Merge zizzer:/bk/newmem

into  zeep.eecs.umich.edu:/z/saidi/work/m5.newmem

--HG--
extra : convert_revision : 36da0febc30675e955a10eb8bc45586b6242a8c3
This commit is contained in:
Ali Saidi 2006-04-10 14:14:25 -04:00
commit e17a15f4c5
14 changed files with 729 additions and 862 deletions

View file

@ -184,11 +184,19 @@ full_system_sources = Split('''
cpu/profile.cc
dev/alpha_console.cc
dev/baddev.cc
dev/disk_image.cc
dev/io_device.cc
dev/isa_fake.cc
dev/platform.cc
dev/simconsole.cc
dev/simple_disk.cc
dev/tsunami.cc
dev/tsunami_cchip.cc
dev/tsunami_io.cc
dev/tsunami_fake.cc
dev/tsunami_pchip.cc
dev/uart.cc
dev/uart8250.cc
@ -204,7 +212,6 @@ full_system_sources = Split('''
sim/pseudo_inst.cc
''')
# dev/baddev.cc
# dev/etherbus.cc
# dev/etherdump.cc
# dev/etherint.cc
@ -219,11 +226,6 @@ full_system_sources = Split('''
# dev/pcifake.cc
# dev/pktfifo.cc
# dev/sinic.cc
# dev/tsunami.cc
# dev/tsunami_cchip.cc
# dev/isa_fake.cc
# dev/tsunami_io.cc
# dev/tsunami_pchip.cc
if env['TARGET_ISA'] == 'alpha':
full_system_sources += Split('''

View file

@ -87,15 +87,6 @@ AlphaConsole::startup()
alphaAccess->intrClockFrequency = params()->platform->intrFrequency();
}
void
AlphaConsole::addressRanges(AddrRangeList &range_list)
{
assert(pioSize != 0);
range_list.clear();
range_list.push_back(RangeSize(pioAddr, sizeof(struct AlphaAccess)));
}
Tick
AlphaConsole::read(Packet &pkt)
{
@ -325,7 +316,7 @@ BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaConsole)
SimObjectParam<SimConsole *> sim_console;
SimObjectParam<SimpleDisk *> disk;
Param<Addr> addr;
Param<Addr> pio_addr;
SimObjectParam<AlphaSystem *> system;
SimObjectParam<BaseCPU *> cpu;
SimObjectParam<Platform *> platform;
@ -337,7 +328,7 @@ BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaConsole)
INIT_PARAM(sim_console, "The Simulator Console"),
INIT_PARAM(disk, "Simple Disk"),
INIT_PARAM(addr, "Device Address"),
INIT_PARAM(pio_addr, "Device Address"),
INIT_PARAM(system, "system object"),
INIT_PARAM(cpu, "Processor"),
INIT_PARAM(platform, "platform"),
@ -350,7 +341,7 @@ CREATE_SIM_OBJECT(AlphaConsole)
AlphaConsole::Params *p = new AlphaConsole::Params;
p->name = getInstanceName();
p->platform = platform;
p->pio_addr = addr;
p->pio_addr = pio_addr;
p->pio_delay = pio_latency;
p->cons = sim_console;
p->disk = disk;

View file

@ -119,9 +119,6 @@ class AlphaConsole : public BasicPioDevice
virtual Tick read(Packet &pkt);
virtual Tick write(Packet &pkt);
/** Address ranges this device is sensitive to. */
virtual void addressRanges(AddrRangeList &range_list);
/**
* standard serialization routines for checkpointing
*/

View file

@ -48,69 +48,54 @@
using namespace std;
using namespace TheISA;
BadDevice::BadDevice(const string &name, Addr a, MemoryController *mmu,
HierParams *hier, Bus *pio_bus, const string &devicename)
: PioDevice(name, NULL), addr(a), devname(devicename)
BadDevice::BadDevice(Params *p)
: BasicPioDevice(p), devname(p->devic_ename)
{
mmu->add_child(this, RangeSize(addr, size));
if (pio_bus) {
pioInterface = newPioInterface(name, hier, pio_bus, this,
&BadDevice::cacheAccess);
pioInterface->addAddrRange(RangeSize(addr, size));
}
}
Fault
BadDevice::read(MemReqPtr &req, uint8_t *data)
{
panic("Device %s not imlpmented\n", devname);
return NoFault;
}
Fault
BadDevice::write(MemReqPtr &req, const uint8_t *data)
{
panic("Device %s not imlpmented\n", devname);
return NoFault;
pioSize = 0xf;
}
Tick
BadDevice::cacheAccess(MemReqPtr &req)
BadDevice::read(Packet &pkt)
{
return curTick;
panic("Device %s not imlpmented\n", devname);
}
Tick
BadDevice::write(Packet &pkt)
{
panic("Device %s not imlpmented\n", devname);
}
BEGIN_DECLARE_SIM_OBJECT_PARAMS(BadDevice)
SimObjectParam<Platform *> platform;
SimObjectParam<MemoryController *> mmu;
Param<Addr> addr;
SimObjectParam<HierParams *> hier;
SimObjectParam<Bus*> pio_bus;
Param<Tick> pio_latency;
Param<string> devicename;
Param<Addr> pio_addr;
SimObjectParam<AlphaSystem *> system;
SimObjectParam<Platform *> platform;
Param<Tick> pio_latency;
END_DECLARE_SIM_OBJECT_PARAMS(BadDevice)
BEGIN_INIT_SIM_OBJECT_PARAMS(BadDevice)
INIT_PARAM(platform, "Platform"),
INIT_PARAM(mmu, "Memory Controller"),
INIT_PARAM(addr, "Device Address"),
INIT_PARAM_DFLT(hier, "Hierarchy global variables", &defaultHierParams),
INIT_PARAM_DFLT(pio_bus, "The IO Bus to attach to", NULL),
INIT_PARAM_DFLT(pio_latency, "Programmed IO latency", 1000),
INIT_PARAM(devicename, "Name of device to error on")
INIT_PARAM(devicename, "Name of device to error on"),
INIT_PARAM(pio_addr, "Device Address"),
INIT_PARAM(system, "system object"),
INIT_PARAM(platform, "platform"),
INIT_PARAM_DFLT(pio_latency, "Programmed IO latency", 1000)
END_INIT_SIM_OBJECT_PARAMS(BadDevice)
CREATE_SIM_OBJECT(BadDevice)
{
return new BadDevice(getInstanceName(), addr, mmu, hier, pio_bus,
devicename);
BadDevice::Params *p = new BadDevice::Params;
p->name =getInstanceName();
p->platform = platform;
p->pio_addr = pio_addr;
p->pio_delay = pio_latency;
p->system = system;
p->devicename = devicename;
return new BadDevice(p);
}
REGISTER_SIM_OBJECT("BadDevice", BadDevice)

