to the the memory type which
is incorrect for things like dual-memory operations which still return a
single result.
Adds very basic statistics on the number of tag and data accesses within the
cache, which is important for power modelling. For the tags, simply count
the associativity of the cache each time. For the data, this depends on
whether tags and data are accessed sequentially, which is given by a new
parameter. In the parallel case, all data blocks are accessed each time, but
with sequential accesses, a single data block is accessed only on a hit.
This patch enables tracking of cache occupancy per thread along with
ages (in buckets) per cache blocks. Cache occupancy stats are
recalculated on each stat dump.
The probe patch is motivated by the desire to move analytical and trace code
away from functional code. This is achieved by the probe interface which is
essentially a glorified observer model.
What this means to users:
* add a probe point and a "notify" call at the source of an "event"
* add an isolated module, that is being used to carry out *your* analysis (e.g. generate a trace)
* register that module as a probe listener
Note: an example is given for reference in src/cpu/o3/simple_trace.[hh|cc] and src/cpu/SimpleTrace.py
What is happening under the hood:
* every SimObject maintains has a ProbeManager.
* during initialization (src/python/m5/simulate.py) first regProbePoints and
the regProbeListeners is called on each SimObject. this hooks up the probe
point notify calls with the listeners.
FAQs:
Why did you develop probe points:
* to remove trace, stats gathering, analytical code out of the functional code.
* the belief that probes could be generically useful.
What is a probe point:
* a probe point is used to notify upon a given event (e.g. cpu commits an instruction)
What is a probe listener:
* a class that handles whatever the user wishes to do when they are notified
about an event.
What can be passed on notify:
* probe points are templates, and so the user can generate probes that pass any
type of argument (by const reference) to a listener.
What relationships can be generated (1:1, 1:N, N:M etc):
* there isn't a restriction. You can hook probe points and listeners up in a
1:1, 1:N, N:M relationship. They become useful when a number of modules
listen to the same probe points. The idea being that you can add a small
number of probes into the source code and develop a larger number of useful
analysis modules that use information passed by the probes.
Can you give examples:
* adding a probe point to the cpu's commit method allows you to build a trace
module (outputting assembler), you could re-use this to gather instruction
distribution (arithmetic, load/store, conditional, control flow) stats.
Why is the probe interface currently restricted to passing a const reference:
* the desire, initially at least, is to allow an interface to observe
functionality, but not to change functionality.
* of course this can be subverted by const-casting.
What is the performance impact of adding probes:
* when nothing is actively listening to the probes they should have a
relatively minor impact. Profiling has suggested even with a large number of
probes (60) the impact of them (when not active) is very minimal (<1%).
This patch adds observability to the clock period of the clock domains
by including it as a stat.
As a result of adding this, the regressions will be updated in a
separate patch.
Add some values and methods to the request object to track the translation
and access latency for a request and which level of the cache hierarchy responded
to the request.
This patch makes the Clock a TickParamValue just like
Latency/Frequency. There is no longer any need to distinguish it
(originally needed to support multiplication).
This patch fixes a memory leak in the table walker, by ensuring that
the sender state is deleted again if the request packet cannot be
successfully sent.
This patch relaxes the check performed when squashing non-speculative
instructions, as it caused problems with loads that were marked ready,
and then stalled on a blocked cache. The assertion is now allowing
memory references to be non-faulting.
This patch removes an assertion in the simpoint profiling code that
asserts that a previously-seen basic block has the exact same number
of instructions executed as before. This can be false if the basic
block generates aborts or takes interrupts at different locations
within the basic block. The basic block profiling are not affected
significantly as these events are rare in general.
This patch adds a function to the HistStor class for adding two histograms.
This functionality is required for Ruby. It also adds support for printing
histograms in a single line.
The first two levels (L0, L1) are private to the core, the third level (L2)is
possibly shared. The protocol supports clustered designs. For example, one
can have two sets of two cores. Each core has an L0 and L1 cache. There are
two L2 controllers where each set accesses only one of the L2 controllers.
A cluster over here means a set of controllers that can be accessed only by a
certain set of cores. For example, consider a two level hierarchy. Assume
there are 4 L1 controllers (private) and 2 L2 controllers. We can have two
different hierarchies here:
a. the address space is partitioned between the two L2 controllers. Each L1
controller accesses both the L2 controllers. In this case, each L1 controller
is a cluster initself.
b. both the L2 controllers can cache any address. An L1 controller has access
to only one of the L2 controllers. In this case, each L2 controller
along with the L1 controllers that access it, form a cluster.
This patch allows for each controller to have a cluster ID, which is 0 by
default. By setting the cluster ID properly, one can instantiate hierarchies
with clusters. Note that the coherence protocol might have to be changed as
well.
If you successfully export a C++ SimObject method, but try to
invoke it from Python before the C++ object is created, you
get a confusing error that says the attribute does not exist,
making you question whether you successfully exported the
method at all. In reality, your only problem is that you're
calling the method too soon. This patch enhances the error
message to give you a better clue.
Updating the SimObject topology of a cloned hierarchy is a little
dangerous, in that cloning is a "deep copy" and the clone does not
inherit SimObject updates the same way it would inherit scalar
variable assignments.
However, because of various SimObject-valued proxy parameters,
like 'memories', 'clk_domain', and 'system', it turns out that
there are a number of implicit topology changes that happen at
instantiation, which means that these changes are impossible to
avoid. So in order to make cloning systems useful, this error
has to go. Changing it to a warning produces a lot of noise,
so it seems best just to delete it.
This patch provides support for DFS by having ClockedObjects register
themselves with their clock domain at construction time in a member list.
Using this list, a clock domain can update each member's tick to the
curTick() before modifying the clock period.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
In mips architecture, floating point convert instructions use the
FloatConvertOp format defined in src/arch/mips/isa/formats/fp.isa. The type
of the operands in the ISA description file (_sw for signed word, or _sf for
signed float, etc.) is used to create a type for the operand in C++. Then the
operand is converted using the fpConvert() function in src/arch/mips/utility.cc.
If we are converting from a word to a float, and we want to convert 0xffffffff,
we expect -1 to be passed into fpConvert(). Instead, we see MAX_INT passed in.
Then fpConvert() converts _val_ to MAX_INT in single-precision floating point,
and we get the wrong value.
To fix it, the signs of the convert operands are being changed from unsigned to
signed in the MIPS ISA description.
Then, the FloatConvertOp format is being changed to insert a int32_t into the
C++ code instead of a uint32_t.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
This patch fixes couple of bugs in the L2 controller of the mesi cmp
directory protocol.
1. The state MT_I was transitioning to NP on receiving a clean writeback
from the L1 controller. This patch makes it inform the directory controller
about the writeback.
2. The L2 controller was sending the dirty bit to the L1 controller and the
L2 controller used writeback from the L1 controller to update the dirty bit
unconditionally. Now, the L1 controller always assumes that the incoming
data is clean. The L2 controller updates the dirty bit only when the L1
controller writes to the block.
3. Certain unused functions and events are being removed.
This patch replaces max_in_port_rank with the number of inports. The use of
max_in_port_rank was causing spurious re-builds and incorrect initialization
of variables in ruby related regression tests. This was due to the variable
value being used across threads while compiling when it was not meant to be.
Since the number of inports is state machine specific value, this problem
should get solved.
The directory controller should not have the sharer field since there is
only one level 2 cache. Anyway the field was not in use. The owner field
was being used to track the l2 cache version (in case of distributed l2) that
has the cache block under consideration. The information is not required
since the version of the level 2 cache can be obtained from a subset of the
address bits.
