cpu: Make the generators usable outside the TrafficGen module

This patch enables the use of the generator behaviours outside the
TrafficGen module. This is useful e.g. to allow packet replay modes
for other devices in the system without having to replace them with a
TrafficGen in the configuration files.

This change also enables more specific behaviours to be composed as
specific modules, e.g. BaseBandModem can use a number of generators
and have application-specific parameters based around a specific set
of generators.
This commit is contained in:
Andreas Hansson 2013-04-22 13:20:33 -04:00
parent 3477d60d5c
commit fe97f0e2b1
5 changed files with 762 additions and 660 deletions

View file

@ -44,6 +44,7 @@ Import('*')
if env['HAVE_PROTOBUF']:
SimObject('TrafficGen.py')
Source('generators.cc')
Source('traffic_gen.cc')
DebugFlag('TrafficGen')

View file

@ -0,0 +1,307 @@
/*
* Copyright (c) 2012-2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Thomas Grass
* Andreas Hansson
* Sascha Bischoff
*/
#include "base/random.hh"
#include "cpu/testers/traffic_gen/generators.hh"
#include "debug/TrafficGen.hh"
#include "proto/packet.pb.h"
BaseGen::BaseGen(QueuedMasterPort& _port, MasterID master_id, Tick _duration)
: port(_port), masterID(master_id), duration(_duration)
{
}
void
BaseGen::send(Addr addr, unsigned size, const MemCmd& cmd)
{
// Create new request
Request::Flags flags;
Request *req = new Request(addr, size, flags, masterID);
// Embed it in a packet
PacketPtr pkt = new Packet(req, cmd);
uint8_t* pkt_data = new uint8_t[req->getSize()];
pkt->dataDynamicArray(pkt_data);
if (cmd.isWrite()) {
memset(pkt_data, 0xA, req->getSize());
}
port.schedTimingReq(pkt, curTick());
}
void
LinearGen::enter()
{
// reset the address and the data counter
nextAddr = startAddr;
dataManipulated = 0;
// this test only needs to happen once, but cannot be performed
// before init() is called and the ports are connected
if (port.deviceBlockSize() && blocksize > port.deviceBlockSize())
fatal("TrafficGen %s block size (%d) is larger than port"
" block size (%d)\n", blocksize, port.deviceBlockSize());
}
void
LinearGen::execute()
{
// choose if we generate a read or a write here
bool isRead = readPercent != 0 &&
(readPercent == 100 || random_mt.random<uint8_t>(0, 100) < readPercent);
assert((readPercent == 0 && !isRead) || (readPercent == 100 && isRead) ||
readPercent != 100);
DPRINTF(TrafficGen, "LinearGen::execute: %c to addr %x, size %d\n",
isRead ? 'r' : 'w', nextAddr, blocksize);
send(nextAddr, blocksize, isRead ? MemCmd::ReadReq : MemCmd::WriteReq);
// increment the address
nextAddr += blocksize;
// Add the amount of data manipulated to the total
dataManipulated += blocksize;
}
Tick
LinearGen::nextExecuteTick()
{
// If we have reached the end of the address space, reset the
// address to the start of the range
if (nextAddr + blocksize > endAddr) {
DPRINTF(TrafficGen, "Wrapping address to the start of "
"the range\n");
nextAddr = startAddr;
}
// Check to see if we have reached the data limit. If dataLimit is
// zero we do not have a data limit and therefore we will keep
// generating requests for the entire residency in this state.
if (dataLimit && dataManipulated >= dataLimit) {
DPRINTF(TrafficGen, "Data limit for LinearGen reached.\n");
// there are no more requests, therefore return MaxTick
return MaxTick;
} else {
// return the time when the next request should take place
return curTick() + random_mt.random<Tick>(minPeriod, maxPeriod);
}
}
void
RandomGen::enter()
{
// reset the counter to zero
dataManipulated = 0;
// this test only needs to happen once, but cannot be performed
// before init() is called and the ports are connected
if (port.deviceBlockSize() && blocksize > port.deviceBlockSize())
fatal("TrafficGen %s block size (%d) is larger than port"
" block size (%d)\n", blocksize, port.deviceBlockSize());
}
void
RandomGen::execute()
{
// choose if we generate a read or a write here
bool isRead = readPercent != 0 &&
(readPercent == 100 || random_mt.random<uint8_t>(0, 100) < readPercent);
assert((readPercent == 0 && !isRead) || (readPercent == 100 && isRead) ||
readPercent != 100);
// address of the request
Addr addr = random_mt.random<Addr>(startAddr, endAddr - 1);
// round down to start address of block
addr -= addr % blocksize;
DPRINTF(TrafficGen, "RandomGen::execute: %c to addr %x, size %d\n",
isRead ? 'r' : 'w', addr, blocksize);
// send a new request packet
send(addr, blocksize, isRead ? MemCmd::ReadReq : MemCmd::WriteReq);
// Add the amount of data manipulated to the total
dataManipulated += blocksize;
}
Tick
RandomGen::nextExecuteTick()
{
// Check to see if we have reached the data limit. If dataLimit is
// zero we do not have a data limit and therefore we will keep
// generating requests for the entire residency in this state.