View file

@ -37,7 +37,6 @@
#include "base/range.hh"
#include "dev/io_device.hh"
class MemoryController;
/**
* BadDevice
@ -45,51 +44,29 @@ class MemoryController;
* the user that the kernel they are running has unsupported
* options (i.e. frame buffer)
*/
class BadDevice : public PioDevice
class BadDevice : public BasicPioDevice
{
private:
Addr addr;
static const Addr size = 0xf;
std::string devname;
public:
struct Params : public BasicPioDevice::Params
{
std::string device_name;
};
protected:
const Params *params() const { return (const Params *)_params; }
public:
/**
* Constructor for the Baddev Class.
* @param name name of the object
* @param p object parameters
* @param a base address of the write
* @param mmu the memory controller
* @param hier object to store parameters universal the device hierarchy
* @param bus The bus that this device is attached to
* @param devicename device that is not implemented
*/
BadDevice(const std::string &name, Addr a, MemoryController *mmu,
HierParams *hier, Bus *bus, const std::string &devicename);
BadDevice(Params *p);
/**
* On a read event we just panic aand hopefully print a
* meaningful error message.
* @param req Contains the address to read from.
* @param data A pointer to write the read data to.
* @return The fault condition of the access.
*/
virtual Fault read(MemReqPtr &req, uint8_t *data);
/**
* On a write event we just panic aand hopefully print a
* meaningful error message.
* @param req Contains the address to write to.
* @param data The data to write.
* @return The fault condition of the access.
*/
virtual Fault write(MemReqPtr &req, const uint8_t *data);
/**
* Return how long this access will take.
* @param req the memory request to calcuate
* @return Tick when the request is done
*/
Tick cacheAccess(MemReqPtr &req);
virtual Tick read(Packet &pkt);
virtual Tick write(Packet &pkt);
};
#endif // __DEV_BADDEV_HH__

View file

@ -88,6 +88,14 @@ PioDevice::~PioDevice()
delete pioPort;
}
void
BasicPioDevice::addressRanges(AddrRangeList &range_list)
{
assert(pioSize != 0);
range_list.clear();
range_list.push_back(RangeSize(pioAddr, pioSize));
}
DmaPort::DmaPort(DmaDevice *dev)
: device(dev)

View file

@ -267,6 +267,11 @@ class BasicPioDevice : public PioDevice
: PioDevice(p), pioAddr(p->pio_addr), pioSize(0), pioDelay(p->pio_delay)
{}
/** return the address ranges that this device responds to.
* @params range_list range list to populate with ranges
*/
addressRanges(AddrRangeList &range_list);
};
class DmaDevice : public PioDevice

View file

@ -37,7 +37,7 @@
#include "arch/alpha/ev5.hh"
#include "base/trace.hh"
#include "cpu/exec_context.hh"
#include "dev/isa_fake.hh"
#include "dev/tsunami_fake.hh"
#include "mem/bus/bus.hh"
#include "mem/bus/pio_interface.hh"
#include "mem/bus/pio_interface_impl.hh"
@ -46,96 +46,112 @@
#include "sim/system.hh"
using namespace std;
using namespace TheISA;
IsaFake::IsaFake(const string &name, Addr a, MemoryController *mmu,
HierParams *hier, Bus *pio_bus, Addr size)
: PioDevice(name, NULL), addr(a)
IsaFake::IsaFake(Params *p)
: BasicPioDevice(p)
{
mmu->add_child(this, RangeSize(addr, size));
if (pio_bus) {
pioInterface = newPioInterface(name + ".pio", hier, pio_bus, this,
&IsaFake::cacheAccess);
pioInterface->addAddrRange(RangeSize(addr, size));
}
}
Fault
IsaFake::read(MemReqPtr &req, uint8_t *data)
{
DPRINTF(Tsunami, "read va=%#x size=%d\n",
req->vaddr, req->size);
#if TRACING_ON
Addr daddr = (req->paddr - (addr & EV5::PAddrImplMask)) >> 6;
#endif
switch (req->size) {
case sizeof(uint64_t):
*(uint64_t*)data = 0xFFFFFFFFFFFFFFFFULL;
return NoFault;
case sizeof(uint32_t):
*(uint32_t*)data = 0xFFFFFFFF;
return NoFault;
case sizeof(uint16_t):
*(uint16_t*)data = 0xFFFF;
return NoFault;
case sizeof(uint8_t):
*(uint8_t*)data = 0xFF;
return NoFault;
default:
panic("invalid access size(?) for PCI configspace!\n");
}
DPRINTFN("Isa FakeSMC ERROR: read daddr=%#x size=%d\n", daddr, req->size);
return NoFault;
}
Fault
IsaFake::write(MemReqPtr &req, const uint8_t *data)
{
DPRINTF(Tsunami, "write - va=%#x size=%d \n",
req->vaddr, req->size);
//:Addr daddr = (req->paddr & addr_mask) >> 6;
return NoFault;
pioSize = p->pio_size;
}
Tick
IsaFake::cacheAccess(MemReqPtr &req)
IsaFake::read(Packet &pkt)
{
return curTick;
assert(pkt.result == Unknown);
assert(pkt.addr >= pioAddr && pkt.addr < pioAddr + pioSize);
pkt.time = curTick + pioDelay;
Addr daddr = pkt.addr - pioAddr;
DPRINTF(Tsunami, "read va=%#x size=%d\n", pkt.addr, pkt.size);
uint8_t *data8;
uint16_t *data16;
uint32_t *data32;
uint64_t *data64;
switch (req->size) {
case sizeof(uint64_t):
if (!pkt.data) {
data64 = new uint64_t;
pkt.data = (uint8_t*)data64;
} else {
data64 = (uint64_t*)pkt.data;
}
*data64 = 0xFFFFFFFFFFFFFFFFULL;
break;
case sizeof(uint32_t):
if (!pkt.data) {
data32 = new uint32_t;
pkt.data = (uint8_t*)data32;
} else {
data32 = (uint64_t*)pkt.data;
}
*data32 = 0xFFFFFFFF;
break;
case sizeof(uint16_t):
if (!pkt.data) {
data16 = new uint16_t;
pkt.data = (uint8_t*)data16;
} else {
data16 = (uint64_t*)pkt.data;
}
*data16 = 0xFFFF;
break;
case sizeof(uint8_t):
if (!pkt.data) {
data8 = new uint8_t;
pkt.data = data8;
} else {
data8 = (uint8_t*)pkt.data;
}
*data8 = 0xFF;
break;
default:
panic("invalid access size(?) for PCI configspace!\n");
}
pkt.result = Success;
return pioDelay;
}
Fault
IsaFake::write(Packet &pkt)
{
pkt.time = curTick + pioDelay;
DPRINTF(Tsunami, "write - va=%#x size=%d \n", pkt.addr, pkt.size);
pkt.result = Success;
return pioDelay;
}
BEGIN_DECLARE_SIM_OBJECT_PARAMS(IsaFake)
SimObjectParam<MemoryController *> mmu;
Param<Addr> addr;
SimObjectParam<Bus*> pio_bus;
Param<Addr> pio_addr;
Param<Tick> pio_latency;
SimObjectParam<HierParams *> hier;
Param<Addr> size;
Param<Addr> pio_size;
SimObjectParam<Platform *> platform;
SimObjectParam<System *> system;
END_DECLARE_SIM_OBJECT_PARAMS(IsaFake)
BEGIN_INIT_SIM_OBJECT_PARAMS(IsaFake)
INIT_PARAM(mmu, "Memory Controller"),
INIT_PARAM(addr, "Device Address"),
INIT_PARAM_DFLT(pio_bus, "The IO Bus to attach to", NULL),
INIT_PARAM_DFLT(pio_latency, "Programmed IO latency", 1000),
INIT_PARAM_DFLT(hier, "Hierarchy global variables", &defaultHierParams),
INIT_PARAM_DFLT(size, "Size of address range", 0x8)
INIT_PARAM(pio_addr, "Device Address"),
INIT_PARAM(pio_latency, "Programmed IO latency"),
INIT_PARAM(pio_size, "Size of address range"),
INIT_PARAM(platform, "platform"),
INIT_PARAM(system, "system object")
END_INIT_SIM_OBJECT_PARAMS(IsaFake)
CREATE_SIM_OBJECT(IsaFake)
{
return new IsaFake(getInstanceName(), addr, mmu, hier, pio_bus, size);
IsaFake::Params *p = new IsaFake::Params;
p->name = getInstanceName();
p->pio_addr = pio_addr;
p->pio_delay = pio_latency;
p->pio_size = pio_size;
p->platform = platform;
p->system = system;
return new IsaFake(p);
}
REGISTER_SIM_OBJECT("IsaFake", IsaFake)