Currently statistics are reset after the initial / checkpoint state
has been loaded. But ruby does some checkpoint processing in its
startup() function. So the stats need to be reset after the startup()
function has been called. This patch moves the class to stats.reset()
to achieve this change in functionality.
There is a race between enabling asynchronous IO for a file descriptor
and IO events happening on that descriptor. A SIGIO won't normally be
delivered if an event is pending when asynchronous IO is
enabled. Instead, the signal will be raised the next time there is an
event on the FD. This changeset simulates a SIGIO by setting the
async_io flag when setting up asynchronous IO for an FD. This causes
the main event loop to poll all file descriptors to check for pending
IO. As a consequence of this, the old SIGALRM hack should no longer be
needed and is therefore removed.
The PollEvent class dynamically installs a SIGIO and SIGALRM handler
when a file handler is registered. Most signal handlers currently get
registered in the initSignals() function. This changeset moves the
SIGIO/SIGALRM handlers to initSignals() to live with the other signal
handlers. The original code installs SIGIO and SIGALRM with the
SA_RESTART option to prevent syscalls from returning EINTR. This
changeset consistently uses this flag for all signal handlers to
ensure that other signals that trigger asynchronous behavior (e.g.,
statistics dumping) do not cause undesirable EINTR returns.
The performance counting framework in Linux 3.2 and onwards supports
an attribute to exclude events generated by the host when running
KVM. Setting this attribute allows us to get more reliable
measurements of the guest machine. For example, on a highly loaded
system, the instruction counts from the guest can be severely
distorted by the host kernel (e.g., by page fault handlers).
This changeset introduces a check for the attribute and enables it in
the KVM CPU if present.
This patch adds support for simulating with multiple threads, each of
which operates on an event queue. Each sim object specifies which eventq
is would like to be on. A custom barrier implementation is being added
using which eventqs synchronize.
The patch was tested in two different configurations:
1. ruby_network_test.py: in this simulation L1 cache controllers receive
requests from the cpu. The requests are replied to immediately without
any communication taking place with any other level.
2. twosys-tsunami-simple-atomic: this configuration simulates a client-server
system which are connected by an ethernet link.
We still lack the ability to communicate using message buffers or ports. But
other things like simulation start and end, synchronizing after every quantum
are working.
Committed by: Nilay Vaish
the current implementation of the fetch buffer in the o3 cpu
is only allowed to be the size of a cache line. some
architectures, e.g., ARM, have fetch buffers smaller than a cache
line, see slide 22 at:
http://www.arm.com/files/pdf/at-exploring_the_design_of_the_cortex-a15.pdf
this patch allows the fetch buffer to be set to values smaller
than a cache line.
This patch fixes an issue in the checker CPU register indexing. The
code will not even compile using LTO as deep inlining causes the used
index to be outside the array bounds.
The output from the switcheroo tests is voluminous and
(because it includes timestamps) highly sensitive to
minor changes, leading to extremely large updates to the
reference outputs. This patch addresses this problem
by suppressing output from the tests. An internal
parameter can be set to enable the output. Wiring that
up to a command-line flag (perhaps even the rudimantary
-v/-q options in m5/main.py) is left for future work.
This patch fixes a number of stats accounting issues in the DRAM
controller. Most importantly, it separates the system interface and
DRAM interface so that it is clearer what the actual DRAM bandwidth
(and consequently utilisation) is.
This patch unifies the request selection across read and write queues
for FR-FCFS scheduling policy. It also fixes the request selection
code to prioritize the row hits present in the request queues over the
selection based on earliest bank availability.
This patch adds a basic adaptive version of the open-page policy that
guides the decision to keep open or close by looking at the contents
of the controller queues. If no row hits are found, and bank conflicts
are present, then the row is closed by means of an auto
precharge. This is a well-known technique that should improve
performance in most use-cases.
This patch removes the untimed while loop in the write scheduling
mechanism and now schedule commands taking into account the minimum
timing constraint. It also introduces an optimization to track write
queue size and switch from writes to reads if the number of write
requests fall below write low threshold.
This patch adds the tRRD parameter to the DRAM controller. With the
recent addition of the actAllowedAt member for each bank, this
addition is trivial.
This patch changes the tXAW constraint so that it is enforced per rank
rather than globally for all ranks in the channel. It also avoids
using the bank freeAt to enforce the activation limit, as doing so
also precludes performing any column or row command to the
DRAM. Instead the patch introduces a new variable actAllowedAt for the
banks and use this to track when a potential activation can occur.
This patch fixes the controller when a write threshold of 100% is
used. Earlier for 100% write threshold no data is written to memory
as writes never get triggered since this corner case is not
considered.
This patch changes the FCFS bit of FR-FCFS such that requests that
target the earliest available bank are picked first (as suggested in
the original work on FR-FCFS by Rixner et al). To accommodate this we
add functionality to identify a bank through a one-dimensional
identifier (bank id). The member names of the DRAMPacket are also
update to match the style guide.
This patch changes the time the controller is woken up to take the
next scheduling decisions. tRAS is now handled in estimateLatency and
doDRAMAccess and we do not need to worry about it at scheduling
time. The earliest we need to wake up is to do a pre-charge, row
access and column access before the bus becomes free for use.
This patch adds an explicit tRAS parameter to the DRAM controller
model. Previously tRAS was, rather conservatively, assumed to be tRCD
+ tCL + tRP. The default values for tRAS are chosen to match the
previous behaviour and will be updated later.
This patch changes the name the command-line options related to debug
output to all start with "debug" rather than being a mix of that and
"trace". It also makes it clear that the breakpoint time is specified
in ticks and not in cycles.
Thumb2 ARM kernels may access the TEEHBR via thumbee_notifier
in arch/arm/kernel/thumbee.c. The Linux kernel code just seems
to be saving and restoring the register. This patch adds support
for the TEEHBR cp14 register. Note, this may be a special case
when restoring from an image that was run on a system that
supports ThumbEE.
The VE motherboard provides a set of system control registers through which
various motherboard and coretile registers are accessed. Voltage regulators and
oscillator (DLL/PLL) config are examples. These registers must be impleted to
boot Linux 3.9+ kernels.
Newer linux kernels and distros exercise more functionality in the IDE device
than previously, exposing 2 races. The first race is the handling of aborted
DMA commands would immediately report the device is ready back to the kernel
and cause already in flight commands to assert the simulator when they returned
and discovered an inconsitent device state. The second race was due to the
Status register not being handled correctly, the interrupt status bit would get
stuck at 1 and the driver eventually views this as a bad state and logs the
condition to the terminal. This patch fixes these two conditions by making the
device handle aborted commands gracefully and properly handles clearing the
interrupt status bit in the Status register.
SimObjectVector objects did not provide the same interface to
the _parent attribute through get_parent() like a normal
SimObject. It also handled assigning a _parent incorrectly
if objects in a SimObjectVector were changed post-creation,
leading to errors later when the simulator tried to execute.
This patch fixes these two omissions.
SimLoopExitEvents weren't serialized by default. Some benchmarks
utilize a delayed m5 exit pseudo op call to terminate the simulation
and this event was lost when resuming from a checkpoint generated
after the pseudo op call. This patch adds the capability to serialize
the SimLoopExitEvents and enable serialization for m5_exit and m5_fail
pseudo ops by default. Does not affect other generic
SimLoopExitEvents.
Fix a problem in the O3 CPU for instructions that are both
memory loads and memory barriers (e.g. load acquire) and
to uncacheable memory. This combination can confuse the
commit stage into commitng an instruction that hasn't
executed and got it's value yet. At the same time refactor
the code slightly to remove duplication between two of
the cases.
