Commit graph

407 commits

Author SHA1 Message Date
Min Kyu Jeong
4bbdd6ceb2 O3: Support SWAP and predicated loads/store in ARM. 2010-12-07 16:19:57 -08:00
Gabe Black
92655b6399 O3: Fix fp destination register flattening, and index offset adjusting.
This change makes O3 flatten floating point destination registers, and also
fixes misc register flattening so that it's correctly repositioned relative to
the resized regions for integer and floating point indices.

It also fixes some overly long lines.
2010-11-18 13:11:36 -05:00
Gabe Black
8b9b85e92c O3: Make O3 support variably lengthed instructions. 2010-11-15 19:37:03 -08:00
Ali Saidi
776c075917 O3: reset architetural state by calling clear() 2010-11-15 14:04:05 -06:00
Giacomo Gabrielli
0058927190 CPU/ARM: Add SIMD op classes to CPU models and ARM ISA. 2010-11-15 14:04:04 -06:00
Min Kyu Jeong
745df74fe0 O3: prevent a squash when completeAcc() modifies misc reg through TC.
This happens on ARM instructions when they update the IT state bits.
Code and associated comment was copied from execute() and initiateAcc() methods
2010-11-15 14:04:04 -06:00
Gabe Black
6f4bd2c1da ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.
This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.


PC type:

Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.

These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.

Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.


Advancing the PC:

The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.

One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.


Variable length instructions:

To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.


ISA parser:

To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.


Return address stack:

The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.


Change in stats:

There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.


TODO:

Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
2010-10-31 00:07:20 -07:00
Gabe Black
d5dbd91f3d O3: Get rid of a bunch of commented out lines. 2010-10-24 00:43:32 -07:00
Gabe Black
d4492190e6 Alpha: Fix Alpha NumMiscArchRegs constant.
Also add asserts in O3's Scoreboard class to catch bad indexes.
2010-10-04 11:58:06 -07:00
Gabe Black
ab8d7eee76 CPU: Fix O3 and possible InOrder segfaults in FS. 2010-09-20 02:46:42 -07:00
Gabe Black
8f3fbd2d13 CPU: Get rid of the now unnecessary getInst/setInst family of functions.
This code is no longer needed because of the preceeding change which adds a
StaticInstPtr parameter to the fault's invoke method, obviating the only use
for this pair of functions.
2010-09-13 21:58:34 -07:00
Gabe Black
6833ca7eed Faults: Pass the StaticInst involved, if any, to a Fault's invoke method.
Also move the "Fault" reference counted pointer type into a separate file,
sim/fault.hh. It would be better to name this less similarly to sim/faults.hh
to reduce confusion, but fault.hh matches the name of the type. We could change
Fault to FaultPtr to match other pointer types, and then changing the name of
the file would make more sense.
2010-09-13 19:26:03 -07:00
Nathan Binkert
afafaf1dcb style: fix sorting of includes and whitespace in some files 2010-09-10 14:58:04 -07:00
Min Kyu Jeong
e1168e72ca ARM: Fixed register flattening logic (FP_Base_DepTag was set too low)
When decoding a srs instruction, invalid mode encoding returns invalid instruction.
This can happen when garbage instructions are fetched from mispredicted path
2010-08-25 19:10:43 -05:00
Gabe Black
943c171480 ISA: Get rid of old, unused utility functions cluttering up the ISAs. 2010-08-23 16:14:20 -07:00
Min Kyu Jeong
d8d6b869a2 O3: Skipping mem-order violation check for uncachable loads.
Uncachable load is not executed until it reaches the head of the ROB,
hence cannot cause one.
2010-08-23 11:18:42 -05:00
Min Kyu Jeong
e6a0be648e ARM: Improve printing of uop disassembly. 2010-08-23 11:18:42 -05:00
Min Kyu Jeong
03286e9d4e CPU: Make Exec trace to print predication result (if false) for memory instructions 2010-08-23 11:18:41 -05:00
Min Kyu Jeong
92ae620be8 ARM: mark msr/mrs instructions as SerializeBefore/After
Since miscellaneous registers bypass wakeup logic, force serialization
to resolve data dependencies through them
* * *
ARM: adding non-speculative/serialize flags for instructions change CPSR
2010-08-23 11:18:41 -05:00
Min Kyu Jeong
43c938d23e O3: Handle loads when the destination is the PC.
For loads that PC is the destination, check if the load
was mispredicted again when the value being loaded returns from memory
2010-08-23 11:18:40 -05:00
Min Kyu Jeong
5f91ec3f46 ARM/O3: store the result of the predicate evaluation in DynInst or Threadstate.
THis allows the CPU to handle predicated-false instructions accordingly.
This particular patch makes loads that are predicated-false to be sent
straight to the commit stage directly, not waiting for return of the data
that was never requested since it was predicated-false.
2010-08-23 11:18:40 -05:00
Gabe Black
aa8c6e9c95 CPU: Add readBytes and writeBytes functions to the exec contexts. 2010-08-13 06:16:02 -07:00
Timothy M. Jones
607f519800 LSQ Unit: After deleting part of a split request, set it to NULL so that it
isn't accidentally deleted again later (causing a segmentation fault).
2010-07-22 18:54:37 +01:00
Timothy M. Jones
e50a880297 O3CPU: Fix a bug where stores in the cpu where never marked as split. 2010-07-22 18:52:02 +01:00
Timothy M. Jones
9a3533ec84 O3CPU: O3's tick event gets squashed when it is switched out. When repeatedly
switching between O3 and another CPU, O3's tick event might still be scheduled
in the event queue (as squashed).  Therefore, check for a squashed tick event
as well as a non-scheduled event when taking over from another CPU and deal
with it accordingly.
2010-07-22 18:47:43 +01:00
Timothy M. Jones
96767fc721 O3ThreadContext: When taking over from a previous context, only assert that
the system pointers match in Full System mode.
2010-06-23 00:53:17 +01:00
Nathan Binkert
f0b4259e98 cpu_models: get rid of cpu_models.py and move the stuff into SCons 2010-02-26 18:14:48 -08:00
Timothy M. Jones
29e8bcead5 O3PCU: Split loads and stores that cross cache line boundaries.
When each load or store is sent to the LSQ, we check whether it will cross a
cache line boundary and, if so, split it in two. This creates two TLB
translations and two memory requests. Care has to be taken if the first
packet of a split load is sent but the second blocks the cache. Similarly,
for a store, if the first packet cannot be sent, we must store the second
one somewhere to retry later.