if (dataLimit && dataManipulated >= dataLimit)
{
DPRINTF(TrafficGen, "Data limit for RandomGen reached.\n");
// No more requests. Return MaxTick.
return MaxTick;
} else {
// Return the time when the next request should take place.
return curTick() + random_mt.random<Tick>(minPeriod, maxPeriod);
}
}
TraceGen::InputStream::InputStream(const std::string& filename)
: trace(filename)
{
// Create a protobuf message for the header and read it from the stream
Message::PacketHeader header_msg;
if (!trace.read(header_msg)) {
panic("Failed to read packet header from %s\n", filename);
if (header_msg.tick_freq() != SimClock::Frequency) {
panic("Trace %s was recorded with a different tick frequency %d\n",
header_msg.tick_freq());
}
}
}
void
TraceGen::InputStream::reset()
{
trace.reset();
}
bool
TraceGen::InputStream::read(TraceElement& element)
{
Message::Packet pkt_msg;
if (trace.read(pkt_msg)) {
element.cmd = pkt_msg.cmd();
element.addr = pkt_msg.addr();
element.blocksize = pkt_msg.size();
element.tick = pkt_msg.tick();
return true;
}
// We have reached the end of the file
return false;
}
Tick
TraceGen::nextExecuteTick() {
if (traceComplete)
// We are at the end of the file, thus we have no more data in
// the trace Return MaxTick to signal that there will be no
// more transactions in this active period for the state.
return MaxTick;
//Reset the nextElement to the default values
currElement = nextElement;
nextElement.clear();
// We need to look at the next line to calculate the next time an
// event occurs, or potentially return MaxTick to signal that
// nothing has to be done.
if (!trace.read(nextElement)) {
traceComplete = true;
return MaxTick;
}
DPRINTF(TrafficGen, "currElement: %c addr %d size %d tick %d (%d)\n",
currElement.cmd.isRead() ? 'r' : 'w',
currElement.addr,
currElement.blocksize,
currElement.tick + tickOffset,
currElement.tick);
DPRINTF(TrafficGen, "nextElement: %c addr %d size %d tick %d (%d)\n",
nextElement.cmd.isRead() ? 'r' : 'w',
nextElement.addr,
nextElement.blocksize,
nextElement.tick + tickOffset,
nextElement.tick);
return tickOffset + nextElement.tick;
}
void
TraceGen::enter()
{
// update the trace offset to the time where the state was entered.
tickOffset = curTick();
// clear everything
nextElement.clear();
currElement.clear();
traceComplete = false;
}
void
TraceGen::execute()
{
// it is the responsibility of nextExecuteTick to prevent the
// state graph from executing the state if it should not
assert(currElement.isValid());
DPRINTF(TrafficGen, "TraceGen::execute: %c %d %d %d\n",
currElement.cmd.isRead() ? 'r' : 'w',
currElement.addr,
currElement.blocksize,
currElement.tick);
send(currElement.addr + addrOffset, currElement.blocksize,
currElement.cmd);
}
void
TraceGen::exit()
{
// Check if we reached the end of the trace file. If we did not
// then we want to generate a warning stating that not the entire
// trace was played.
if (!traceComplete) {
warn("Trace player %s was unable to replay the entire trace!\n",
name());
}
// Clear any flags and start over again from the beginning of the
// file
trace.reset();
}

View file

@ -0,0 +1,450 @@
/*
* Copyright (c) 2012-2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Thomas Grass
* Andreas Hansson
* Sascha Bischoff
*/
/**
* @file
* Declaration of a set of generator behaviours that are used by the
* stand-alone traffic generator, but can also be instantiated
* elsewhere.