This patch adds missing initializations of the SenderMachine field of
out_msg's when thery are created in the L2 cache controller of the
MOESI_CMP_directory coherence protocol. When an out_msg is created and this
field is left uninitialized, it is set to the default value MachineType_NUM.
This causes a panic in the MachineType_to_string function when gem5 is
executed with the Ruby debug flag on and it tries to print the message.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
This patch fixes a problem where in Garnet, the enqueue time in the
VCallocator and the SWallocator which is of type Cycles was being stored
inside a variable with int type.
This lead to a known problem restoring checkpoints with garnet & the fixed
pipeline enabled. That value was really big and didn't fit in the variable
overflowing it, therefore some conditions on the VC allocation stage & the
SW allocation stage were not met and the packets didn't advance through the
network, leading to a deadlock panic right after the checkpoint was restored.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
The CoherentBus eventually got virtual methods for its interface. The
"virtuality" of the CoherentBus, however, comes already from the virtual
interface of the bus' ports. There is no need to add another layer of virtual
functions, here.
The underlying assumption that all PPIs must be edge-triggered is
strained when the architected timers and VGIC interfaces make
level-behaviour observable. For example, a virtual timer interrupt
'goes away' when the hypervisor is entered and the vtimer is disabled;
this requires a PPI to be de-activated.
The new method simply clears the interrupt pending state.
The ethernet address param tries to convert a hexadecimal
string using int() in python, which defaults to base 10,
need to specify base 16 in this case.
SimObjects are expected to only generate one port reference per
port belonging to them. There is a subtle bug with using "not"
here as a VectorPort is seen as not having a reference if it is
either None or empty as per Python docs sec 9.9 for Standard operators.
Intended behavior is to only check if we have not created the reference.
There is an option to enable/disable all framebuffer dumps, but the
last frame always gets dumped in the run folder with no other way to
disable it. These files can add up very quickly running many experiments.
This patch adds an option to disable them. The default behavior
remains unchanged.
LSQSenderState represents the LQ/SQ index using uint8_t, which supports up to
256 entries (including the sentinel entry). Sending packets to memory with a
higher index than 255 truncates the index, such that the response matches the
wrong entry. For instance, this can result in a deadlock if a store completion
does not clear the head entry.
This change fixes an issue in the O3 CPU where an uncachable instruction
is attempted to be executed before it reaches the head of the ROB. It is
determined to be uncacheable, and is replayed, but a PanicFault is attached
to the instruction to make sure that it is properly executed before
committing. If the TLB entry it was using is replaced in the interveaning
time, the TLB returns a delayed translation when the load is replayed at
the head of the ROB, however the LSQ code can't differntiate between the
old fault and the new one. If the translation isn't complete it can't
be faulting, so clear the fault.
This patch changes the ProtoBuf builder such that the generated source
and header is placed in the build directory of the proto file. This
was previously not the case for the directories included as EXTRAS. To
make this work, we also ensure that the build directory for the EXTRAS
are added to the include path (which does not seem to automatically be
the case).
When handling IPR accesses in doMMIOAccess, the KVM CPU used
clockEdge() to convert between cycles and ticks. This is incorrect
since doMMIOAccess is supposed to return a latency in ticks rather
than when the access is done. This changeset fixes this issue by
returning clockPeriod() * ipr_delay instead.
Get rid of non-deterministic "stats" in ruby.stats output
such as time & date of run, elapsed & CPU time used,
and memory usage. These values cause spurious
miscomparisons when looking at output diffs (though
they don't affect regressions, since the regressions
pass/fail status currently ignores ruby.stats entirely).
Most of this information is already captured in other
places (time & date in stdout, elapsed time & mem usage
in stats.txt), where the regression script is smart
enough to filter it out. It seems easier to get rid of
the redundant output rather than teaching the
regression tester to ignore the same information in
two different places.
Convert condition code registers from being specialized
("pseudo") integer registers to using the recently
added CC register class.
Nilay Vaish also contributed to this patch.
Restructured rename map and free list to clean up some
extraneous code and separate out common code that can
be reused across different register classes (int and fp
at this point). Both components now consist of a set
of Simple* objects that are stand-alone rename map &
free list for each class, plus a Unified* object that
presents a unified interface across all register
classes and then redirects accesses to the appropriate
Simple* object as needed.
Moved free list initialization to PhysRegFile to better
isolate knowledge of physical register index mappings
to that class (and remove the need to pass a number
of parameters to the free list constructor).
Causes a small change to these stats:
cpu.rename.int_rename_lookups
cpu.rename.fp_rename_lookups
because they are now categorized on a per-operand basis
rather than a per-instruction basis.
That is, an instruction with mixed fp/int/misc operand
types will have each operand categorized independently,
where previously the lookup was categorized based on
the instruction type.
Make these names more meaningful.
Specifically, made these substitutions:
s/FP_Base_DepTag/FP_Reg_Base/g;
s/Ctrl_Base_DepTag/Misc_Reg_Base/g;
s/Max_DepTag/Max_Reg_Index/g;
Clean up and add some consistency to the *_Base_DepTag
constants as well as some related register constants:
- Get rid of NumMiscArchRegs, TotalArchRegs, and TotalDataRegs
since they're never used and not always defined
- Set FP_Base_DepTag = NumIntRegs when possible (i.e.,
every case except x86)
- Set Ctrl_Base_DepTag = FP_Base_DepTag + NumFloatRegs
(this was true before, but wasn't always expressed
that way)
- Drastically reduce the number of arbitrary constants
appearing in these calculations
It had a bunch of fields (and associated constructor
parameters) thet it didn't really use, and the array
initialization was needlessly verbose.
Also just hardwired the getReg() method to aleays
return true for misc regs, rather than having an array
of bits that we always kept marked as ready.
No need for PhysRegFile to be a template class, or
have a pointer back to the CPU. Also made some methods
for checking the physical register type (int vs. float)
based on the phys reg index, which will come in handy later.
The previous patch introduced a RegClass enum to clean
up register classification. The inorder model already
had an equivalent enum (RegType) that was used internally.
This patch replaces RegType with RegClass to get rid
of the now-redundant code.
Move from a poorly documented scheme where the mapping
of unified architectural register indices to register
classes is hardcoded all over to one where there's an
enum for the register classes and a function that
encapsulates the mapping.
ASI_BITS in the Request object were originally used to store a memory
request's ASI on SPARC. This is not the case any more since other ISAs
use the ASI bits to store architecture-dependent information. This
changeset renames the ASI_BITS to ARCH_BITS which better describes
their use. Additionally, the getAsi() accessor is renamed to
getArchFlags().
Using address bit 63 to identify generic IPRs caused problems on
SPARC, where IPRs are heavily used. This changeset redefines how
generic IPRs are identified. Instead of using bit 63, we now use a
separate flag (GENERIC_IPR) a memory request.
There is a potential race between enabling asynchronous IO and
selecting the target for the SIGIO signal. This changeset move the
F_SETOWN call to before the F_SETFL call that enables SIGIO
delivery. This ensures that signals are always sent to the correct
process.
This changset adds calls to the service the instruction event queues
that accidentally went missing from commit [0063c7dd18ec]. The
original commit only included the code needed to schedule instruction
stops from KVM and missed the functionality to actually service the
events.
In order to support m5ops in virtualized environments, we need to use
a memory mapped interface. This changeset adds support for that by
reserving 0xFFFF0000-0xFFFFFFFF and mapping those to the generic IPR
interface for m5ops. The mapping is done in the
X86ISA::TLB::finalizePhysical() which means that it just works for all
of the CPU models, including virtualized ones.