View file

@ -37,51 +37,42 @@
#include "base/range.hh"
#include "dev/io_device.hh"
class MemoryController;
/**
* IsaFake is a device that returns -1 on all reads and
* accepts all writes. It is meant to be placed at an address range
* so that an mcheck doesn't occur when an os probes a piece of hw
* that doesn't exist (e.g. UARTs1-3).
*/
class IsaFake : public PioDevice
class IsaFake : public BasicPioDevice
{
private:
/** The address in memory that we respond to */
Addr addr;
public:
struct Params : public BasicPioDevice::Params
{
Addr pio_size;
};
protected:
const Params *params() const { return (const Params*)_params; }
public:
/**
* The constructor for Tsunmami Fake just registers itself with the MMU.
* @param name name of this device.
* @param a address to respond to.
* @param mmu the mmu we register with.
* @param size number of addresses to respond to
* @param p params structure
*/
IsaFake(const std::string &name, Addr a, MemoryController *mmu,
HierParams *hier, Bus *pio_bus, Addr size = 0x8);
IsaFake(Params *p);
/**
* This read always returns -1.
* @param req The memory request.
* @param data Where to put the data.
*/
virtual Fault read(MemReqPtr &req, uint8_t *data);
virtual Tick read(Packet &pkt);
/**
* All writes are simply ignored.
* @param req The memory request.
* @param data the data to not write.
*/
virtual Fault write(MemReqPtr &req, const uint8_t *data);
/**
* Return how long this access will take.
* @param req the memory request to calcuate
* @return Tick when the request is done
*/
Tick cacheAccess(MemReqPtr &req);
virtual Tick write(Packet &pkt);
};
#endif // __ISA_FAKE_HH__
#endif // __TSUNAMI_FAKE_HH__