*/
#ifndef __CPU_TRAFFIC_GEN_GENERATORS_HH__
#define __CPU_TRAFFIC_GEN_GENERATORS_HH__
#include "mem/qport.hh"
#include "proto/protoio.hh"
/**
* Base class for all generators, with the shared functionality and
* virtual functions for entering, executing and leaving the
* generator.
*/
class BaseGen
{
protected:
/** Port used to send requests */
QueuedMasterPort& port;
/** The MasterID used for generating requests */
const MasterID masterID;
/**
* Create a new request and associated packet and schedule
* it to be sent in the current tick.
*
* @param addr Physical address to use
* @param size Size of the request
* @param cmd Memory command to send
*/
void send(Addr addr, unsigned size, const MemCmd& cmd);
public:
/** Time to spend in this state */
const Tick duration;
/**
* Create a base generator.
*
* @param _port port used to send requests
* @param master_id MasterID set on each request
* @param _duration duration of this state before transitioning
*/
BaseGen(QueuedMasterPort& _port, MasterID master_id,
Tick _duration);
virtual ~BaseGen() { }
/**
* Get the name, useful for DPRINTFs.
*
* @return the port name
*/
std::string name() const { return port.name(); }
/**
* Enter this generator state.
*/
virtual void enter() = 0;
/**
* Execute this generator state.
*/
virtual void execute() = 0;
/**
* Exit this generator state. By default do nothing.
*/
virtual void exit() { };
/**
* Determine the next execute tick. MaxTick means that
* there will not be any further event in the current
* activation cycle of the state.
*
* @return next tick when the state should be executed
*/
virtual Tick nextExecuteTick() = 0;
};
/**
* The idle generator does nothing.
*/
class IdleGen : public BaseGen
{
public:
IdleGen(QueuedMasterPort& _port, MasterID master_id,
Tick _duration)
: BaseGen(_port, master_id, _duration)
{ }
void enter() { }
void execute() { }
Tick nextExecuteTick() { return MaxTick; }
};
/**
* The linear generator generates sequential requests from a
* start to an end address, with a fixed block size. A
* fraction of the requests are reads, as determined by the
* read percent. There is an optional data limit for when to
* stop generating new requests.
*/
class LinearGen : public BaseGen
{
public:
/**
* Create a linear address sequence generator. Set
* min_period == max_period for a fixed inter-transaction
* time.
*
* @param _port port used to send requests
* @param master_id MasterID set on each request
* @param _duration duration of this state before transitioning
* @param start_addr Start address
* @param end_addr End address
* @param _blocksize Size used for transactions injected
* @param min_period Lower limit of random inter-transaction time
* @param max_period Upper limit of random inter-transaction time
* @param read_percent Percent of transactions that are reads
* @param data_limit Upper limit on how much data to read/write
*/
LinearGen(QueuedMasterPort& _port, MasterID master_id,
Tick _duration, Addr start_addr, Addr end_addr,
Addr _blocksize, Tick min_period, Tick max_period,
uint8_t read_percent, Addr data_limit)
: BaseGen(_port, master_id, _duration),
startAddr(start_addr), endAddr(end_addr),
blocksize(_blocksize), minPeriod(min_period),
maxPeriod(max_period), readPercent(read_percent),
dataLimit(data_limit)
{ }
void enter();
void execute();
Tick nextExecuteTick();
private:
/** Start of address range */
const Addr startAddr;
/** End of address range */
const Addr endAddr;
/** Blocksize and address increment */
const Addr blocksize;
/** Request generation period */
const Tick minPeriod;
const Tick maxPeriod;
/**
* Percent of generated transactions that should be reads
*/
const uint8_t readPercent;
/** Maximum amount of data to manipulate */
const Addr dataLimit;
/** Address of next request */
Addr nextAddr;
/**
* Counter to determine the amount of data
* manipulated. Used to determine if we should continue
* generating requests.
*/
Addr dataManipulated;
};
/**
* The random generator is similar to the linear one, but does
* not generate sequential addresses. Instead it randomly
* picks an address in the range, aligned to the block size.
*/
class RandomGen : public BaseGen
{
public:
/**
* Create a random address sequence generator. Set
* min_period == max_period for a fixed inter-transaction
* time.