In order to support m5ops on virtualized CPUs, we need to either
intercept hypercall instructions or provide a memory mapped m5ops
interface. Since KVM does not normally pass the results of hypercalls
to userspace, which makes that method unfeasible. This changeset
introduces support for m5ops using memory mapped mmapped IPRs. This is
implemented by adding a class of "generic" IPRs which are handled by
architecture-independent code. Such IPRs always have bit 63 set and
are handled by handleGenericIprRead() and
handleGenericIprWrite(). Platform specific impementations of
handleIprRead and handleIprWrite should use
GenericISA::isGenericIprAccess to determine if an IPR address should
be handled by the generic code instead of the architecture-specific
code. Platforms that don't need their own IPR support can reuse
GenericISA::handleIprRead() and GenericISA::handleIprWrite().
The x87 FPU supports three floating point formats: 32-bit, 64-bit, and
80-bit floats. The current gem5 implementation supports 32-bit and
64-bit floats, but only works correctly for 64-bit floats. This
changeset fixes the 32-bit float handling by correctly loading and
rounding (using truncation) 32-bit floats instead of simply truncating
the bit pattern.
80-bit floats are loaded by first loading the 80-bits of the float to
two temporary integer registers. A micro-op (cvtint_fp80) then
converts the contents of the two integer registers to the internal FP
representation (double). Similarly, when storing an 80-bit float,
there are two conversion routines (ctvfp80h_int and cvtfp80l_int) that
convert an internal FP register to 80-bit and stores the upper 64-bits
or lower 32-bits to an integer register, which is the written to
memory using normal integer stores.
X87 store instructions typically loads and pops the top value of the
stack and stores it in memory. The current implementation pops the
stack at the same time as the floating point value is loaded to a
temporary register. This will corrupt the state of the x87 stack if
the store fails. This changeset introduces a pop87 micro-instruction
that pops the stack and uses this instruction in the affected
macro-instructions to pop the stack after storing the value to memory.
Instruction events are currently ignored when executing in KVM. This
changeset adds support for triggering KVM exits based on instruction
counts using hardware performance counters. Depending on the
underlying performance counter implementation, there might be some
inaccuracies due to instructions being counted in the host kernel when
entering/exiting KVM.
Due to limitations/bugs in Linux's performance counter interface, we
can't reliably change the period of an overflow counter. We work
around this issue by detaching and reattaching the counter if we need
to reconfigure it.
This changeset adds support for synchronizing the FPU and SIMD state
of a virtual x86 CPU with gem5. It supports both the XSave API and the
KVM_(GET|SET)_FPU kernel API. The XSave interface can be disabled
using the useXSave parameter (in case of kernel
issues). Unfortunately, KVM_(GET|SET)_FPU interface seems to be buggy
in some kernels (specifically, the MXCSR register isn't always
synchronized), which means that it might not be possible to
synchronize MXCSR on old kernels without the XSave interface.
This changeset depends on the __float80 type in gcc and might not
build using llvm.
The x87 FPU on x86 supports extended floating point. We currently
handle all floating point on x86 as double and don't support 80-bit
loads/stores. This changeset add a utility function to load and
convert 80-bit floats to doubles (loadFloat80) and another function to
store doubles as 80-bit floats (storeFloat80). Both functions use
libfputils to do the conversion in software. The functions are
currently not used, but are required to handle floating point in KVM
and to properly support all x87 loads/stores.
There are cases when the segment registers in gem5 are not compatible
with VMX. This changeset works around all known such issues. Specifically:
* The accessed bits in CS, SS, DD, ES, FS, GS are forced to 1.
* The busy bit in TR is forced to 1.
* The protection level of SS is forced to the same protection level as
CS. The difference /seems/ to be caused by a bug in gem5's x86
implementation.
This changeset adds support for KVM on x86. Full support is split
across a number of commits since some features are relatively
complex. This changeset includes support for:
* Integer state synchronization (including segment regs)
* CPUID (gem5's CPUID values are inserted into KVM)
* x86 legacy IO (remapped and handled by gem5's memory system)
* Memory mapped IO
* PCI
* MSRs
* State dumping
Most of the functionality is fairly straight forward. There are some
quirks to support PCI enumerations since this is done in the TLB(!) in
the simulated CPUs. We currently replicate some of that code.
Unlike the ARM implementation, the x86 implementation of the virtual
CPU does not use the cycles hardware counter. KVM on x86 simulates the
time stamp counter (TSC) in the kernel. If we just measure host cycles
using perfevent, we might end up measuring a slightly different number
of cycles. If we don't get the cycle accounting right, we might end up
rewinding the TSC, with all kinds of chaos as a result.
An additional feature of the KVM CPU on x86 is extended state
dumping. This enables Python scripts controlling the simulator to
request dumping of a subset of the processor state. The following
methods are currenlty supported:
* dumpFpuRegs
* dumpIntRegs
* dumpSpecRegs
* dumpDebugRegs
* dumpXCRs
* dumpXSave
* dumpVCpuEvents
* dumpMSRs
Known limitations:
* M5 ops are currently not supported.
* FPU synchronization is not supported (only affects CPU switching).
Both of the limitations will be addressed in separate commits.
The KVM base class incorrectly assumed that handleIprRead and
handleIprWrite both return ticks. This is not the case, instead they
return cycles. This changeset converts the returned cycles to ticks
when handling IPR accesses.
There is a possibility that the timespec used to arm a timer becomes
zero if the number of ticks used when arming a timer is close to the
resolution of the timer. Due to the semantics of POSIX timers, this
actually disarms the timer. This changeset fixes this issue by
eliminating the rounding error (we always round away from zero
now). It also reuses the minimum number of cycles, which were
previously only used for cycle-based timers, to calculate a more
useful resolution.
This changeset adds the convX87XTagsToTags() and convX87TagsToXTags()
which convert between the tag formats in the FTW register and the
format used in the xsave area. The conversion from to the x87 FTW
representation is currently loses some information since it does not
reconstruct the valid/zero/special flags which are not included in the
xsave representation.
The order between updating and using arg_num in
PseudoInst::pseudoInst() is currently undefined. This changeset
explicitly updates arg_num after it has been used to extract an
argument.
--HG--
extra : rebase_source : 67c46dc3333d16ce56687ee8aea41ce6c6d133bb
This patch ensures that a dequeue event is not scheduled if the memory
controller is waiting for a retry already. Without this check it is
possible for the controller to attempt sending something whilst
already having one packet that is in retry, thus causing the bus to
have an assertion failure.
This patch fixes an issue which prevented gem5 from running when built
using swig 2.0.9 and 2.0.10. The generated event.py tried to import
m5.internal which in turn relied on importing event. This patch seems
to fix the problem, and so far has not caused any other issues.
In order to support hardware virtualization, we need to be able to
check if there are any interrupts pending irregardless of the
rflags.intf value. This changeset adds the checkInterruptsRaw() method
to the x86 interrupt control. It returns true if there are pending
interrupts that can be delivered as soon as the CPU is ready for
interrupt delivery.
The Topology source sets up input and output buffers for each of the external
nodes of a topology by indexing on Ruby's generated controller unique IDs.
These unique IDs are found by adding the MachineType_base_number to the version
number of each controller (see any generated *_Controller.cc - init() calls
getToNetQueue and getFromNetQueue using m_version + base). However, the
Topology object used the cntrl_id - which is required to be unique across all
controllers - to index the controllers list as they are being connected to
their input and output buffers. If the cntrl_ids did not match the Ruby unique
ID, the throttles end up connected to incorrectly indexed nodes in the network,
resulting in packets traversing incorrect network paths. This patch fixes the
Topology indexing scheme by using the Ruby unique ID to match that of the
SimpleNetwork buffer vectors.
