SE. Process still keeps track of the tc's it owns, but registration occurs
with the System, this eases the way for system-wide context Ids based on
registration.
We should always refer to the specific ISA in that arch directory.
This is especially necessary if we're ever going to make it to the
point where we actually have heterogeneous systems.
The page table now stores actual page table entries. It is still a templated
class here, but this will be corrected in the near future.
--HG--
extra : convert_revision : 804dcc6320414c2b3ab76a74a15295bd24e1d13d
Make instructions observe segment prefixes, default segment rules, segment
base addresses.
Also fix some microcode and add sib and riprel "keywords" to the x86
specialization of the microassembler.
--HG--
extra : convert_revision : be5a3b33d33f243ed6e1ad63faea8495e46d0ac9
After very carefully reading through the Linux source, I'm pretty confident I now know -exactly- how the initial stack frame is constructed, filled, and aligned.
--HG--
extra : convert_revision : 3c654ade7e458bdd5445026860f11175f383a65f
R11 is just junk after the start of exectuion because we're "returning" from
an execve call and linux destroys the contents of rcx and r11 on system calls.
--HG--
extra : convert_revision : 6bf69a50ce56e0355dfdd41524163874340beec0
The initial stack frame for x86 is now substantially more correct. The fixes made here can be back ported to SPARC and possible the other ISAs as well. The auxiliary vector types were moved to the LiveProcess base class because they are independent of ISA. Some of the types may only apply to Linux, though, so they may have to be moved.
--HG--
extra : convert_revision : 89ace35fcc8eb9586d2fee8eeccbc3686499ef24
The stack base on my development machine starts one page below where it needs to. I don't know why it does, but I've duplicated it in m5.
--HG--
extra : convert_revision : c4783ba885b90f17e843f61e07af0bc3330a74bc
The type constants should go into an architecture independent spot since they are universal to all Linux elf binaries. The right value for some of the vectors needs to be determined. Also, x86 does not store argc or argv_array_base in registers like some other architectures.
--HG--
extra : convert_revision : 8d3f6a3e028d881d3c41e8ddf4f29d25738b529c
Code was assuming that all argument registers followed in order from ArgumentReg0. There is now an ArgumentReg array which is indexed to find the right index. There is a constant, NumArgumentRegs, which can be used to protect against using an invalid ArgumentReg.
--HG--
extra : convert_revision : f448a3ca4d6adc3fc3323562870f70eec05a8a1f
src/arch/x86/SConscript:
Add in process source files.
src/arch/x86/isa_traits.hh:
Replace magic constant numbers with the x86 register names.
src/arch/x86/miscregfile.cc:
Make clear the miscreg file succeed. There aren't any misc regs, so clearing them is very easy.
src/arch/x86/process.hh:
An X86 process class.
src/base/loader/elf_object.cc:
Add in code to recognize x86 as an architecture.
src/base/traceflags.py:
Add an x86 traceflag
src/sim/process.cc:
Add in code to create an x86 process.
src/arch/x86/intregs.hh:
A file which declares names for the integer register indices.
src/arch/x86/linux/linux.cc:
src/arch/x86/linux/linux.hh:
A very simple translation of SPARC's linux.cc and linux.hh. It's probably not correct for x86, but it might not be correct for SPARC either.
src/arch/x86/linux/process.cc:
src/arch/x86/linux/process.hh:
An x86 linux process. The syscall table is split out into it's own file.
src/arch/x86/linux/syscalls.cc:
The x86 Linux syscall table and the uname function.
src/arch/x86/process.cc:
The x86 process base class.
tests/test-progs/hello/bin/x86/linux/hello:
An x86 hello world test binary.
--HG--
extra : convert_revision : f22919e010c07aeaf5757dca054d9877a537fd08