*
* @param _port port used to send requests
* @param master_id MasterID set on each request
* @param _duration duration of this state before transitioning
* @param start_addr Start address
* @param end_addr End address
* @param _blocksize Size used for transactions injected
* @param min_period Lower limit of random inter-transaction time
* @param max_period Upper limit of random inter-transaction time
* @param read_percent Percent of transactions that are reads
* @param data_limit Upper limit on how much data to read/write
*/
RandomGen(QueuedMasterPort& _port, MasterID master_id,
Tick _duration, Addr start_addr, Addr end_addr,
Addr _blocksize, Tick min_period, Tick max_period,
uint8_t read_percent, Addr data_limit)
: BaseGen(_port, master_id, _duration),
startAddr(start_addr), endAddr(end_addr),
blocksize(_blocksize), minPeriod(min_period),
maxPeriod(max_period), readPercent(read_percent),
dataLimit(data_limit)
{ }
void enter();
void execute();
Tick nextExecuteTick();
private:
/** Start of address range */
const Addr startAddr;
/** End of address range */
const Addr endAddr;
/** Block size */
const Addr blocksize;
/** Request generation period */
const Tick minPeriod;
const Tick maxPeriod;
/**
* Percent of generated transactions that should be reads
*/
const uint8_t readPercent;
/** Maximum amount of data to manipulate */
const Addr dataLimit;
/**
* Counter to determine the amount of data
* manipulated. Used to determine if we should continue
* generating requests.
*/
Addr dataManipulated;
};
/**
* The trace replay generator reads a trace file and plays
* back the transactions. The trace is offset with respect to
* the time when the state was entered.
*/
class TraceGen : public BaseGen
{
private:
/**
* This struct stores a line in the trace file.
*/
struct TraceElement {
/** Specifies if the request is to be a read or a write */
MemCmd cmd;
/** The address for the request */
Addr addr;
/** The size of the access for the request */
Addr blocksize;
/** The time at which the request should be sent */
Tick tick;
/**
* Check validity of this element.
*
* @return if this element is valid
*/
bool isValid() const {
return cmd != MemCmd::InvalidCmd;
}
/**
* Make this element invalid.
*/
void clear() {
cmd = MemCmd::InvalidCmd;
}
};
/**
* The InputStream encapsulates a trace file and the
* internal buffers and populates TraceElements based on
* the input.
*/
class InputStream
{
private:
/// Input file stream for the protobuf trace
ProtoInputStream trace;
public:
/**
* Create a trace input stream for a given file name.
*
* @param filename Path to the file to read from
*/
InputStream(const std::string& filename);
/**
* Reset the stream such that it can be played once
* again.
*/
void reset();
/**
* Attempt to read a trace element from the stream,
* and also notify the caller if the end of the file
* was reached.
*
* @param element Trace element to populate
* @return True if an element could be read successfully
*/
bool read(TraceElement& element);
};
public:
/**
* Create a trace generator.
*
* @param _port port used to send requests
* @param master_id MasterID set on each request
* @param _duration duration of this state before transitioning
* @param trace_file File to read the transactions from
* @param addr_offset Positive offset to add to trace address
*/
TraceGen(QueuedMasterPort& _port, MasterID master_id,
Tick _duration, const std::string& trace_file,
Addr addr_offset)
: BaseGen(_port, master_id, _duration),
trace(trace_file),
addrOffset(addr_offset),
traceComplete(false)
{
}
void enter();
void execute();
void exit();
/**
* Read a line of the trace file. Returns the raw tick
* when the next request should be generated. If the end
* of the file has been reached, it returns MaxTick to
* indicate that there will be no more requests.
*/
Tick nextExecuteTick();
private:
/** Input stream used for reading the input trace file */
InputStream trace;
/** Store the current and next element in the trace */
TraceElement currElement;
TraceElement nextElement;
/**
* Stores the time when the state was entered. This is to add an
* offset to the times stored in the trace file.
*/
Tick tickOffset;
/**
* Offset for memory requests. Used to shift the trace
* away from the CPU address space.
*/
Addr addrOffset;
/**
* Set to true when the trace replay for one instance of
* state is complete.