View file

@ -195,202 +195,185 @@ TsunamiCChip::write(Packet &pkt)
assert(pkt.addr >= pioAddr && pkt.addr < pioAddr + pioSize);
Addr daddr = pkt.addr - pioAddr;
Addr regnum = (pkt.addr - pioAddr) >> 6 ;
uint64_t val = *(uint64_t *)pkt.data;
assert(pkt.size == sizeof(uint64_t));
DPRINTF(Tsunami, "write - va=%#x value=%#x size=%d \n",
req->vaddr, *(uint64_t*)data, req->size);
Addr daddr = (req->paddr - (addr & EV5::PAddrImplMask));
Addr regnum = (req->paddr - (addr & EV5::PAddrImplMask)) >> 6;
DPRINTF(Tsunami, "write - addr=%#x value=%#x\n", req->addr, val);
bool supportedWrite = false;
switch (req->size) {
case sizeof(uint64_t):
if (daddr & TSDEV_CC_BDIMS)
{
int number = (daddr >> 4) & 0x3F;
if (daddr & TSDEV_CC_BDIMS)
{
int number = (daddr >> 4) & 0x3F;
uint64_t bitvector;
uint64_t olddim;
uint64_t olddir;
uint64_t bitvector;
uint64_t olddim;
uint64_t olddir;
olddim = dim[number];
olddir = dir[number];
dim[number] = *(uint64_t*)data;
dir[number] = dim[number] & drir;
for(int x = 0; x < Tsunami::Max_CPUs; x++)
{
bitvector = ULL(1) << x;
// Figure out which bits have changed
if ((dim[number] & bitvector) != (olddim & bitvector))
{
// The bit is now set and it wasn't before (set)
if((dim[number] & bitvector) && (dir[number] & bitvector))
{
tsunami->intrctrl->post(number, TheISA::INTLEVEL_IRQ1, x);
DPRINTF(Tsunami, "dim write resulting in posting dir"
" interrupt to cpu %d\n", number);
}
else if ((olddir & bitvector) &&
!(dir[number] & bitvector))
{
// The bit was set and now its now clear and
// we were interrupting on that bit before
tsunami->intrctrl->clear(number, TheISA::INTLEVEL_IRQ1, x);
DPRINTF(Tsunami, "dim write resulting in clear"
" dir interrupt to cpu %d\n", number);
olddim = dim[number];
olddir = dir[number];
dim[number] = val;
dir[number] = dim[number] & drir;
for(int x = 0; x < Tsunami::Max_CPUs; x++)
{
bitvector = ULL(1) << x;
// Figure out which bits have changed
if ((dim[number] & bitvector) != (olddim & bitvector))
{
// The bit is now set and it wasn't before (set)
if((dim[number] & bitvector) && (dir[number] & bitvector))
{
tsunami->intrctrl->post(number, TheISA::INTLEVEL_IRQ1, x);
DPRINTF(Tsunami, "dim write resulting in posting dir"
" interrupt to cpu %d\n", number);
}
else if ((olddir & bitvector) &&
!(dir[number] & bitvector))
{
// The bit was set and now its now clear and
// we were interrupting on that bit before
tsunami->intrctrl->clear(number, TheISA::INTLEVEL_IRQ1, x);
DPRINTF(Tsunami, "dim write resulting in clear"
" dir interrupt to cpu %d\n", number);
}
}
}
return NoFault;
}
switch(regnum) {
case TSDEV_CC_CSR:
panic("TSDEV_CC_CSR write\n");
return NoFault;
case TSDEV_CC_MTR:
panic("TSDEV_CC_MTR write not implemented\n");
return NoFault;
case TSDEV_CC_MISC:
uint64_t ipreq;
ipreq = (*(uint64_t*)data >> 12) & 0xF;
//If it is bit 12-15, this is an IPI post
if (ipreq) {
reqIPI(ipreq);
supportedWrite = true;
}
//If it is bit 8-11, this is an IPI clear
uint64_t ipintr;
ipintr = (*(uint64_t*)data >> 8) & 0xF;
if (ipintr) {
clearIPI(ipintr);
supportedWrite = true;
}
//If it is the 4-7th bit, clear the RTC interrupt
uint64_t itintr;
itintr = (*(uint64_t*)data >> 4) & 0xF;
if (itintr) {
clearITI(itintr);
supportedWrite = true;
}
}
}
} else {
switch(regnum) {
case TSDEV_CC_CSR:
panic("TSDEV_CC_CSR write\n");
case TSDEV_CC_MTR:
panic("TSDEV_CC_MTR write not implemented\n");
case TSDEV_CC_MISC:
uint64_t ipreq;
ipreq = (val >> 12) & 0xF;
//If it is bit 12-15, this is an IPI post
if (ipreq) {
reqIPI(ipreq);
supportedWrite = true;
}
// ignore NXMs
if (*(uint64_t*)data & 0x10000000)
supportedWrite = true;
//If it is bit 8-11, this is an IPI clear
uint64_t ipintr;
ipintr = (val >> 8) & 0xF;
if (ipintr) {
clearIPI(ipintr);
supportedWrite = true;
}
if(!supportedWrite)
panic("TSDEV_CC_MISC write not implemented\n");
//If it is the 4-7th bit, clear the RTC interrupt
uint64_t itintr;
itintr = (val >> 4) & 0xF;
if (itintr) {
clearITI(itintr);
supportedWrite = true;
}
// ignore NXMs
if (val & 0x10000000)
supportedWrite = true;
if(!supportedWrite)
panic("TSDEV_CC_MISC write not implemented\n");
case TSDEV_CC_AAR0:
case TSDEV_CC_AAR1:
case TSDEV_CC_AAR2:
case TSDEV_CC_AAR3:
panic("TSDEV_CC_AARx write not implemeted\n");
return NoFault;
case TSDEV_CC_AAR0:
case TSDEV_CC_AAR1:
case TSDEV_CC_AAR2:
case TSDEV_CC_AAR3:
panic("TSDEV_CC_AARx write not implemeted\n");
return NoFault;
case TSDEV_CC_DIM0:
case TSDEV_CC_DIM1:
case TSDEV_CC_DIM2:
case TSDEV_CC_DIM3:
int number;
if(regnum == TSDEV_CC_DIM0)
number = 0;
else if(regnum == TSDEV_CC_DIM1)
number = 1;
else if(regnum == TSDEV_CC_DIM2)
number = 2;
else
number = 3;
case TSDEV_CC_DIM0:
case TSDEV_CC_DIM1:
case TSDEV_CC_DIM2:
case TSDEV_CC_DIM3:
int number;
if(regnum == TSDEV_CC_DIM0)
number = 0;
else if(regnum == TSDEV_CC_DIM1)
number = 1;
else if(regnum == TSDEV_CC_DIM2)
number = 2;
else
number = 3;
uint64_t bitvector;
uint64_t olddim;
uint64_t olddir;
uint64_t bitvector;
uint64_t olddim;
uint64_t olddir;
olddim = dim[number];
olddir = dir[number];
dim[number] = *(uint64_t*)data;
dir[number] = dim[number] & drir;
for(int x = 0; x < 64; x++)
{
bitvector = ULL(1) << x;
// Figure out which bits have changed
if ((dim[number] & bitvector) != (olddim & bitvector))
{
// The bit is now set and it wasn't before (set)
if((dim[number] & bitvector) && (dir[number] & bitvector))
{
tsunami->intrctrl->post(number, TheISA::INTLEVEL_IRQ1, x);
DPRINTF(Tsunami, "posting dir interrupt to cpu 0\n");
}
else if ((olddir & bitvector) &&
!(dir[number] & bitvector))
{
// The bit was set and now its now clear and
// we were interrupting on that bit before
