In the process make add skipFuction() to handle isa specific function skipping
instead of ifdefs and other ugliness. For almost all ABIs, 64 bit arguments can
only start in even registers. Size is now passed to getArgument() so that 32
bit systems can make decisions about register selection for 64 bit arguments.
The number argument is now passed by reference because getArgument() will need
to change it based on the size of the argument and the current argument number.
For ARM, if the argument number is odd and a 64-bit register is requested the
number must first be incremented to because all 64 bit arguments are passed
in an even argument register. Then the number will be incremented again to
access both halves of the argument.
This reduces the scope of those includes and makes it less likely for there to
be a dependency loop. This also moves the hashing functions associated with
ExtMachInst objects to be with the ExtMachInst definitions and out of
utility.hh.
Also move the "Fault" reference counted pointer type into a separate file,
sim/fault.hh. It would be better to name this less similarly to sim/faults.hh
to reduce confusion, but fault.hh matches the name of the type. We could change
Fault to FaultPtr to match other pointer types, and then changing the name of
the file would make more sense.
Without this flag set, page-crossing requests were not split into two mem
request.
Depending on the alignment bit in the SCTLR, misaligned access could
raise a fault. However it seems unnecessary to implement that.
This fault can used to flush the pipe, not including the faulting instruction.
The particular case I needed this was for a self-modifying code. It needed to
drain the store queue and force the following instruction to refetch from
icache. DCCMVAC cp15 mcr instruction is modified to raise this fault.
When decoding a srs instruction, invalid mode encoding returns invalid instruction.
This can happen when garbage instructions are fetched from mispredicted path
Allow some loads that update the base register to use just two micro-ops. three
micro-ops are only used if the destination register matches the offset register
or the PC is the destination regsiter. If the PC is updated it needs to be
the last micro-op otherwise O3 will mispredict.
inUserMode now can take either a threadcontext or a CPSR value directly. If
given a thread context it just extracts the CPSR and calls the other version.
An inPrivelegedMode function was also implemented which just returns the
opposite of inUserMode.
Since miscellaneous registers bypass wakeup logic, force serialization
to resolve data dependencies through them
* * *
ARM: adding non-speculative/serialize flags for instructions change CPSR
THis allows the CPU to handle predicated-false instructions accordingly.
This particular patch makes loads that are predicated-false to be sent
straight to the commit stage directly, not waiting for return of the data
that was never requested since it was predicated-false.
This allows one two different OS requirements for the same ISA to be handled.
Some OSes are compiled for a virtual address and need to be loaded into physical
memory that starts at address 0, while other bare metal tools generate
images that start at address 0.