*/
bool traceComplete;
};
#endif

View file

@ -45,7 +45,6 @@
#include "cpu/testers/traffic_gen/traffic_gen.hh"
#include "debug/Checkpoint.hh"
#include "debug/TrafficGen.hh"
#include "proto/packet.pb.h"
#include "sim/stats.hh"
#include "sim/system.hh"
@ -344,270 +343,6 @@ TrafficGen::StateGraph::enterState(uint32_t newState)
states[currState]->enter();
}
TrafficGen::StateGraph::BaseGen::BaseGen(QueuedMasterPort& _port,
MasterID master_id,
Tick _duration)
: port(_port), masterID(master_id), duration(_duration)
{
}
void
TrafficGen::StateGraph::BaseGen::send(Addr addr, unsigned size,
const MemCmd& cmd)
{
// Create new request
Request::Flags flags;
Request *req = new Request(addr, size, flags, masterID);
// Embed it in a packet
PacketPtr pkt = new Packet(req, cmd);
uint8_t* pkt_data = new uint8_t[req->getSize()];
pkt->dataDynamicArray(pkt_data);
if (cmd.isWrite()) {
memset(pkt_data, 0xA, req->getSize());
}
port.schedTimingReq(pkt, curTick());
}
void
TrafficGen::StateGraph::LinearGen::enter()
{
// reset the address and the data counter
nextAddr = startAddr;
dataManipulated = 0;
// this test only needs to happen once, but cannot be performed
// before init() is called and the ports are connected
if (port.deviceBlockSize() && blocksize > port.deviceBlockSize())
fatal("TrafficGen %s block size (%d) is larger than port"
" block size (%d)\n", blocksize, port.deviceBlockSize());
}
void
TrafficGen::StateGraph::LinearGen::execute()
{
// choose if we generate a read or a write here
bool isRead = readPercent != 0 &&
(readPercent == 100 || random_mt.random<uint8_t>(0, 100) < readPercent);
assert((readPercent == 0 && !isRead) || (readPercent == 100 && isRead) ||
readPercent != 100);
DPRINTF(TrafficGen, "LinearGen::execute: %c to addr %x, size %d\n",
isRead ? 'r' : 'w', nextAddr, blocksize);
send(nextAddr, blocksize, isRead ? MemCmd::ReadReq : MemCmd::WriteReq);
// increment the address
nextAddr += blocksize;
// Add the amount of data manipulated to the total
dataManipulated += blocksize;
}
Tick
TrafficGen::StateGraph::LinearGen::nextExecuteTick()
{
// If we have reached the end of the address space, reset the
// address to the start of the range
if (nextAddr + blocksize > endAddr) {
DPRINTF(TrafficGen, "Wrapping address to the start of "
"the range\n");
nextAddr = startAddr;
}
// Check to see if we have reached the data limit. If dataLimit is
// zero we do not have a data limit and therefore we will keep
// generating requests for the entire residency in this state.
if (dataLimit && dataManipulated >= dataLimit) {
DPRINTF(TrafficGen, "Data limit for LinearGen reached.\n");
// there are no more requests, therefore return MaxTick
return MaxTick;
} else {
// return the time when the next request should take place
return curTick() + random_mt.random<Tick>(minPeriod, maxPeriod);
}
}
void
TrafficGen::StateGraph::RandomGen::enter()
{
// reset the counter to zero
dataManipulated = 0;
// this test only needs to happen once, but cannot be performed
// before init() is called and the ports are connected
if (port.deviceBlockSize() && blocksize > port.deviceBlockSize())
fatal("TrafficGen %s block size (%d) is larger than port"
" block size (%d)\n", name(), blocksize, port.deviceBlockSize());
}
void
TrafficGen::StateGraph::RandomGen::execute()
{
// choose if we generate a read or a write here
bool isRead = readPercent != 0 &&
(readPercent == 100 || random_mt.random<uint8_t>(0, 100) < readPercent);
assert((readPercent == 0 && !isRead) || (readPercent == 100 && isRead) ||
readPercent != 100);
// address of the request
Addr addr = random_mt.random<Addr>(startAddr, endAddr - 1);
// round down to start address of block
addr -= addr % blocksize;
DPRINTF(TrafficGen, "RandomGen::execute: %c to addr %x, size %d\n",
isRead ? 'r' : 'w', addr, blocksize);
// send a new request packet
send(addr, blocksize, isRead ? MemCmd::ReadReq : MemCmd::WriteReq);
// Add the amount of data manipulated to the total
dataManipulated += blocksize;
}
Tick
TrafficGen::StateGraph::RandomGen::nextExecuteTick()
{
// Check to see if we have reached the data limit. If dataLimit is
// zero we do not have a data limit and therefore we will keep
// generating requests for the entire residency in this state.