tsunami->intrctrl->clear(number, TheISA::INTLEVEL_IRQ1, x);
DPRINTF(Tsunami, "dim write resulting in clear"
" dir interrupt to cpu %d\n",
x);
olddim = dim[number];
olddir = dir[number];
dim[number] = val;
dir[number] = dim[number] & drir;
for(int x = 0; x < 64; x++)
{
bitvector = ULL(1) << x;
// Figure out which bits have changed
if ((dim[number] & bitvector) != (olddim & bitvector))
{
// The bit is now set and it wasn't before (set)
if((dim[number] & bitvector) && (dir[number] & bitvector))
{
tsunami->intrctrl->post(number, TheISA::INTLEVEL_IRQ1, x);
DPRINTF(Tsunami, "posting dir interrupt to cpu 0\n");
}
else if ((olddir & bitvector) &&
!(dir[number] & bitvector))
{
// The bit was set and now its now clear and
// we were interrupting on that bit before
tsunami->intrctrl->clear(number, TheISA::INTLEVEL_IRQ1, x);
DPRINTF(Tsunami, "dim write resulting in clear"
" dir interrupt to cpu %d\n",
x);
}
}
}
}
return NoFault;
case TSDEV_CC_DIR0:
case TSDEV_CC_DIR1:
case TSDEV_CC_DIR2:
case TSDEV_CC_DIR3:
panic("TSDEV_CC_DIR write not implemented\n");
case TSDEV_CC_DRIR:
panic("TSDEV_CC_DRIR write not implemented\n");
case TSDEV_CC_PRBEN:
panic("TSDEV_CC_PRBEN write not implemented\n");
case TSDEV_CC_IIC0:
case TSDEV_CC_IIC1:
case TSDEV_CC_IIC2:
case TSDEV_CC_IIC3:
panic("TSDEV_CC_IICx write not implemented\n");
case TSDEV_CC_MPR0:
case TSDEV_CC_MPR1:
case TSDEV_CC_MPR2:
case TSDEV_CC_MPR3:
panic("TSDEV_CC_MPRx write not implemented\n");
case TSDEV_CC_IPIR:
clearIPI(*(uint64_t*)data);
return NoFault;
case TSDEV_CC_ITIR:
clearITI(*(uint64_t*)data);
return NoFault;
case TSDEV_CC_IPIQ:
reqIPI(*(uint64_t*)data);
return NoFault;
default:
panic("default in cchip read reached, accessing 0x%x\n");
}
break;
case sizeof(uint32_t):
case sizeof(uint16_t):
case sizeof(uint8_t):
default:
panic("invalid access size(?) for tsunami register!\n");
}
DPRINTFN("Tsunami ERROR: write daddr=%#x size=%d\n", daddr, req->size);
return NoFault;
}
}
break;
case TSDEV_CC_DIR0:
case TSDEV_CC_DIR1:
case TSDEV_CC_DIR2:
case TSDEV_CC_DIR3:
panic("TSDEV_CC_DIR write not implemented\n");
case TSDEV_CC_DRIR:
panic("TSDEV_CC_DRIR write not implemented\n");
case TSDEV_CC_PRBEN:
panic("TSDEV_CC_PRBEN write not implemented\n");
case TSDEV_CC_IIC0:
case TSDEV_CC_IIC1:
case TSDEV_CC_IIC2:
case TSDEV_CC_IIC3:
panic("TSDEV_CC_IICx write not implemented\n");
case TSDEV_CC_MPR0:
case TSDEV_CC_MPR1:
case TSDEV_CC_MPR2:
case TSDEV_CC_MPR3:
panic("TSDEV_CC_MPRx write not implemented\n");
case TSDEV_CC_IPIR:
clearIPI(val);
break;
case TSDEV_CC_ITIR:
clearITI(val);
break;
case TSDEV_CC_IPIQ:
reqIPI(val);
break;
default:
panic("default in cchip read reached, accessing 0x%x\n");
} // swtich(regnum)
} // not BIG_TSUNAMI write
pkt.result = Success;
return pioDelay;
}
void
@ -474,11 +457,11 @@ TsunamiCChip::postRTC()
for (int i = 0; i < size; i++) {
uint64_t cpumask = ULL(1) << i;
if (!(cpumask & itint)) {
itint |= cpumask;
tsunami->intrctrl->post(i, TheISA::INTLEVEL_IRQ2, 0);
DPRINTF(Tsunami, "Posting RTC interrupt to cpu=%d", i);
}
if (!(cpumask & itint)) {
itint |= cpumask;
tsunami->intrctrl->post(i, TheISA::INTLEVEL_IRQ2, 0);
DPRINTF(Tsunami, "Posting RTC interrupt to cpu=%d", i);
}
}
}
@ -493,11 +476,11 @@ TsunamiCChip::postDRIR(uint32_t interrupt)
for(int i=0; i < size; i++) {
dir[i] = dim[i] & drir;
if (dim[i] & bitvector) {
tsunami->intrctrl->post(i, TheISA::INTLEVEL_IRQ1, interrupt);
DPRINTF(Tsunami, "posting dir interrupt to cpu %d,"
if (dim[i] & bitvector) {
tsunami->intrctrl->post(i, TheISA::INTLEVEL_IRQ1, interrupt);
DPRINTF(Tsunami, "posting dir interrupt to cpu %d,"
"interrupt %d\n",i, interrupt);
}
}
}
}
@ -512,13 +495,13 @@ TsunamiCChip::clearDRIR(uint32_t interrupt)
{
drir &= ~bitvector;
for(int i=0; i < size; i++) {
if (dir[i] & bitvector) {
tsunami->intrctrl->clear(i, TheISA::INTLEVEL_IRQ1, interrupt);
DPRINTF(Tsunami, "clearing dir interrupt to cpu %d,"
if (dir[i] & bitvector) {
tsunami->intrctrl->clear(i, TheISA::INTLEVEL_IRQ1, interrupt);
DPRINTF(Tsunami, "clearing dir interrupt to cpu %d,"
"interrupt %d\n",i, interrupt);
}
dir[i] = dim[i] & drir;
}
dir[i] = dim[i] & drir;
}
}
else
@ -554,30 +537,34 @@ TsunamiCChip::unserialize(Checkpoint *cp, const std::string &section)
BEGIN_DECLARE_SIM_OBJECT_PARAMS(TsunamiCChip)
SimObjectParam<Tsunami *> tsunami;
SimObjectParam<MemoryController *> mmu;
Param<Addr> addr;
SimObjectParam<Bus*> pio_bus;
Param<Addr> pio_addr;
Param<Tick> pio_latency;
SimObjectParam<HierParams *> hier;
SimObjectParam<Platform *> platform;
SimObjectParam<System *> system;
SimObjectParam<Tsunami *> tsunami;
END_DECLARE_SIM_OBJECT_PARAMS(TsunamiCChip)
BEGIN_INIT_SIM_OBJECT_PARAMS(TsunamiCChip)
INIT_PARAM(tsunami, "Tsunami"),
INIT_PARAM(mmu, "Memory Controller"),
INIT_PARAM(addr, "Device Address"),
INIT_PARAM_DFLT(pio_bus, "The IO Bus to attach to", NULL),
INIT_PARAM_DFLT(pio_latency, "Programmed IO latency in bus cycles", 1),
INIT_PARAM_DFLT(hier, "Hierarchy global variables", &defaultHierParams)
INIT_PARAM(pio_addr, "Device Address"),
INIT_PARAM(pio_latency, "Programmed IO latency"),
INIT_PARAM(platform, "platform"),
INIT_PARAM(system, "system object"),
INIT_PARAM(tsunami, "Tsunami")
END_INIT_SIM_OBJECT_PARAMS(TsunamiCChip)
CREATE_SIM_OBJECT(TsunamiCChip)
{
return new TsunamiCChip(getInstanceName(), tsunami, addr, mmu, hier,
pio_bus, pio_latency);
TsunamiCChip::Params *p = new TsunamiCChip::Params;
p->name = getInstanceName();
p->pio_addr = pio_addr;
p->pio_delay = pio_latency;
p->platform = platform;
p->system = system;
p->tsunami = tsunami;
return new TsunamiCChip(p);
}
REGISTER_SIM_OBJECT("TsunamiCChip", TsunamiCChip)