Previously, the LSQ would instantiate MaxThreads LSQUnits in the body of it's
object, but it would only initialize numThreads LSQUnits as specified by the
user. This had the effect of leaving some LSQUnits uninitialized when the
number of threads was less than MaxThreads, and when adding statistics to the
LSQUnit that must be initialized, this caused the stats initialization check to
fail. By dynamically instantiating LSQUnits, they are all initialized and this
avoids uninitialized LSQUnits from floating around during runtime.
The previous changeset (9863:9483739f83ee) used STL vector containers to
dynamically allocate stats in the Ruby SimpleNetwork, Switch and Throttle. For
gcc versions before at least 4.6.3, this causes the standard vector allocator
to call Stats copy constructors (a no-no, since stats should be allocated in
the body of each SimObject instance). Since the size of these stats arrays is
known at compile time (NOTE: after code generation), this patch changes their
allocation to be static rather than using an STL vector.
This patch adds the config ini string as a tooltip that can be
displayed in most browsers rendering the resulting svg. Certain
characters are modified for HTML output.
Tested on chrome and firefox.
This patch is adding a splash of colour to the dot output to make it
easier to distinguish objects of different types. As a bonus, the
pastel-colour palette also makes the output look like a something from
the 21st century.
This patch adds the class name to the label, creates some more space
by increasing the rank separation, and additionally outputs the graph
as an editable SVG in addition to the PDF.
This patch makes it possible to once again build gem5 without any
ISA. The main purpose is to enable work around the interconnect and
memory system without having to build any CPU models or device models.
The regress script is updated to include the NULL ISA target. Currently
no regressions make use of it, but all the testers could (and perhaps
should) transition to it.
--HG--
rename : build_opts/NOISA => build_opts/NULL
rename : src/arch/noisa/SConsopts => src/arch/null/SConsopts
rename : src/arch/noisa/cpu_dummy.hh => src/arch/null/cpu_dummy.hh
rename : src/cpu/intr_control.cc => src/cpu/intr_control_noisa.cc
The branch predictor is guarded by having either the in-order or
out-of-order CPU as one of the available CPU models and therefore
should not be used in the BaseCPU. This patch moves the parameter to
the relevant CPU classes.
This patch is a first step to getting NOISA working again. A number of
redundant includes make life more difficult than it has to be and this
patch simply removes them. There are also some redundant forward
declarations removed.
This patch moves the system virtual port proxy to the Alpha system
only to make the resurrection of the NOISA slightly less
painful. Alpha is the only ISA that is actually using it.
This patch changes the SConscript to build gem5 with libc++ on OSX as
the conventional libstdc++ does not have the C++11 constructs that the
current code base makes use of (e.g. std::forward).
Since this was the last use of the transitional TR1, the unordered map
and set header can now be simplified as well.
This patch updates the stats to reflect the: 1) addition of the
internal queue in SimpleMemory, 2) moving of the memory class outside
FSConfig, 3) fixing up of the 2D vector printing format, 4) specifying
burst size and interface width for the DRAM instead of relying on
cache-line size, 5) performing merging in the DRAM controller write
buffer, and 6) fixing how idle cycles are counted in the atomic and
timing CPU models.
The main reason for bundling them up is to minimise the changeset
size.
Added a couple missing updates to the notIdleFraction stat. Without
these, it sometimes gives a (not) idle fraction that is greater than 1
or less than 0.
This patch adds support for specifying multi-channel memory
configurations on the command line, e.g. 'se/fs.py
--mem-type=ddr3_1600_x64 --mem-channels=4'. To enable this, it
enhances the functionality of MemConfig and moves the existing
makeMultiChannel class method from SimpleDRAM to the support scripts.
The se/fs.py example scripts are updated to make use of the new
feature.
This patch changes the default parameter value of conf_table_reported
to match the common case. It also simplifies the regression and config
scripts to reflect this change.
This patch addresses an issue with trace playback in the TrafficGen
where the trace was reset but the header was not read from the trace
when a captured trace was played back for a second time. This resulted
in parsing errors as the expected message was not found in the trace
file.
The header check is moved to an init funtion which is called by the
constructor and when the trace is reset. This ensures that the trace
header is read each time when the trace is replayed.
This patch also addresses a small formatting issue in a panic.
This patch changes the data structure used for the DRAM read, write
and response queues from an STL list to deque. This optimisation is
based on the observation that the size is small (and fixed), and that
the structures are frequently iterated over in a linear fashion.
This patch implements basic write merging in the DRAM to avoid
redundant bursts. When a new access is added to the queue it is
compared against the existing entries, and if it is either
intersecting or immediately succeeding/preceeding an existing item it
is merged.
There is currently no attempt made at avoiding iterating over the
existing items in determining whether merging is possible or not.
This patch gets rid of bytesPerCacheLine parameter and makes the DRAM
configuration separate from cache line size. Instead of
bytesPerCacheLine, we define a parameter for the DRAM called
burst_length. The burst_length parameter shows the length of a DRAM
device burst in bits. Also, lines_per_rowbuffer is replaced with
device_rowbuffer_size to improve code portablity.
This patch adds a burst length in beats for each memory type, an
interface width for each memory type, and the memory controller model
is extended to reason about "system" packets vs "dram" packets and
assemble the responses properly. It means that system packets larger
than a full burst are split into multiple dram packets.
This patch modifies the SimpleTimingCPU drain check to also consider
the fetch event. Previously, there was an assumption that there is
never a fetch event scheduled if the CPU is not executing
microcode. However, when a context is activated, a fetch even is
scheduled, and microPC() is zero.
This patch adds a check to the quiesce operation to ensure that the
CPU does not suspend itself when there are unmasked interrupts
pending. Without this patch there are corner cases when the CPU gets
an interrupt before the quiesce is executed and then never wakes up
again.
This patch addresses an issue with the text-based stats output which
resulted in Vector2D stats being printed without subnames in the event
that one of the dimensions was of length 1.
This patch also fixes the total printing for the 2D vector. Previously
totals were printed without explicitly stating that a total was being
printed. This has been rectified in this patch.
This patch adds the notion of voltage domains, and groups clock
domains that operate under the same voltage (i.e. power supply) into
domains. Each clock domain is required to be associated with a voltage
domain, and the latter requires the voltage to be explicitly set.
A voltage domain is an independently controllable voltage supply being
provided to section of the design. Thus, if you wish to perform
dynamic voltage scaling on a CPU, its clock domain should be
associated with a separate voltage domain.
The current implementation of the voltage domain does not take into
consideration cases where there are derived voltage domains running at
ratio of native voltage domains, as with the case where there can be
on-chip buck/boost (charge pumps) voltage regulation logic.
The regression and configuration scripts are updated with a generic
voltage domain for the system, and one for the CPUs.
This patch adds a packet queue in SimpleMemory to avoid using the
packet queue in the port (and thus have no involvement in the flow
control). The port queue was bound to 100 packets, and as the
SimpleMemory is modelling both a controller and an actual RAM, it
potentially has a large number of packets in flight. There is
currently no limit on the number of packets in the memory controller,
but this could easily be added in a follow-on patch.
As a result of the added internal storage, the functional access and
draining is updated. Some minor cleaning up and renaming has also been
done.
The memtest regression changes as a result of this patch and the stats
will be updated.
This patch fixes a bug in the O3 fetch stage that was introduced when
the cache line size was moved to the system. By mistake, the
initialisation and resetting of the fetch stage was merged and put in
the constructor. The resetting is now re-added where it should be.