if (dataLimit && dataManipulated >= dataLimit)
{
DPRINTF(TrafficGen, "Data limit for RandomGen reached.\n");
// No more requests. Return MaxTick.
return MaxTick;
} else {
// Return the time when the next request should take place.
return curTick() + random_mt.random<Tick>(minPeriod, maxPeriod);
}
}
TrafficGen::StateGraph::TraceGen::InputStream::InputStream(const string&
filename)
: trace(filename)
{
// Create a protobuf message for the header and read it from the stream
Message::PacketHeader header_msg;
if (!trace.read(header_msg)) {
panic("Failed to read packet header from %s\n", filename);
if (header_msg.tick_freq() != SimClock::Frequency) {
panic("Trace %s was recorded with a different tick frequency %d\n",
header_msg.tick_freq());
}
}
}
void
TrafficGen::StateGraph::TraceGen::InputStream::reset()
{
trace.reset();
}
bool
TrafficGen::StateGraph::TraceGen::InputStream::read(TraceElement& element)
{
Message::Packet pkt_msg;
if (trace.read(pkt_msg)) {
element.cmd = pkt_msg.cmd();
element.addr = pkt_msg.addr();
element.blocksize = pkt_msg.size();
element.tick = pkt_msg.tick();
return true;
}
// We have reached the end of the file
return false;
}
Tick
TrafficGen::StateGraph::TraceGen::nextExecuteTick() {
if (traceComplete)
// We are at the end of the file, thus we have no more data in
// the trace Return MaxTick to signal that there will be no
// more transactions in this active period for the state.
return MaxTick;
//Reset the nextElement to the default values
currElement = nextElement;
nextElement.clear();
// We need to look at the next line to calculate the next time an
// event occurs, or potentially return MaxTick to signal that
// nothing has to be done.
if (!trace.read(nextElement)) {
traceComplete = true;
return MaxTick;
}
DPRINTF(TrafficGen, "currElement: %c addr %d size %d tick %d (%d)\n",
currElement.cmd.isRead() ? 'r' : 'w',
currElement.addr,
currElement.blocksize,
currElement.tick + tickOffset,
currElement.tick);
DPRINTF(TrafficGen, "nextElement: %c addr %d size %d tick %d (%d)\n",
nextElement.cmd.isRead() ? 'r' : 'w',
nextElement.addr,
nextElement.blocksize,
nextElement.tick + tickOffset,
nextElement.tick);
return tickOffset + nextElement.tick;
}
void
TrafficGen::StateGraph::TraceGen::enter() {
// update the trace offset to the time where the state was entered.
tickOffset = curTick();
// clear everything
nextElement.clear();
currElement.clear();
traceComplete = false;
}
void
TrafficGen::StateGraph::TraceGen::execute() {
// it is the responsibility of nextExecuteTick to prevent the
// state graph from executing the state if it should not
assert(currElement.isValid());
DPRINTF(TrafficGen, "TraceGen::execute: %c %d %d %d\n",
currElement.cmd.isRead() ? 'r' : 'w',
currElement.addr,
currElement.blocksize,
currElement.tick);
send(currElement.addr + addrOffset, currElement.blocksize,
currElement.cmd);
}
void
TrafficGen::StateGraph::TraceGen::exit() {
// Check if we reached the end of the trace file. If we did not
// then we want to generate a warning stating that not the entire
// trace was played.
if (!traceComplete) {
warn("Trace player %s was unable to replay the entire trace!\n",
name());
}
// Clear any flags and start over again from the beginning of the
// file
trace.reset();
}
bool
TrafficGen::TrafficGenPort::recvTimingResp(PacketPtr pkt)
{

View file

@ -38,14 +38,14 @@
* Andreas Hansson
* Sascha Bischoff
*/
#ifndef __MEM_TRAFFIC_GEN_HH__
#define __MEM_TRAFFIC_GEN_HH__
#ifndef __CPU_TRAFFIC_GEN_TRAFFIC_GEN_HH__
#define __CPU_TRAFFIC_GEN_TRAFFIC_GEN_HH__
#include "base/hashmap.hh"
#include "cpu/testers/traffic_gen/generators.hh"
#include "mem/mem_object.hh"
#include "mem/qport.hh"
#include "params/TrafficGen.hh"
#include "proto/protoio.hh"
/**
* The traffic generator is a master module that generates stimuli for
@ -159,397 +159,6 @@ class TrafficGen : public MemObject
double p;
};
/** Base class for all generator states */
class BaseGen
{
protected:
/** Port used to send requests */
QueuedMasterPort& port;
/** The MasterID used for generating requests */
const MasterID masterID;
/**
* Create a new request and associated packet and schedule
* it to be sent in the current tick.