View file

@ -41,14 +41,11 @@
#include "dev/tsunami_io.hh"
#include "dev/tsunami.hh"
#include "dev/pitreg.h"
#include "mem/bus/bus.hh"
#include "mem/bus/pio_interface.hh"
#include "mem/bus/pio_interface_impl.hh"
#include "mem/bus/port.hh"
#include "sim/builder.hh"
#include "dev/tsunami_cchip.hh"
#include "dev/tsunamireg.h"
#include "dev/rtcreg.h"
#include "mem/functional/memory_control.hh"
using namespace std;
//Should this be AlphaISA?
@ -80,28 +77,28 @@ TsunamiIO::RTC::set_time(time_t t)
}
void
TsunamiIO::RTC::writeAddr(const uint8_t *data)
TsunamiIO::RTC::writeAddr(const uint8_t data)
{
if (*data <= RTC_STAT_REGD)
addr = *data;
addr = data;
else
panic("RTC addresses over 0xD are not implemented.\n");
}
void
TsunamiIO::RTC::writeData(const uint8_t *data)
TsunamiIO::RTC::writeData(const uint8_t data)
{
if (addr < RTC_STAT_REGA)
clock_data[addr] = *data;
clock_data[addr] = data;
else {
switch (addr) {
case RTC_STAT_REGA:
if (*data != (RTCA_32768HZ | RTCA_1024HZ))
if (data != (RTCA_32768HZ | RTCA_1024HZ))
panic("Unimplemented RTC register A value write!\n");
stat_regA = *data;
break;
case RTC_STAT_REGB:
if ((*data & ~(RTCB_PRDC_IE | RTCB_SQWE)) != (RTCB_BIN | RTCB_24HR))
if ((data & ~(RTCB_PRDC_IE | RTCB_SQWE)) != (RTCB_BIN | RTCB_24HR))
panic("Write to RTC reg B bits that are not implemented!\n");
if (*data & RTCB_PRDC_IE) {
@ -111,7 +108,7 @@ TsunamiIO::RTC::writeData(const uint8_t *data)
if (event.scheduled())
event.deschedule();
}
stat_regB = *data;
stat_regB = data;
break;
case RTC_STAT_REGC:
case RTC_STAT_REGD:
@ -207,12 +204,12 @@ TsunamiIO::PITimer::PITimer(const string &name)
}
void
TsunamiIO::PITimer::writeControl(const uint8_t *data)
TsunamiIO::PITimer::writeControl(const uint8_t data)
{
int rw;
int sel;
sel = GET_CTRL_SEL(*data);
sel = GET_CTRL_SEL(data);
if (sel == PIT_READ_BACK)
panic("PITimer Read-Back Command is not implemented.\n");
@ -223,8 +220,8 @@ TsunamiIO::PITimer::writeControl(const uint8_t *data)
counter[sel]->latchCount();
else {
counter[sel]->setRW(rw);
counter[sel]->setMode(GET_CTRL_MODE(*data));
counter[sel]->setBCD(GET_CTRL_BCD(*data));
counter[sel]->setMode(GET_CTRL_MODE(data));
counter[sel]->setBCD(GET_CTRL_BCD(data));
}
}
@ -296,11 +293,11 @@ TsunamiIO::PITimer::Counter::read(uint8_t *data)
}
void
TsunamiIO::PITimer::Counter::write(const uint8_t *data)
TsunamiIO::PITimer::Counter::write(const uint8_t data)
{
switch (write_byte) {
case LSB:
count = (count & 0xFF00) | *data;
count = (count & 0xFF00) | data;
if (event.scheduled())
event.deschedule();
@ -309,7 +306,7 @@ TsunamiIO::PITimer::Counter::write(const uint8_t *data)
break;
case MSB:
count = (count & 0x00FF) | (*data << 8);
count = (count & 0x00FF) | (data << 8);
period = count;
if (period > 0) {
@ -417,26 +414,17 @@ TsunamiIO::PITimer::Counter::CounterEvent::description()
return "tsunami 8254 Interval timer";
}
TsunamiIO::TsunamiIO(const string &name, Tsunami *t, time_t init_time,
Addr a, MemoryController *mmu, HierParams *hier,
Bus *pio_bus, Tick pio_latency, Tick ci)
: PioDevice(name, t), addr(a), clockInterval(ci), tsunami(t),
pitimer(name + "pitimer"), rtc(name + ".rtc", t, ci)
TsunamiIO::TsunamiIO(Params *p)
: BasicPioDevice(p), tsunami(p->tsunami), pitimer(p->name + "pitimer"),
rtc(name + ".rtc", p->tsunami, p->frequency)
{
mmu->add_child(this, RangeSize(addr, size));
if (pio_bus) {
pioInterface = newPioInterface(name + ".pio", hier, pio_bus, this,
&TsunamiIO::cacheAccess);
pioInterface->addAddrRange(RangeSize(addr, size));
pioLatency = pio_latency * pio_bus->clockRate;
}
pioSize = 0xff;
// set the back pointer from tsunami to myself
tsunami->io = this;
timerData = 0;
rtc.set_time(init_time == 0 ? time(NULL) : init_time);
rtc.set_time(p->init_time == 0 ? time(NULL) : init_time);
picr = 0;
picInterrupting = false;
}
@ -444,185 +432,175 @@ TsunamiIO::TsunamiIO(const string &name, Tsunami *t, time_t init_time,
Tick
TsunamiIO::frequency() const
{
return Clock::Frequency / clockInterval;
return Clock::Frequency / params()->frequency;
}
Fault
TsunamiIO::read(MemReqPtr &req, uint8_t *data)
TsunamiIO::read(Packet &pkt)
{
DPRINTF(Tsunami, "io read va=%#x size=%d IOPorrt=%#x\n",
req->vaddr, req->size, req->vaddr & 0xfff);
assert(pkt.result == Unknown);
assert(pkt.addr >= pioAddr && pkt.addr < pioAddr + pioSize);
Addr daddr = (req->paddr - (addr & EV5::PAddrImplMask));
pkt.time = curTick + pioDelay;
Addr daddr = pkt.addr - pioAddr;
DPRINTF(Tsunami, "io read va=%#x size=%d IOPorrt=%#x\n", pkt.addr,
pkt.size, daddr);
switch(req->size) {
case sizeof(uint8_t):
uint8_t *data8;
uint64_t *data64;
if (pkt.size == sizeof(uint8_t)) {
if (!pkt.data) {
data8 = new uint8_t;
pkt.data = data8;
} else
data8 = pkt.data;
switch(daddr) {
// PIC1 mask read
case TSDEV_PIC1_MASK:
*(uint8_t*)data = ~mask1;
return NoFault;
*data8 = ~mask1;
break;
case TSDEV_PIC2_MASK:
*(uint8_t*)data = ~mask2;
return NoFault;
*data8 = ~mask2;
break;
case TSDEV_PIC1_ISR:
// !!! If this is modified 64bit case needs to be too
// Pal code has to do a 64 bit physical read because there is
// no load physical byte instruction
*(uint8_t*)data = picr;
return NoFault;
*data8 = picr;
break;
case TSDEV_PIC2_ISR:
// PIC2 not implemnted... just return 0
*(uint8_t*)data = 0x00;
return NoFault;
*data8 = 0x00;
break;
case TSDEV_TMR0_DATA:
pitimer.counter0.read(data);
pitimer.counter0.read(data8);
return NoFault;
case TSDEV_TMR1_DATA:
pitimer.counter1.read(data);
pitimer.counter1.read(data8);
return NoFault;
case TSDEV_TMR2_DATA:
pitimer.counter2.read(data);
return NoFault;
pitimer.counter2.read(data8);
break;
case TSDEV_RTC_DATA:
rtc.readData(data);
return NoFault;
rtc.readData(data8);
break;
case TSDEV_CTRL_PORTB:
if (pitimer.counter2.outputHigh())
*data = PORTB_SPKR_HIGH;
*data8 = PORTB_SPKR_HIGH;
else
*data = 0x00;
return NoFault;
*data8 = 0x00;
break;
default:
panic("I/O Read - va%#x size %d\n", req->vaddr, req->size);
panic("I/O Read - va%#x size %d\n", pkt.addr, pkt.size);
}
case sizeof(uint16_t):
case sizeof(uint32_t):
panic("I/O Read - invalid size - va %#x size %d\n",
req->vaddr, req->size);
} else if (pkt.size == sizeof(uint64_t)) {
if (!pkt.data) {
data64 = new uint64_t;
pkt.data = (uint8_t*)data64;
} else
data8 = (uint64_t*)pkt.data;
case sizeof(uint64_t):
switch(daddr) {
case TSDEV_PIC1_ISR:
// !!! If this is modified 8bit case needs to be too
// Pal code has to do a 64 bit physical read because there is