Some of the code in StateMachine.py file is added to all the controllers and
is independent of the controller definition. This code is being moved to the
AbstractController class which is the parent class of all controllers.
This patch adds checkpointing support to x86 tlb. It upgrades the
cpt_upgrader.py script so that previously created checkpoints can
be updated. It moves the checkpoint version to 6.
This patch removes the notion of a peer block size and instead sets
the cache line size on the system level.
Previously the size was set per cache, and communicated through the
interconnect. There were plenty checks to ensure that everyone had the
same size specified, and these checks are now removed. Another benefit
that is not yet harnessed is that the cache line size is now known at
construction time, rather than after the port binding. Hence, the
block size can be locally stored and does not have to be queried every
time it is used.
A follow-on patch updates the configuration scripts accordingly.
Instead of relying on derived classes explicitly assigning
to the BasicPioDevice pioSize field, require them to pass
a size value in to the constructor.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
PciDev and IntDev stuck out as the only device classes that
ended in 'Dev' rather than 'Device'. This patch takes care
of that inconsistency.
Note that you may need to delete pre-existing files matching
build/*/python/m5/internal/param_* as scons does not pick up
indirect dependencies on imported python modules when generating
params, and the PciDev -> PciDevice rename takes place in a
file (dev/Device.py) that gets imported quite a bit.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
It was confusing having an AmbaDev namespace along with an
AmbaDevice class. The namespace stuff is now moved in to
a new base AmbaDevice class, which is a mixin for classes
AmbaPioDevice (the former AmbaDevice) and AmbaDmaDevice
to provide the readId function as an inherited member function.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
A couple of devices that have single fixed memory mapped regions
were not derived from BasicPioDevice, when that's exactly
the functionality that BasicPioDevice provides. This patch
gets rid of a little bit of redundant code by making those
devices actually do so.
Also fixed the weird case of X86ISA::Interrupts, where
the class already did derive from BasicPioDevice but
didn't actually use all the features it could have.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
This code seems not to be of any use now. There is no path in the simulator
that allows for reconfiguring the network. A better approach would be to
take a checkpoint and start the simulation from the checkpoint with the new
configuration.
This patch reorganizes the cache tags to allow more flexibility to
implement new replacement policies. The base tags class is now a
clocked object so that derived classes can use a clock if they need
one. Also having deriving from SimObject allows specialized Tag
classes to be swapped in/out in .py files.
The cache set is now templatized to allow it to contain customized
cache blocks with additional informaiton. This involved moving code to
the .hh file and removing cacheset.cc.
The statistics belonging to the cache tags are now including ".tags"
in their name. Hence, the stats need an update to reflect the change
in naming.
This patch removes the multiplication operator support for Clock
parameters as this functionality is now achieved by creating derived
clock domains.
Nate, this one is for you.
This patch adds the notion of source- and derived-clock domains to the
ClockedObjects. As such, all clock information is moved to the clock
domain, and the ClockedObjects are grouped into domains.
The clock domains are either source domains, with a specific clock
period, or derived domains that have a parent domain and a divider
(potentially chained). For piece of logic that runs at a derived clock
(a ratio of the clock its parent is running at) the necessary derived
clock domain is created from its corresponding parent clock
domain. For now, the derived clock domain only supports a divider,
thus ensuring a lower speed compared to its parent. Multiplier
functionality implies a PLL logic that has not been modelled yet
(create a separate clock instead).
The clock domains should be used as a mechanism to provide a
controllable clock source that affects clock for every clocked object
lying beneath it. The clock of the domain can (in a future patch) be
controlled by a handler responsible for dynamic frequency scaling of
the respective clock domains.
All the config scripts have been retro-fitted with clock domains. For
the System a default SrcClockDomain is created. For CPUs that run at a
different speed than the system, there is a seperate clock domain
created. This domain incorporates the CPU and the associated
caches. As before, Ruby runs under its own clock domain.
The clock period of all domains are pre-computed, such that no virtual
functions or multiplications are needed when calling
clockPeriod. Instead, the clock period is pre-computed when any
changes occur. For this to be possible, each clock domain tracks its
children.
This patch adds a 'sys_clock' command-line option and use it to assign
clocks to the system during instantiation.
As part of this change, the default clock in the System class is
removed and whenever a system is instantiated a system clock value
must be set. A default value is provided for the command-line option.
The configs and tests are updated accordingly.
This patch removes the explicit setting of the clock period for
certain instances of CoherentBus, NonCoherentBus and IOCache where the
specified clock is same as the default value of the system clock. As
all the values used are the defaults, there are no performance
changes. There are similar cases where the toL2Bus is set to use the
parent CPU clock which is already the default behaviour.
The main motivation for these simplifications is to ease the
introduction of clock domains.
This patch does a bit of tidying up in the bridge code, adding const
where appropriate and also removing redundant checks and adding a few
new ones.
There are no changes to the behaviour of any regressions.
This patch fixes the CommMonitor local variable names, and also
introduces a variable to capture if it expects to see a response. The
latter check considers both needsResponse and memInhibitAsserted.
This patch changes the IEW drain check to include the FU pool as there
can be instructions that are "stored" in FU completion events and thus
not covered by the existing checks. With this patch, we simply include
a check to see if all the FUs are considered non-busy in the next
tick.
Without this patch, the pc-switcheroo-full regression fails after
minor changes to the cache timing (aligning to clock edge).
This patch fixes an outstanding issue in the cache timing calculations
where an atomic access returned a time in Cycles, but the port
forwarded it on as if it was in Ticks.
A separate patch will update the regression stats.
This patch fixes a bug in the granularity calculation. For example, if
the high bit is 6 (counting from 0) and we have one interleaving bit,
then the granularity is now 2 ** (6 - 1 + 1) = 64.
This patch changes the updards snoop packet to avoid allocating and
later deleting it. As the code executes in 0 time and the lifetime of
the packet does not extend beyond the block there is no reason to heap
allocate it.
This patch removes the printing of the SparseHist total in the
stats.txt output file. This has been removed as a sparse histogram has
no total, and therefore this was printing out the value of a
non-local, unrelated variable.
This patch adds separate actions for requests that missed in the local cache
and messages were sent out to get the requested line. These separate actions
are required for differentiating between the hit and miss latencies in the
statistics collected.
This patch adds separate actions for requests that missed in the local cache
and messages were sent out to get the requested line. These separate actions
are required for differentiating between the hit and miss latencies in the
statistics collected.
The patch started of with removing the global variables from the profiler for
profiling the miss latency of requests made to the cache. The corrresponding
histograms have been moved to the Sequencer. These are combined together when
the histograms are printed. Separate histograms are now maintained for
tracking latency of all requests together, of hits only and of misses only.
A particular set of histograms used to use the type GenericMachineType defined
in one of the protocol files. This patch removes this type. Now, everything
that relied on this type would use MachineType instead. To do this, SLICC has
been changed so that multiple machine types can be declared by a controller
in its preamble.
This patch removes the following three files: RubySlicc_Profiler.sm,
RubySlicc_Profiler_interface.cc and RubySlicc_Profiler_interface.hh.
Only one function prototyped in the file RubySlicc_Profiler.sm. Rest of the
code appearing in any of these files is not in use. Therefore, these files
are being removed.
That one single function, profileMsgDelay(), is being moved to the protocol
files where it is in use. If we need any of these deleted functions, I think
the right way to make them visible is to have the AbstractController class in
a .sm and let the controller state machine inherit from this class. The
AbstractController class can then have the prototypes of these profiling
functions in its definition.
