Commit graph

4 commits

Author SHA1 Message Date
Gabor Dozsa 5dec4e07b8 dev: Distributed Ethernet link for distributed gem5 simulations
Distributed gem5 (abbreviated dist-gem5) is the result of the
convergence effort between multi-gem5 and pd-gem5 (from Univ. of
Wisconsin). It relies on the base multi-gem5 infrastructure for packet
forwarding, synchronisation and checkpointing but combines those with
the elaborated network switch model from pd-gem5.

--HG--
rename : src/dev/net/multi_etherlink.cc => src/dev/net/dist_etherlink.cc
rename : src/dev/net/multi_etherlink.hh => src/dev/net/dist_etherlink.hh
rename : src/dev/net/multi_iface.cc => src/dev/net/dist_iface.cc
rename : src/dev/net/multi_iface.hh => src/dev/net/dist_iface.hh
rename : src/dev/net/multi_packet.hh => src/dev/net/dist_packet.hh
2016-01-07 16:33:47 -06:00
Andreas Sandberg 11494c4345 sim: Fix resource leak in BaseGlobalEvent
Static analysis revealed that BaseGlobalEvent::barrier was never
deallocated. This changeset solves this leak by making the barrier
allocation a part of the BaseGlobalEvent instead of storing a pointer
to a separate heap-allocated barrier.
2014-09-09 04:36:32 -04:00
Andreas Sandberg 838bcd3b19 sim: Add the ability to lock and migrate between event queues
We need the ability to lock event queues to enable device accesses
across threads. The serviceOne() method now takes a service lock prior
to handling a new event. By locking an event queue, a different
thread/eq can effectively execute in the context of the locked event
queue. To simplify temporary event queue migrations, this changeset
introduces the EventQueue::ScopedMigration class that unlocks the
current event queue, locks a new event queue, and updates the current
event queue variable.

In order to prevent deadlocks, event queues need to be released when
waiting on barriers. This is implemented using the
EventQueue::ScopedRelease class. An instance of this class is, for
example, used in the BaseGlobalEvent class to release the event queue
when waiting on the synchronization barrier.

The intended use for this functionality is when devices need to be
accessed across thread boundaries. For example, when fast-forwarding,
it might be useful to run devices and CPUs in separate threads. In
such a case, the CPU locks the device queue whenever it needs to
perform IO.  This functionality is primarily intended for KVM.

Note: Migrating between event queues can lead to non-deterministic
timing. Use with extreme care!

--HG--
extra : rebase_source : 23e3a741a1fd73861d1339782dbbe1bc76285315
2014-04-03 11:22:49 +02:00
Steve Reinhardt ext:(%2C%20Nilay%20Vaish%20%3Cnilay%40cs.wisc.edu%3E%2C%20Ali%20Saidi%20%3CAli.Saidi%40ARM.com%3E) de366a16f1 sim: simulate with multiple threads and event queues
This patch adds support for simulating with multiple threads, each of
which operates on an event queue.  Each sim object specifies which eventq
is would like to be on.  A custom barrier implementation is being added
using which eventqs synchronize.

The patch was tested in two different configurations:
1. ruby_network_test.py: in this simulation L1 cache controllers receive
   requests from the cpu. The requests are replied to immediately without
   any communication taking place with any other level.
2. twosys-tsunami-simple-atomic: this configuration simulates a client-server
   system which are connected by an ethernet link.

We still lack the ability to communicate using message buffers or ports. But
other things like simulation start and end, synchronizing after every quantum
are working.

Committed by: Nilay Vaish
2013-11-25 11:21:00 -06:00