// no load physical byte instruction
*(uint64_t*)data = (uint64_t)picr;
return NoFault;
default:
panic("I/O Read - invalid size - va %#x size %d\n",
req->vaddr, req->size);
}
default:
panic("I/O Read - invalid size - va %#x size %d\n",
req->vaddr, req->size);
if (daddr == TSDEV_PIC1_ISR)
data64 = (uint64_t)picr;
else
panic("I/O Read - invalid addr - va %#x size %d\n",
req.addr, req.size);
} else {
panic("I/O Read - invalid size - va %#x size %d\n", req.addr, req.size);
}
panic("I/O Read - va%#x size %d\n", req->vaddr, req->size);
return NoFault;
pkt.result = Success;
return pioDelay;
}
Fault
TsunamiIO::write(MemReqPtr &req, const uint8_t *data)
Tick
TsunamiIO::write(Packet &pkt)
{
pkt.time = curTick + pioDelay;
assert(pkt.result == Unknown);
assert(pkt.addr >= pioAddr && pkt.addr < pioAddr + pioSize);
Addr daddr = pkt.addr - pioAddr;
uint8_t val = *pkt.data;
#if TRACING_ON
uint8_t dt = *(uint8_t*)data;
uint64_t dt64 = dt;
uint64_t dt64 = val;
#endif
DPRINTF(Tsunami, "io write - va=%#x size=%d IOPort=%#x Data=%#x\n",
req->vaddr, req->size, req->vaddr & 0xfff, dt64);
Addr daddr = (req->paddr - (addr & EV5::PAddrImplMask));
assert(pkt.size == sizeof(uint8_t));
switch(req->size) {
case sizeof(uint8_t):
switch(daddr) {
case TSDEV_PIC1_MASK:
mask1 = ~(*(uint8_t*)data);
if ((picr & mask1) && !picInterrupting) {
picInterrupting = true;
tsunami->cchip->postDRIR(55);
DPRINTF(Tsunami, "posting pic interrupt to cchip\n");
}
if ((!(picr & mask1)) && picInterrupting) {
picInterrupting = false;
tsunami->cchip->clearDRIR(55);
DPRINTF(Tsunami, "clearing pic interrupt\n");
}
return NoFault;
case TSDEV_PIC2_MASK:
mask2 = *(uint8_t*)data;
//PIC2 Not implemented to interrupt
return NoFault;
case TSDEV_PIC1_ACK:
// clear the interrupt on the PIC
picr &= ~(1 << (*(uint8_t*)data & 0xF));
if (!(picr & mask1))
tsunami->cchip->clearDRIR(55);
return NoFault;
case TSDEV_DMA1_CMND:
return NoFault;
case TSDEV_DMA2_CMND:
return NoFault;
case TSDEV_DMA1_MMASK:
return NoFault;
case TSDEV_DMA2_MMASK:
return NoFault;
case TSDEV_PIC2_ACK:
return NoFault;
case TSDEV_DMA1_RESET:
return NoFault;
case TSDEV_DMA2_RESET:
return NoFault;
case TSDEV_DMA1_MODE:
mode1 = *(uint8_t*)data;
return NoFault;
case TSDEV_DMA2_MODE:
mode2 = *(uint8_t*)data;
return NoFault;
case TSDEV_DMA1_MASK:
case TSDEV_DMA2_MASK:
return NoFault;
case TSDEV_TMR0_DATA:
pitimer.counter0.write(data);
return NoFault;
case TSDEV_TMR1_DATA:
pitimer.counter1.write(data);
return NoFault;
case TSDEV_TMR2_DATA:
pitimer.counter2.write(data);
return NoFault;
case TSDEV_TMR_CTRL:
pitimer.writeControl(data);
return NoFault;
case TSDEV_RTC_ADDR:
rtc.writeAddr(data);
return NoFault;
case TSDEV_KBD:
return NoFault;
case TSDEV_RTC_DATA:
rtc.writeData(data);
return NoFault;
case TSDEV_CTRL_PORTB:
// System Control Port B not implemented
return NoFault;
default:
panic("I/O Write - va%#x size %d data %#x\n", req->vaddr, req->size, (int)*data);
switch(daddr) {
case TSDEV_PIC1_MASK:
mask1 = ~(val);
if ((picr & mask1) && !picInterrupting) {
picInterrupting = true;
tsunami->cchip->postDRIR(55);
DPRINTF(Tsunami, "posting pic interrupt to cchip\n");
}
case sizeof(uint16_t):
case sizeof(uint32_t):
case sizeof(uint64_t):
if ((!(picr & mask1)) && picInterrupting) {
picInterrupting = false;
tsunami->cchip->clearDRIR(55);
DPRINTF(Tsunami, "clearing pic interrupt\n");
}
break;
case TSDEV_PIC2_MASK:
mask2 = val;
//PIC2 Not implemented to interrupt
break;
case TSDEV_PIC1_ACK:
// clear the interrupt on the PIC
picr &= ~(1 << (val & 0xF));
if (!(picr & mask1))
tsunami->cchip->clearDRIR(55);
break;
case TSDEV_DMA1_MODE:
mode1 = val;
break;
case TSDEV_DMA2_MODE:
mode2 = val;
break;
case TSDEV_TMR0_DATA:
pitimer.counter0.write(val);
break;
case TSDEV_TMR1_DATA:
pitimer.counter1.write(val);
break;
case TSDEV_TMR2_DATA:
pitimer.counter2.write(val);
break;
case TSDEV_TMR_CTRL:
pitimer.writeControl(val);
break;
case TSDEV_RTC_ADDR:
rtc.writeAddr(val);
break;
case TSDEV_RTC_DATA:
rtc.writeData(val);
break;
case TSDEV_KBD:
case TSDEV_DMA1_CMND:
case TSDEV_DMA2_CMND:
case TSDEV_DMA1_MMASK:
case TSDEV_DMA2_MMASK:
case TSDEV_PIC2_ACK:
case TSDEV_DMA1_RESET:
case TSDEV_DMA2_RESET:
case TSDEV_DMA1_MASK:
case TSDEV_DMA2_MASK:
case TSDEV_CTRL_PORTB:
break;
default:
panic("I/O Write - invalid size - va %#x size %d\n",
req->vaddr, req->size);
panic("I/O Write - va%#x size %d data %#x\n", pkt.addr, pkt.size, val);
}
return NoFault;
pkt.result = Success;
return pioDelay;
}
void
@ -647,12 +625,6 @@ TsunamiIO::clearPIC(uint8_t bitvector)
}
}
Tick
TsunamiIO::cacheAccess(MemReqPtr &req)
{
return curTick + pioLatency;
}
void
TsunamiIO::serialize(ostream &os)
{
@ -687,34 +659,41 @@ TsunamiIO::unserialize(Checkpoint *cp, const string &section)
BEGIN_DECLARE_SIM_OBJECT_PARAMS(TsunamiIO)
SimObjectParam<Tsunami *> tsunami;
Param<time_t> time;
SimObjectParam<MemoryController *> mmu;
Param<Addr> addr;
SimObjectParam<Bus*> pio_bus;
Param<Addr> pio_addr;
Param<Tick> pio_latency;
SimObjectParam<HierParams *> hier;
Param<Tick> frequency;
SimObjectParam<Platform *> platform;
SimObjectParam<System *> system;
Param<time_t> time;
SimObjectParam<Tsunami *> tsunami;
END_DECLARE_SIM_OBJECT_PARAMS(TsunamiIO)
BEGIN_INIT_SIM_OBJECT_PARAMS(TsunamiIO)
INIT_PARAM(tsunami, "Tsunami"),
INIT_PARAM(frequency, "clock interrupt frequency"),
INIT_PARAM(pio_addr, "Device Address"),
INIT_PARAM(pio_latency, "Programmed IO latency"),
INIT_PARAM(pio_size, "Size of address range"),
INIT_PARAM(platform, "platform"),
INIT_PARAM(system, "system object"),
INIT_PARAM(time, "System time to use (0 for actual time"),
INIT_PARAM(mmu, "Memory Controller"),
INIT_PARAM(addr, "Device Address"),
INIT_PARAM(pio_bus, "The IO Bus to attach to"),
INIT_PARAM_DFLT(pio_latency, "Programmed IO latency in bus cycles", 1),
INIT_PARAM_DFLT(hier, "Hierarchy global variables", &defaultHierParams),
INIT_PARAM(frequency, "clock interrupt frequency")
INIT_PARAM(tsunami, "Tsunami")
END_INIT_SIM_OBJECT_PARAMS(TsunamiIO)
CREATE_SIM_OBJECT(TsunamiIO)
{
return new TsunamiIO(getInstanceName(), tsunami, time, addr, mmu, hier,
pio_bus, pio_latency, frequency);
TsunamiIO::Params *p = new TsunamiIO::Params;
p->frequency = frequency;
p->name = getInstanceName();
p->pio_addr = pio_addr;
p->pio_delay = pio_latency;
p->platform = platform;
p->system = system;
p->init_time = time;
p->tsunami = tsunami;
return new TsunamiIO(p);
}
REGISTER_SIM_OBJECT("TsunamiIO", TsunamiIO)