2013-06-24 08:59:08 -05:00
Joel Hestness ext:(%2C%20Nilay%20Vaish%20%3Cnilay%40cs.wisc.edu%3E)
The m_size variable attempted to track m_prio_heap.size(), but it did so
incorrectly due to the functions reanalyzeMessages and reanalyzeAllMessages().
Since this variable is intended to track m_prio_heap.size(), we can simply
replace instances where m_size is referenced with m_prio_heap.size(), which
has the added bonus of removing the need for m_size.
Note: This patch also removes an extraneous DPRINTF format string designator
from reanalyzeAllMessages()
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
Previously, .sm files were allowed to use the same name for a type and a
variable. This is unnecessarily confusing and has some bad side effects, like
not being able to declare later variables in the same scope with the same type.
This causes the compiler to complain and die on things like Address Address.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
Change all occurrances of Address as a variable name to instead use Addr.
Address is an allowed name in slicc even when Address is also being used as a
type, leading to declarations of "Address Address". While this works, it
prevents adding another field of type Address because the compiler then thinks
Address is a variable name, not type.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
The current implementation of the x87 never updates the x87 tag
word. This is currently not a big issue since the simulated x87 never
checks for stack overflows, however this becomes an issue when
switching between a virtualized CPU and a simulated CPU. This
changeset adds support, which is enabled by default, for updating the
tag register to every floating point microop that updates the stack
top using the spm mechanism.
The new tag words is generated by the helper function
X86ISA::genX87Tags(). This function is currently limited to flagging a
stack position as valid or invalid and does not try to distinguish
between the valid, zero, and special states.
This changeset actually fixes two issues:
* The lfpimm instruction didn't work correctly when applied to a
floating point constant (it did work for integers containing the
bit string representation of a constant) since it used
reinterpret_cast to convert a double to a uint64_t. This caused a
compilation error, at least, in gcc 4.6.3.
* The instructions loading floating point constants in the x87
processor didn't work correctly since they just stored a truncated
integer instead of a double in the floating point register. This
changeset fixes the old microcode by using lfpimm instruction
instead of the limm instructions.
The current implementation of fprem simply does an fmod and doesn't
simulate any of the iterative behavior in a real fprem. This isn't
normally a problem, however, it can lead to problems when switching
between CPU models. If switching from a real CPU in the middle of an
fprem loop to a simulated CPU, the output of the fprem loop becomes
correupted. This changeset changes the fprem implementation to work
like the one on real hardware.
Reuse the address finalization code in the TLB instead of replicating
it when handling MMIO. This patch also adds support for injecting
memory mapped IPR requests into the memory system.
The rflags register is spread across several different registers. Most
of the flags are stored in MISCREG_RFLAGS, but some are stored in
microcode registers. When accessing RFLAGS, we need to reconstruct it
from these registers. This changeset adds two functions,
X86ISA::getRFlags() and X86ISA::setRFlags(), that take care of this
magic.
This changeset fixes two problems in the FABS and FCHS
implementation. First, the ISA parser expects the assignment in
flag_code to be a pure assignment and not an and-assignment, which
leads to the isa_parser omitting the misc reg update. Second, the FCHS
and FABS macro-ops don't set the SetStatus flag, which means that the
default micro-op version, which doesn't update FSW, is executed.
This changeset adds the following stats to KVM:
* numVMHalfEntries: Number of entries into KVM to finalize pending
IO operations without executing guest instructions. These typically
happen as a result of a drain where the guest must finalize some
operations before the guest state is consistent.
* numExitSignal: Number of VM exits that have been triggered by a
signal. These usually happen as a result of the timer that limits
the time spent in KVM.
We used to use the KVM CPU's clock to specify the host frequency. This
was not ideal for several reasons. One of them being that the clock
parameter of a CPU determines the frequency of some of the components
connected to the CPU. This changeset adds a separate hostFreq
parameter that should be used to specify the host frequency until we
add code to autodetect it. The hostFactor should still be used to
specify the conversion factor between the host performance and that of
the simulated system.
We currently execute instructions in the guest and then handle any IO
request right after we break out of the virtualized environment. This
has the effect of executing IO requests in the exact same tick as the
first instruction in the sequence that was just run. There seem to be
cases where this simplification upsets some timing-sensitive devices.
This changeset splits execute and IO (and other services) across
multiple ticks. This is implemented by adding a separate
RunningService state to the CPU state machine. When a VM requires
service, it enters into this state and pending IO is then serviced in
the future instead of immediately. The delay between getting the
request and servicing it depends on the number of cycles executed in
the guest, which allows other components to catch up with the CPU.
Update the system's totalNumInst counter when exiting from KVM and
maintain an internal absolute instruction count instead of relying on
the one from perf.
The TSC value stored in MISCREG_TSC is actually just an offset from
the current CPU cycle to the actual TSC value. Writes with
side-effects to the TSC subtract the current cycle count before
storing the new value, while reads add the current cycle count. When
switching CPUs, the current value is copied without side-effects. This
works as long as the source and the destination CPUs have the same
clock frequencies. The TSC will jump, sometimes backwards, if they
have different clock frequencies. Most OSes assume the TSC to be
monotonic and break when this happens.
This changeset makes sure that the TSC is copied with side-effects to
ensure that the offset is updated to match the new CPU.
HG changset 34e3295b0e39 introduced a check in the main simulation
loop that discards exit events that happen at the same tick as another
exit event. This was supposed to fix a problem where a simulation
script got confused by multiple exit events. This obviously breaks the
simulator since it can hide important simulation events, such as a
simulation failure, that happen at the same time as a non-fatal
simulation event.
Currently, the only way to get a CPU to stop after a fixed number of
instructions/loads is to set a property on the CPU that causes a
SimLoopExitEvent to be scheduled when the CPU is constructed. This is
clearly not ideal in cases where the simulation script wants the CPU
to stop at multiple instruction counts (e.g., SimPoint generation).
This changeset adds the methods scheduleInstStop() and
scheduleLoadStop() to the BaseCPU. These methods are exported to
Python and are designed to be used from the simulation script. By
using these methods instead of the old properties, a simulation script
can schedule a stop at any point during simulation or schedule
multiple stops. The number of instructions specified when scheduling a
stop is relative to the current point of execution.
This patch removes per processor cycle count, histogram for filter stats,
histogram for multicasts, histogram for prefetch wait, some function
prototypes that do not have definitions.
The Profiler class does not need an event for dumping statistics
periodically. This is because there is a method for dumping statistics
for all the sim objects periodically. Since Ruby is a sim object, its
statistics are also included.
This moves event and transition count statistics for cache controllers to
gem5's statistics. It does the same for the statistics associated with the
memory controller in ruby.
All the cache/directory/dma controllers individually collect the event and
transition counts. A callback function, collateStats(), has been added that
is invoked on the controller version 0 of each controller class. This
function adds all the individual controller statistics to a vector
variables. All the code for registering the statistical variables and
collating them is generated by SLICC. The patch removes the files
*_Profiler.{cc,hh} and *_ProfileDumper.{cc,hh} which were earlier used for
collecting and dumping statistics respectively.
This patch adds a new flag to specify if the data values for a given vector
should be printed in one line in the stats.txt file. The default behavior
will be to print the data in multiple lines. It makes changes to print
functions to enforce this behavior.
in the TLB
Some architectures (currently only x86) require some fixing-up of
physical addresses after a normal address translation. This is usually
to remap devices such as the APIC, but could be used for other memory
mapped devices as well. When running the CPU in a using hardware
virtualization, we still need to do these address fix-ups before
inserting the request into the memory system. This patch moves this
patch allows that code to be used by such CPUs without doing full
address translations.
