Make it possible to disable gem5 gic extensions by setting the
gem5_extensions param to False from Python.
Change-Id: Icb255105925ef49891d69cc9fe5cc55578ca066d
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Geoffrey Blake <geoffrey.blake@arm.com>
The GICv2 has a new and slightly more consistent register
naming. Update gem5's GIC register names to match the new
documentation.
Change-Id: I8ef114eee8a95bf0b88b37c18a18e137be78675a
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
Previous ARM-based simulations were limited to 8 cores due to
limitations in GICv2 and earlier. This changeset adds a set of
gem5-specific extensions that enable support for up to 256 cores.
When the gem5 extensions are enabled, the GIC uses CPU IDs instead of
a CPU bitmask in the GIC's register interface. To OS can enable the
extensions by setting bit 0x200 in ICDICTR.
This changeset is based on previous work by Matt Evans.
The IICRPR register in the GIC is currently not being initialized when
the GIC is instantiated. Initialize to the value mandated by the
architecture specification.
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:
* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.
* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.
* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).
* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.
* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
This patch removes the code that added this magic register. A
follow-up patch provides a GICv2m MSI shim that gives the same
functionality in a standard ARM system architecture way.
Move the (common) GIC initialization code that notifies the platform
code of the new GIC to the base class (BaseGic) instead of the Pl390
implementation.
This patch cleans up the packet memory allocation confusion. The data
is always allocated at the requesting side, when a packet is created
(or copied), and there is never a need for any device to allocate any
space if it is merely responding to a paket. This behaviour is in line
with how SystemC and TLM works as well, thus increasing
interoperability, and matching established conventions.
The redundant calls to Packet::allocate are removed, and the checks in
the function are tightened up to make sure data is only ever allocated
once. There are still some oddities in the packet copy constructor
where we copy the data pointer if it is static (without ownership),
and allocate new space if the data is dynamic (with ownership). The
latter is being worked on further in a follow-on patch.
The first DPRINTF() in PL390::writeDistributor always read a uint32_t, though a
packet may have only been 1 or 2 bytes. This caused an assertion in
packet->get().
Note: AArch64 and AArch32 interworking is not supported. If you use an AArch64
kernel you are restricted to AArch64 user-mode binaries. This will be addressed
in a later patch.
Note: Virtualization is only supported in AArch32 mode. This will also be fixed
in a later patch.
Contributors:
Giacomo Gabrielli (TrustZone, LPAE, system-level AArch64, AArch64 NEON, validation)
Thomas Grocutt (AArch32 Virtualization, AArch64 FP, validation)
Mbou Eyole (AArch64 NEON, validation)
Ali Saidi (AArch64 Linux support, code integration, validation)
Edmund Grimley-Evans (AArch64 FP)
William Wang (AArch64 Linux support)
Rene De Jong (AArch64 Linux support, performance opt.)
Matt Horsnell (AArch64 MP, validation)
Matt Evans (device models, code integration, validation)
Chris Adeniyi-Jones (AArch64 syscall-emulation)
Prakash Ramrakhyani (validation)
Dam Sunwoo (validation)
Chander Sudanthi (validation)
Stephan Diestelhorst (validation)
Andreas Hansson (code integration, performance opt.)
Eric Van Hensbergen (performance opt.)
Gabe Black
The underlying assumption that all PPIs must be edge-triggered is
strained when the architected timers and VGIC interfaces make
level-behaviour observable. For example, a virtual timer interrupt
'goes away' when the hypervisor is entered and the vtimer is disabled;
this requires a PPI to be de-activated.
The new method simply clears the interrupt pending state.
This patch address the most important name shadowing warnings (as
produced when using gcc/clang with -Wshadow). There are many
locations where constructor parameters and function parameters shadow
local variables, but these are left unchanged.
This patch moves the GIC interface to a separate base class and makes
all interrupt devices use that base class instead of a pointer to the
PL390 implementation. This allows us to have multiple GIC
implementations. Future implementations will allow in-kernel GIC
implementations when using hardware virtualization.
--HG--
rename : src/dev/arm/gic.cc => src/dev/arm/gic_pl390.cc
rename : src/dev/arm/gic.hh => src/dev/arm/gic_pl390.hh