sim: separate nextCycle() and clockEdge() in clockedObjects
Previously, nextCycle() could return the *current* cycle if the current tick was already aligned with the clock edge. This behavior is not only confusing (not quite what the function name implies), but also caused problems in the drainResume() function. When exiting/re-entering the sim loop (e.g., to take checkpoints), the CPUs will drain and resume. Due to the previous behavior of nextCycle(), the CPU tick events were being rescheduled in the same ticks that were already processed before draining. This caused divergence from runs that did not exit/re-entered the sim loop. (Initially a cycle difference, but a significant impact later on.) This patch separates out the two behaviors (nextCycle() and clockEdge()), uses nextCycle() in drainResume, and uses clockEdge() everywhere else. Nothing (other than name) should change except for the drainResume timing.
This commit is contained in:
parent
2c1e344313
commit
e8381142b0
9 changed files with 21 additions and 20 deletions
|
@ -1715,7 +1715,7 @@ InOrderCPU::wakeCPU()
|
|||
|
||||
numCycles += extra_cycles;
|
||||
|
||||
schedule(&tickEvent, nextCycle());
|
||||
schedule(&tickEvent, clockEdge());
|
||||
}
|
||||
|
||||
// Lots of copied full system code...place into BaseCPU class?
|
||||
|
|
|
@ -1720,7 +1720,7 @@ FullO3CPU<Impl>::wakeCPU()
|
|||
idleCycles += cycles;
|
||||
numCycles += cycles;
|
||||
|
||||
schedule(tickEvent, nextCycle());
|
||||
schedule(tickEvent, clockEdge());
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
|
|
|
@ -120,7 +120,7 @@ TimingSimpleCPU::drain(DrainManager *drain_manager)
|
|||
// succeed on the first attempt. We need to reschedule it if
|
||||
// the CPU is waiting for a microcode routine to complete.
|
||||
if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
|
||||
schedule(fetchEvent, nextCycle());
|
||||
schedule(fetchEvent, clockEdge());
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
@ -616,7 +616,7 @@ TimingSimpleCPU::advanceInst(Fault fault)
|
|||
if (fault != NoFault) {
|
||||
advancePC(fault);
|
||||
DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
|
||||
reschedule(fetchEvent, nextCycle(), true);
|
||||
reschedule(fetchEvent, clockEdge(), true);
|
||||
_status = Faulting;
|
||||
return;
|
||||
}
|
||||
|
@ -715,7 +715,7 @@ TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
|
|||
{
|
||||
DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
|
||||
// delay processing of returned data until next CPU clock edge
|
||||
Tick next_tick = cpu->nextCycle();
|
||||
Tick next_tick = cpu->clockEdge();
|
||||
|
||||
if (next_tick == curTick())
|
||||
cpu->completeIfetch(pkt);
|
||||
|
@ -807,7 +807,7 @@ bool
|
|||
TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
|
||||
{
|
||||
// delay processing of returned data until next CPU clock edge
|
||||
Tick next_tick = cpu->nextCycle();
|
||||
Tick next_tick = cpu->clockEdge();
|
||||
|
||||
if (next_tick == curTick()) {
|
||||
cpu->completeDataAccess(pkt);
|
||||
|
|
|
@ -282,7 +282,7 @@ HDLcd::write(PacketPtr pkt)
|
|||
if (new_command.enable) {
|
||||
doUpdateParams = true;
|
||||
if (!frameUnderway) {
|
||||
schedule(startFrameEvent, nextCycle());
|
||||
schedule(startFrameEvent, clockEdge());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -514,7 +514,7 @@ HDLcd::renderPixel()
|
|||
frameUnderrun = true;
|
||||
int_rawstat.underrun = 1;
|
||||
if (!intEvent.scheduled())
|
||||
schedule(intEvent, nextCycle());
|
||||
schedule(intEvent, clockEdge());
|
||||
} else {
|
||||
// emulate the pixel read from the internal buffer
|
||||
pixelBufferSize -= bytesPerPixel() * count;
|
||||
|
@ -524,7 +524,7 @@ HDLcd::renderPixel()
|
|||
// the DMA may have previously stalled due to the buffer being full;
|
||||