The custom Python loader didn't comply with PEP302 for two reasons:
* Previously, we would overwrite old modules on name
conflicts. PEP302 explicitly states that: "If there is an existing
module object named 'fullname' in sys.modules, the loader must use
that existing module".
* The "__package__" attribute wasn't set. PEP302: "The __package__
attribute must be set."
This changeset addresses both of these issues.
Some architectures have special registers in the guest that can be
used to do cycle accounting. This is generally preferrable since the
prevents the guest from seeing a non-monotonic clock. This changeset
adds a virtual method, getHostCycles(), that the architecture-specific
code can override to implement this functionallity. The default
implementation uses the hwCycles counter.
timer_create can apparently return -1 and set errno to EAGAIN if the
kernel suffered a temporary failure when allocating a timer. This
happens from time to time, so we need to handle it.
It is now required to initialize the thread context by calling
startup() on it. Failing to do so currently causes decoder in
x86-based CPUs to get very confused when restoring from checkpoints.
Some Linux versions disable updates (regB.set = 1) to prevent the chip
from updating its internal state while the OS is updating it. Support
for this was already there, this patch merely disables the check in
writeReg that prevented it from being enabled. The patch also includes
support for disabling the divider, which is used to control when clock
updates should start after setting the internal RTC state.
These changes are required to boot most vanilla Linux distributions
that update the RTC settings at boot.
Rewrite reg A & B handling to use the bitunion stuff instead of bit
masking. Add better error messages when the kernel tries to enable
unsupported stuff.
This patch changes the class names of the variuos DRAM configurations
to better reflect what memory they are based on. The speed and
interface width is now part of the name, and also the alias that is
used to select them on the command line.
Some minor changes are done to the actual parameters, to better
reflect the named configurations. As a result of these changes the
regressions change slightly and the stats will be bumped in a separate
patch.
This patch adds a histogram to track how many bytes are accessed in an
open row before it is closed. This metric is useful in characterising
a workload and the efficiency of the DRAM scheduler. For example, a
DDR3-1600 device requires 44 cycles (tRC) before it can activate
another row in the same bank. For a x32 interface (8 bytes per cycle)
that means 8 x 44 = 352 bytes must be transferred to hide the
preparation time.
This patch adds a frontend and backend static latency to the DRAM
controller by delaying the responses. Two parameters expressing the
frontend and backend contributions in absolute time are added to the
controller, and the appropriate latency is added to the responses when
adding them to the (infinite) queued port for sending.
For writes and reads that hit in the write buffer, only the frontend
latency is added. For reads that are serviced by the DRAM, the static
latency is the sum of the pipeline latencies of the entire frontend,
backend and PHY. The default values are chosen based on having roughly
10 pipeline stages in total at 500 MHz.
In the future, it would be sensible to make the controller use its
clock and convert these latencies (and a few of the DRAM timings) to
cycles.
This patch does some minor tidying up of the MSHR and MSHRQueue. The
clean up started as part of some ad-hoc tracing and debugging, but
seems worthwhile enough to go in as a separate patch.
The highlights of the changes are reduced scoping (private) members
where possible, avoiding redundant new/delete, and constructor
initialisation to please static code analyzers.
This patch prunes the TraceCPU as the code is stale and the
functionality that it provided can now be achieved with the TrafficGen
using its trace playback mode.
The TraceCPU was able to play back pre-recorded memory traces of a few
different formats, and to achieve this level of flexibility with the
TrafficGen, use the util/encode_packet_trace (with suitable
modifications) to create a protobuf trace off-line.
Add a check which ensures that the minumum period for the LINEAR and
RANDOM traffic generator states is less than or equal to the maximum
period. If the minimum period is greater than the maximum period a
fatal is triggered.
This patch fixes a bug with the traffic generator which occured when
reading in the state transitions from the configuration
file. Previously, the size of the vector which stored the transitions
was used to get the size of the transitions matrix, rather than using
the number of states. Therefore, if there were more transitions than
states, i.e. some transitions has a probability of less than 1, then
the traffic generator would fatal when trying to check the
transitions.
This issue has been addressed by using the number of input states,
rather then the number of transitions.
This patch adds an optional request elasticity to the traffic
generator, effectievly compensating for it in the case of the linear
and random generators, and adding it in the case of the trace
generator. The accounting is left with the top-level traffic
generator, and the individual generators do the necessary math as part
of determining the next packet tick.
Note that in the linear and random generators we have to compensate
for the blocked time to not be elastic, i.e. without this patch the
aforementioned generators will slow down in the case of back-pressure.
This patch changes the queued port for a conventional master port and
stalls the traffic generator when requests are not immediately
accepted. This is a first step to allowing elasticity in the injection
of requests.
The patch also adds stats for the sent packets and retries, and
slightly changes how the nextPacketTick and getNextPacket
interact. The advancing of the trace is now moved to getNextPacket and
nextPacketTick is only responsible for answering the question when the
next packet should be sent.
This patch moves the responsibility for sending packets out of the
generator states and leaves it with the top-level traffic
generator. The main aim of this patch is to enable a transition to
non-queued ports, i.e. with send/retry flow control, and to do so it
is much more convenient to not wrap the port interactions and instead
leave it all local to the traffic generator.
The generator states now only govern when they are ready to send
something new, and the generation of the packets to send. They thus
have no knowledge of the port that is used.
This patch simplifies the object hierarchy of the traffic generator by
getting rid of the StateGraph class and folding this functionality
into the traffic generator itself.
The main goal of this patch is to facilitate upcoming changes by
reducing the number of affected layers.
This patch introduces a mirrored internal snoop port to facilitate
easy addition of flow control for the snoop responses that are turned
into normal responses on their return. To perform this, the slave
ports of the coherent bus are wrapped in internal master ports that
are passed as the source ports to the response layer in question.
As a result of this patch, there is more contention for the response
resources, and as such system performance will decrease slightly.
A consequence of the mirrored internal port is that the port the bus
tells to retry (the internal one) and the port actually retrying (the
mirrored) one are not the same. Thus, the existing check in tryTiming
is not longer correct. In fact, the test is redundant as the layer is
only in the retry state while calling sendRetry on the waiting port,
and if the latter does not immediately call the bus then the retry
state is left. Consequently the check is removed.
This patch makes the buses multi layered, and effectively creates a
crossbar structure with distributed contention ports at the
destination ports. Before this patch, a bus could have a single
request, response and snoop response in flight at any time, and with
these changes there can be as many requests as connected slaves (bus
master ports), and as many responses as connected masters (bus slave
ports).
Together with address interleaving, this patch enables us to create
high-throughput memory interconnects, e.g. 50+ GByte/s.
This patch makes the flow control and state updates of the coherent
bus more clear by separating the two cases, i.e. forward as a snoop
response, or turn it into a normal response.
With this change it is also more clear what resources are being
occupied, and that we effectively bypass the busy check for the second
case. As a result of the change in resource usage some stats change.
This patch does some minor housekeeping on the bus code, removing
redundant code, and moving the extraction of the destination id to the
top of the functions using it.
This patch adds a basic set of stats which are hard to impossible to
implement using only communication monitors, and are needed for
insight such as bus utilization, transactions through the bus etc.
Stats added include throughput and transaction distribution, and also
a two-dimensional vector capturing how many packets and how much data
is exchanged between the masters and slaves connected to the bus.
This patch changes the set used to track outstanding requests to an
unordered set (part of C++11 STL). There is no need to maintain the
order, and hopefully there might even be a small performance benefit.