mem: Use the same timing calculation for DRAM read and write

This patch simplifies the DRAM model by re-using the function that
computes the busy and access time for both reads and writes.
This commit is contained in:
Ani Udipi 2013-11-01 11:56:19 -04:00
parent 655bf86828
commit ea76f97576
3 changed files with 38 additions and 83 deletions

View file

@ -76,7 +76,6 @@ CompoundFlag('Bus', ['BaseBus', 'BusAddrRanges', 'CoherentBus',
DebugFlag('Bridge')
DebugFlag('CommMonitor')
DebugFlag('DRAM')
DebugFlag('DRAMWR')
DebugFlag('LLSC')
DebugFlag('MMU')
DebugFlag('MemoryAccess')

View file

@ -44,7 +44,6 @@
#include "base/trace.hh"
#include "debug/Drain.hh"
#include "debug/DRAM.hh"
#include "debug/DRAMWR.hh"
#include "mem/simple_dram.hh"
#include "sim/system.hh"
@ -186,7 +185,7 @@ SimpleDRAM::writeQueueFull(unsigned int neededEntries) const
}
SimpleDRAM::DRAMPacket*
SimpleDRAM::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size)
SimpleDRAM::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, bool isRead)
{
// decode the address based on the address mapping scheme, with
// Ra, Co, Ba and Ch denoting rank, column, bank and channel,
@ -279,7 +278,7 @@ SimpleDRAM::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size)
// create the corresponding DRAM packet with the entry time and
// ready time set to the current tick, the latter will be updated
// later
return new DRAMPacket(pkt, rank, bank, row, dramPktAddr, size,
return new DRAMPacket(pkt, isRead, rank, bank, row, dramPktAddr, size,
banks[rank][bank]);
}
@ -337,7 +336,7 @@ SimpleDRAM::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
burst_helper = new BurstHelper(pktCount);
}
DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size);
DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
dram_pkt->burstHelper = burst_helper;
assert(!readQueueFull(1));
@ -382,92 +381,30 @@ SimpleDRAM::processWriteEvent()
{
assert(!writeQueue.empty());
uint32_t numWritesThisTime = 0;
Tick actTick;
DPRINTF(DRAMWR, "Beginning DRAM Writes\n");
DPRINTF(DRAM, "Beginning DRAM Writes\n");
Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
// @todo: are there any dangers with the untimed while loop?
while (!writeQueue.empty()) {
if (numWritesThisTime > writeThreshold) {
DPRINTF(DRAMWR, "Hit write threshold %d\n", writeThreshold);
if (numWritesThisTime >= writeThreshold) {
DPRINTF(DRAM, "Hit write threshold %d\n", writeThreshold);
break;
}
chooseNextWrite();
DRAMPacket* dram_pkt = writeQueue.front();
// sanity check
assert(dram_pkt->size <= burstSize);
// What's the earliest the request can be put on the bus
Tick schedTime = std::max(curTick(), busBusyUntil);
DPRINTF(DRAMWR, "Asking for latency estimate at %lld\n",
schedTime + tBURST);
pair<Tick, Tick> lat = estimateLatency(dram_pkt, schedTime + tBURST);
Tick accessLat = lat.second;
// look at the rowHitFlag set by estimateLatency
if (rowHitFlag)
writeRowHits++;
Bank& bank = dram_pkt->bank_ref;
if (pageMgmt == Enums::open) {
bank.openRow = dram_pkt->row;
bank.freeAt = schedTime + tBURST + std::max(accessLat, tCL);
busBusyUntil = bank.freeAt - tCL;
bank.bytesAccessed += burstSize;
if (!rowHitFlag) {
actTick = bank.freeAt - tCL - tRCD;//new row opened
bank.tRASDoneAt = actTick + tRAS;
recordActivate(actTick);
busBusyUntil = actTick;
// sample the number of bytes accessed and reset it as
// we are now closing this row
bytesPerActivate.sample(bank.bytesAccessed);
bank.bytesAccessed = 0;
}
} else if (pageMgmt == Enums::close) {
// All ticks waiting for a bank (if required) are included
// in accessLat
actTick = schedTime + tBURST + accessLat - tCL - tRCD;
recordActivate(actTick);
// If the DRAM has a very quick tRAS, bank can be made free
// after consecutive tCL,tRCD,tRP times. In general, however,
// an additional wait is required to respect tRAS.
bank.freeAt = std::max(actTick + tRAS + tRP,
actTick + tCL + tRCD + tRP);
//assuming that DRAM first gets write data, then activates
busBusyUntil = actTick;
DPRINTF(DRAMWR, "processWriteEvent::bank.freeAt for "
"banks_id %d is %lld\n",
dram_pkt->rank * banksPerRank + dram_pkt->bank,
bank.freeAt);
bytesPerActivate.sample(burstSize);
} else
panic("Unknown page management policy chosen\n");
DPRINTF(DRAMWR, "Done writing to address %lld\n", dram_pkt->addr);
DPRINTF(DRAMWR, "schedtime is %lld, tBURST is %lld, "
"busbusyuntil is %lld\n",
schedTime, tBURST, busBusyUntil);
doDRAMAccess(dram_pkt);
writeQueue.pop_front();
delete dram_pkt;
numWritesThisTime++;
}
DPRINTF(DRAMWR, "Completed %d writes, bus busy for %lld ticks,"\
DPRINTF(DRAM, "Completed %d writes, bus busy for %lld ticks,"\
"banks busy for %lld ticks\n", numWritesThisTime,
busBusyUntil - temp1, maxBankFreeAt() - temp2);
@ -498,6 +435,7 @@ SimpleDRAM::processWriteEvent()
schedule(nextReqEvent, busBusyUntil);
}
void
SimpleDRAM::triggerWrites()
{
@ -592,7 +530,7 @@ SimpleDRAM::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
// if the item was not merged we need to create a new write
// and enqueue it
if (!merged) {
DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size);
DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
assert(writeQueue.size() < writeBufferSize);
wrQLenPdf[writeQueue.size()]++;
@ -836,7 +774,7 @@ SimpleDRAM::chooseNextWrite()
assert(!writeQueue.empty());
if (writeQueue.size() == 1) {
DPRINTF(DRAMWR, "Single write request, nothing to do\n");
DPRINTF(DRAM, "Single write request, nothing to do\n");
return;
}
@ -849,7 +787,7 @@ SimpleDRAM::chooseNextWrite()
DRAMPacket* dram_pkt = *i;
const Bank& bank = dram_pkt->bank_ref;
if (bank.openRow == dram_pkt->row) { //FR part
DPRINTF(DRAMWR, "Write row buffer hit\n");
DPRINTF(DRAM, "Write row buffer hit\n");
writeQueue.erase(i);
writeQueue.push_front(dram_pkt);
foundRowHit = true;
@ -861,7 +799,7 @@ SimpleDRAM::chooseNextWrite()
} else
panic("No scheduling policy chosen\n");
DPRINTF(DRAMWR, "Selected next write request\n");
DPRINTF(DRAM, "Selected next write request\n");
}
bool
@ -965,7 +903,7 @@ SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
// penalty beyond waiting for the existing read to complete.
if (bank.freeAt > inTime) {
accLat += bank.freeAt - inTime;
bankLat += tBURST;
bankLat += 0;
} else {
// CAS latency only
accLat += tCL;
@ -1124,14 +1062,29 @@ SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
DPRINTF(DRAM,"Access time is %lld\n",
dram_pkt->readyTime - dram_pkt->entryTime);
if (rowHitFlag) {
if(dram_pkt->isRead)
readRowHits++;
else
writeRowHits++;
}
// At this point, commonality between reads and writes ends.
// For writes, we are done since we long ago responded to the
// requestor. We also don't care about stats for writes. For
// reads, we still need to figure out respoding to the requestor,
// and capture stats.
if (!dram_pkt->isRead) {
return;
}
// Update stats
totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
totBankLat += bankLat;
totBusLat += tBURST;
totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
if (rowHitFlag)
readRowHits++;
// At this point we're done dealing with the request
// It will be moved to a separate response queue with a