// give it a kick; it knows not to fill if at end of frame, underrun, etc
|
||||
if (!fillPixelBufferEvent.scheduled())
|
||||
schedule(fillPixelBufferEvent, nextCycle());
|
||||
schedule(fillPixelBufferEvent, clockEdge());
|
||||
|
||||
// schedule the next pixel read according to where it is in the frame
|
||||
pixelIndex += count;
|
||||
|
@ -597,7 +597,7 @@ HDLcd::dmaDone(DmaDoneEvent *event)
|
|||
if ((dmaCurAddr < dmaMaxAddr) &&
|
||||
(bytesFreeInPixelBuffer() + targetTransSize < PIXEL_BUFFER_CAPACITY) &&
|
||||
!fillPixelBufferEvent.scheduled()) {
|
||||
schedule(fillPixelBufferEvent, nextCycle());
|
||||
schedule(fillPixelBufferEvent, clockEdge());
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -441,7 +441,7 @@ Pl111::readFramebuffer()
|
|||
// Updating base address, interrupt if we're supposed to
|
||||
lcdRis.baseaddr = 1;
|
||||
if (!intEvent.scheduled())
|
||||
schedule(intEvent, nextCycle());
|
||||
schedule(intEvent, clockEdge());
|
||||
|
||||
curAddr = 0;
|
||||
startTime = curTick();
|
||||
|
@ -492,7 +492,7 @@ Pl111::dmaDone()
|
|||
" have taken %d\n", curTick() - startTime, maxFrameTime);
|
||||
lcdRis.underflow = 1;
|
||||
if (!intEvent.scheduled())
|
||||
schedule(intEvent, nextCycle());
|
||||
schedule(intEvent, clockEdge());
|
||||
}
|
||||
|
||||
assert(!readEvent.scheduled());
|
||||
|
@ -522,7 +522,7 @@ Pl111::dmaDone()
|
|||
return;
|
||||
|
||||
if (!fillFifoEvent.scheduled())
|
||||
schedule(fillFifoEvent, nextCycle());
|
||||
schedule(fillFifoEvent, clockEdge());
|
||||
}
|
||||
|
||||
void
|
||||
|
|
|
@ -277,7 +277,7 @@ Bridge::BridgeMasterPort::trySendTiming()
|
|||
req = transmitList.front();
|
||||
DPRINTF(Bridge, "Scheduling next send\n");
|
||||
bridge.schedule(sendEvent, std::max(req.tick,
|
||||
bridge.nextCycle()));
|
||||
bridge.clockEdge()));
|
||||
}
|
||||
|
||||
// if we have stalled a request due to a full request queue,
|
||||
|
@ -318,7 +318,7 @@ Bridge::BridgeSlavePort::trySendTiming()
|
|||
resp = transmitList.front();
|
||||
DPRINTF(Bridge, "Scheduling next send\n");
|
||||
bridge.schedule(sendEvent, std::max(resp.tick,
|
||||
bridge.nextCycle()));
|
||||
bridge.clockEdge()));
|
||||
}
|
||||
|
||||
// if there is space in the request queue and we were stalling
|
||||
|
|
|
@ -135,7 +135,7 @@ BaseBus::calcPacketTiming(PacketPtr pkt)
|
|||
// the bus will be called at a time that is not necessarily
|
||||
// coinciding with its own clock, so start by determining how long
|
||||
// until the next clock edge (could be zero)
|
||||
Tick offset = nextCycle() - curTick();
|
||||
Tick offset = clockEdge() - curTick();
|
||||
|
||||
// determine how many cycles are needed to send the data
|
||||
unsigned dataCycles = pkt->hasData() ? divCeil(pkt->getSize(), width) : 0;
|
||||
|
|
|
@ -307,7 +307,7 @@ RubyMemoryControl::enqueueMemRef(MemoryNode& memRef)
|
|||
m_input_queue.push_back(memRef);
|
||||
|
||||
if (!m_event.scheduled()) {
|
||||
schedule(m_event, nextCycle());
|
||||
schedule(m_event, clockEdge());
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -172,13 +172,14 @@ class ClockedObject : public SimObject
|
|||
}
|
||||
|
||||
/**
|
||||
* Based on the clock of the object, determine the tick when the
|
||||
* next cycle begins, in other words, return the next clock edge.
|
||||
* Based on the clock of the object, determine the tick when the next
|
||||
* cycle begins, in other words, return the next clock edge.
|
||||
* (This can never be the current tick.)
|
||||
*
|
||||
* @return The tick when the next cycle starts
|
||||
*/
|
||||
Tick nextCycle() const
|
||||
{ return clockEdge(); }
|
||||
{ return clockEdge(Cycles(1)); }
|
||||
|
||||
inline uint64_t frequency() const { return SimClock::Frequency / clock; }
|
||||
|
||||
|
|
Loading…
Reference in a new issue