This modifies the LSQSenderState class to record both packets in a split
load or store.

Finally, a new const variable, HasUnalignedMemAcc, is added to each ISA
to indicate whether unaligned memory accesses are allowed. This is used
throughout the changed code so that compiler can optimise away code dealing
with split requests for ISAs that don't need them.
2010-02-12 19:53:20 +00:00
Steve Reinhardt
fbfe92b5b8 o3: get rid of unused physmem pointer 2009-11-04 14:23:25 -08:00
Steve Reinhardt
4bec4702e9 O3: Add flag to control whether faulting instructions are traced.
When enabled, faulting instructions appear in the trace twice
(once when they fault and again when they're re-executed).
This flag is set by the Exec compound flag for backwards compatibility.
2009-09-26 10:50:50 -07:00
Steve Reinhardt
f28ea7a6c9 O3: Mark fetch stage as active if it faults.
Otherwise if the rest of the pipeline is idle then
fault will never propagate to commit to be handled,
causing CPU to deadlock.
2009-09-26 10:50:50 -07:00
Nathan Binkert
d9f39c8ce7 arch: nuke arch/isa_specific.hh and move stuff to generated config/the_isa.hh 2009-09-23 08:34:21 -07:00
Nathan Binkert
9a8cb7db7e python: Move more code into m5.util allow SCons to use that code.
Get rid of misc.py and just stick misc things in __init__.py
Move utility functions out of SCons files and into m5.util
Move utility type stuff from m5/__init__.py to m5/util/__init__.py
Remove buildEnv from m5 and allow access only from m5.defines
Rename AddToPath to addToPath while we're moving it to m5.util
Rename read_command to readCommand while we're moving it
Rename compare_versions to compareVersions while we're moving it.