*
* @param addr Physical address to use
* @param size Size of the request
* @param cmd Memory command to send
*/
void send(Addr addr, unsigned size, const MemCmd& cmd);
public:
/** Time to spend in this state */
const Tick duration;
/**
* Create a base generator.
*
* @param _port port used to send requests
* @param master_id MasterID set on each request
* @param _duration duration of this state before transitioning
*/
BaseGen(QueuedMasterPort& _port, MasterID master_id,
Tick _duration);
virtual ~BaseGen() { }
/**
* Get the name, useful for DPRINTFs.
*
* @return the port name
*/
std::string name() const { return port.name(); }
/**
* Enter this generator state.
*/
virtual void enter() = 0;
/**
* Execute this generator state.
*/
virtual void execute() = 0;
/**
* Exit this generator state. By default do nothing.
*/
virtual void exit() { };
/**
* Determine the next execute tick. MaxTick means that
* there will not be any further event in the current
* activation cycle of the state.
*
* @return next tick when the state should be executed
*/
virtual Tick nextExecuteTick() = 0;
};
/**
* The idle generator does nothing.
*/
class IdleGen : public BaseGen
{
public:
IdleGen(QueuedMasterPort& _port, MasterID master_id,
Tick _duration)
: BaseGen(_port, master_id, _duration)
{ }
void enter() { }
void execute() { }
Tick nextExecuteTick() { return MaxTick; }
};
/**
* The linear generator generates sequential requests from a
* start to an end address, with a fixed block size. A
* fraction of the requests are reads, as determined by the
* read percent. There is an optional data limit for when to
* stop generating new requests.
*/
class LinearGen : public BaseGen
{
public:
/**
* Create a linear address sequence generator. Set
* min_period == max_period for a fixed inter-transaction
* time.
*
* @param _port port used to send requests
* @param master_id MasterID set on each request
* @param _duration duration of this state before transitioning
* @param start_addr Start address
* @param end_addr End address
* @param _blocksize Size used for transactions injected
* @param min_period Lower limit of random inter-transaction time
* @param max_period Upper limit of random inter-transaction time
* @param read_percent Percent of transactions that are reads
* @param data_limit Upper limit on how much data to read/write
*/
LinearGen(QueuedMasterPort& _port, MasterID master_id,
Tick _duration, Addr start_addr, Addr end_addr,
Addr _blocksize, Tick min_period, Tick max_period,
uint8_t read_percent, Addr data_limit)
: BaseGen(_port, master_id, _duration),
startAddr(start_addr), endAddr(end_addr),
blocksize(_blocksize), minPeriod(min_period),
maxPeriod(max_period), readPercent(read_percent),
dataLimit(data_limit)
{ }
void enter();
void execute();
Tick nextExecuteTick();
private:
/** Start of address range */
const Addr startAddr;
/** End of address range */
const Addr endAddr;
/** Blocksize and address increment */
const Addr blocksize;
/** Request generation period */
const Tick minPeriod;
const Tick maxPeriod;
/**
* Percent of generated transactions that should be reads
*/
const uint8_t readPercent;
/** Maximum amount of data to manipulate */
const Addr dataLimit;
/** Address of next request */
Addr nextAddr;
/**
* Counter to determine the amount of data
* manipulated. Used to determine if we should continue
* generating requests.
*/
Addr dataManipulated;
};
/**
* The random generator is similar to the linear one, but does
* not generate sequential addresses. Instead it randomly
* picks an address in the range, aligned to the block size.
*/
class RandomGen : public BaseGen
{
public:
/**
* Create a random address sequence generator. Set
* min_period == max_period for a fixed inter-transaction
* time.