View file

@ -198,6 +198,8 @@ class SimpleDRAM : public AbstractMemory
/** This comes from the outside world */
const PacketPtr pkt;
const bool isRead;
/** Will be populated by address decoder */
const uint8_t rank;
const uint16_t bank;
@ -224,12 +226,12 @@ class SimpleDRAM : public AbstractMemory
BurstHelper* burstHelper;
Bank& bank_ref;
DRAMPacket(PacketPtr _pkt, uint8_t _rank, uint16_t _bank,
DRAMPacket(PacketPtr _pkt, bool _isRead, uint8_t _rank, uint16_t _bank,
uint16_t _row, Addr _addr, unsigned int _size,
Bank& _bank_ref)
: entryTime(curTick()), readyTime(curTick()),
pkt(_pkt), rank(_rank), bank(_bank), row(_row), addr(_addr),
size(_size), burstHelper(NULL), bank_ref(_bank_ref)
pkt(_pkt), isRead(_isRead), rank(_rank), bank(_bank), row(_row),
addr(_addr), size(_size), burstHelper(NULL), bank_ref(_bank_ref)
{ }
};
@ -336,9 +338,10 @@ class SimpleDRAM : public AbstractMemory
* @param pkt The packet from the outside world
* @param dramPktAddr The starting address of the DRAM packet
* @param size The size of the DRAM packet in bytes
* @param isRead Is the request for a read or a write to DRAM
* @return A DRAMPacket pointer with the decoded information
*/
DRAMPacket* decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned int size);
DRAMPacket* decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned int size, bool isRead);
/**
* The memory schduler/arbiter - picks which read request needs to