--HG--
rename : src/python/m5/convert.py => src/python/m5/util/convert.py
rename : src/python/m5/smartdict.py => src/python/m5/util/smartdict.py
2009-09-22 15:24:16 -07:00
Steve Reinhardt
a13a706a20 Fix setting of INST_FETCH flag for O3 CPU.
It's still broken in inorder.
Also enhance DPRINTFs in cache and physical memory so we
can see more easily whether it's getting set or not.
2009-08-01 22:50:14 -07:00
Korey Sewell
44f80e7ca5 o3-smt: enforce numThreads parameter for SMT SE mode 2009-07-25 00:50:27 -04:00
Gabe Black
c9a27d85b9 Get rid of the unused get(Data|Inst)Asid and (inst|data)Asid functions. 2009-07-08 23:02:22 -07:00
Gabe Black
b398b8ff1b Registers: Add a registers.hh file as an ISA switched header.
This file is for register indices, Num* constants, and register types.
copyRegs and copyMiscRegs were moved to utility.hh and utility.cc.

--HG--
rename : src/arch/alpha/regfile.hh => src/arch/alpha/registers.hh
rename : src/arch/arm/regfile.hh => src/arch/arm/registers.hh
rename : src/arch/mips/regfile.hh => src/arch/mips/registers.hh
rename : src/arch/sparc/regfile.hh => src/arch/sparc/registers.hh
rename : src/arch/x86/regfile.hh => src/arch/x86/registers.hh
2009-07-08 23:02:21 -07:00
Gabe Black
25884a8773 Registers: Get rid of the float register width parameter. 2009-07-08 23:02:20 -07:00
Gabe Black
32daf6fc3f Registers: Add an ISA object which replaces the MiscRegFile.
This object encapsulates (or will eventually) the identity and characteristics
of the ISA in the CPU.
2009-07-08 23:02:20 -07:00
Nathan Binkert
4e34266245 move: put predictor includes and cc files into the same place
--HG--
rename : src/cpu/2bit_local_pred.cc => src/cpu/pred/2bit_local.cc
rename : src/cpu/o3/2bit_local_pred.hh => src/cpu/pred/2bit_local.hh
rename : src/cpu/btb.cc => src/cpu/pred/btb.cc
rename : src/cpu/o3/btb.hh => src/cpu/pred/btb.hh
rename : src/cpu/ras.cc => src/cpu/pred/ras.cc
rename : src/cpu/o3/ras.hh => src/cpu/pred/ras.hh
rename : src/cpu/tournament_pred.cc => src/cpu/pred/tournament.cc
rename : src/cpu/o3/tournament_pred.hh => src/cpu/pred/tournament.hh
2009-06-04 21:50:20 -07:00
Nathan Binkert
47877cf2db types: add a type for thread IDs and try to use it everywhere 2009-05-26 09:23:13 -07:00
Nathan Binkert
8d2e51c7f5 includes: sort includes again 2009-05-17 14:34:52 -07:00
Nathan Binkert
eef3a2e142 types: Move stuff for global types into src/base/types.hh
--HG--
rename : src/sim/host.hh => src/base/types.hh
2009-05-17 14:34:50 -07:00
Korey Sewell
f41df0ee08 inorder-o3: allow both to compile together
allow InOrder and O3CPU to be compiled at the same time: need to make branch prediction filed shared by both models
2009-05-12 15:01:14 -04:00
Korey Sewell
b569f8f0ed inorder-bpred: edits to handle non-delay-slot ISAs
Changes so that InOrder can work for a non-delay-slot ISA like Alpha. Typically, changes have to do with handling misspeculated branches at different points in pipeline
2009-05-12 15:01:14 -04:00
Gabe Black
bd6f2bb538 Mem: Change isLlsc to isLLSC. 2009-04-19 21:44:15 -07:00
Gabe Black
3e5f487663 Memory: Rename LOCKED for load locked store conditional to LLSC. 2009-04-19 04:25:01 -07:00
Korey Sewell
5c1742b822 o3-delay-slot-bpred: fix decode stage handling of uncdtl. branches.\n decode stage was not setting the predicted PC correctly or passing that information back to fetch correctly 2009-04-18 10:42:29 -04:00
Steve Reinhardt
14808ecac9 o3, inorder: fix FS bug due to initializing ThreadState to Halted.
For some reason o3 FS init() only called initCPU if the thread state
was Suspended, which was no longer the case.  There's no apparent
reason to check, so I whacked the test completely rather than
changing the check to Halted.
The inorder init() was also updated to be symmetric, though the
previous code was just a fancy no-op.
2009-04-17 16:54:58 -07:00
Steve Reinhardt
b146131d18 o3: handle fetch with no active threads correctly.
This situation can arise now on the first fetch cycle after
the last active thread is halted.  It seems easy enough to
deal with when it happens rather than trying to avoid it.
2009-04-15 23:12:00 -07:00