*
* @param _port port used to send requests
* @param master_id MasterID set on each request
* @param _duration duration of this state before transitioning
* @param start_addr Start address
* @param end_addr End address
* @param _blocksize Size used for transactions injected
* @param min_period Lower limit of random inter-transaction time
* @param max_period Upper limit of random inter-transaction time
* @param read_percent Percent of transactions that are reads
* @param data_limit Upper limit on how much data to read/write
*/
RandomGen(QueuedMasterPort& _port, MasterID master_id,
Tick _duration, Addr start_addr, Addr end_addr,
Addr _blocksize, Tick min_period, Tick max_period,
uint8_t read_percent, Addr data_limit)
: BaseGen(_port, master_id, _duration),
startAddr(start_addr), endAddr(end_addr),
blocksize(_blocksize), minPeriod(min_period),
maxPeriod(max_period), readPercent(read_percent),
dataLimit(data_limit)
{ }
void enter();
void execute();
Tick nextExecuteTick();
private:
/** Start of address range */
const Addr startAddr;
/** End of address range */
const Addr endAddr;
/** Block size */
const Addr blocksize;
/** Request generation period */
const Tick minPeriod;
const Tick maxPeriod;
/**
* Percent of generated transactions that should be reads
*/
const uint8_t readPercent;
/** Maximum amount of data to manipulate */
const Addr dataLimit;
/**
* Counter to determine the amount of data
* manipulated. Used to determine if we should continue
* generating requests.
*/
Addr dataManipulated;
};
/**
* The trace replay generator reads a trace file and plays
* back the transactions. The trace is offset with respect to
* the time when the state was entered.
*/
class TraceGen : public BaseGen
{
private:
/**
* This struct stores a line in the trace file.
*/
struct TraceElement {
/** Specifies if the request is to be a read or a write */
MemCmd cmd;
/** The address for the request */
Addr addr;
/** The size of the access for the request */
Addr blocksize;
/** The time at which the request should be sent */
Tick tick;
/**
* Check validity of this element.
*
* @return if this element is valid
*/
bool isValid() const {
return cmd != MemCmd::InvalidCmd;
}
/**
* Make this element invalid.
*/
void clear() {
cmd = MemCmd::InvalidCmd;
}
};
/**
* The InputStream encapsulates a trace file and the
* internal buffers and populates TraceElements based on
* the input.
*/
class InputStream
{
private:
/// Input file stream for the protobuf trace
ProtoInputStream trace;
public:
/**
* Create a trace input stream for a given file name.
*
* @param filename Path to the file to read from
*/
InputStream(const std::string& filename);
/**
* Reset the stream such that it can be played once
* again.
*/
void reset();
/**
* Attempt to read a trace element from the stream,
* and also notify the caller if the end of the file
* was reached.
*
* @param element Trace element to populate
* @return True if an element could be read successfully
*/
bool read(TraceElement& element);
};
public:
/**
* Create a trace generator.
*
* @param _port port used to send requests
* @param master_id MasterID set on each request
* @param _duration duration of this state before transitioning
* @param trace_file File to read the transactions from
* @param addr_offset Positive offset to add to trace address
*/
TraceGen(QueuedMasterPort& _port, MasterID master_id,
Tick _duration, const std::string& trace_file,
Addr addr_offset)
: BaseGen(_port, master_id, _duration),
trace(trace_file),
addrOffset(addr_offset),
traceComplete(false)
{
}
void enter();
void execute();
void exit();
/**
* Read a line of the trace file. Returns the raw tick
* when the next request should be generated. If the end
* of the file has been reached, it returns MaxTick to
* indicate that there will be no more requests.
*/
Tick nextExecuteTick();
private:
/** Input stream used for reading the input trace file */
InputStream trace;
/** Store the current and next element in the trace */
TraceElement currElement;
TraceElement nextElement;
/**
* Stores the time when the state was entered. This is to add an
* offset to the times stored in the trace file.
*/
Tick tickOffset;
/**
* Offset for memory requests. Used to shift the trace
* away from the CPU address space.
*/
Addr addrOffset;
/**
* Set to true when the trace replay for one instance of
* state is complete.
*/
bool traceComplete;
};
/** Pointer to owner of request handler */
TrafficGen& owner;
@ -625,4 +234,4 @@ class TrafficGen : public MemObject
};
#endif //__MEM_TRAFFIC_GEN_HH__
#endif //__CPU_TRAFFIC_GEN_TRAFFIC_GEN_HH__