View file

@ -38,8 +38,6 @@
#include "dev/tsunami.hh"
#include "sim/eventq.hh"
class MemoryController;
/**
* Tsunami I/O device is a catch all for all the south bridge stuff we care
* to implement.
@ -47,12 +45,6 @@ class MemoryController;
class TsunamiIO : public PioDevice
{
private:
/** The base address of this device */
Addr addr;
/** The size of mappad from the above address */
static const Addr size = 0xff;
struct tm tm;
protected:
@ -120,10 +112,10 @@ class TsunamiIO : public PioDevice
void set_time(time_t t);
/** RTC address port: write address of RTC RAM data to access */
void writeAddr(const uint8_t *data);
void writeAddr(const uint8_t data);
/** RTC write data */
void writeData(const uint8_t *data);
void writeData(const uint8_t data);
/** RTC read data */
void readData(uint8_t *data);
@ -218,7 +210,7 @@ class TsunamiIO : public PioDevice
void read(uint8_t *data);
/** Write a count byte */
void write(const uint8_t *data);
void write(const uint8_t data);
/** Is the output high? */
bool outputHigh();
@ -254,7 +246,7 @@ class TsunamiIO : public PioDevice
PITimer(const std::string &name);
/** Write control word */
void writeControl(const uint8_t* data);
void writeControl(const uint8_t data);
/**
* Serialize this object to the given output stream.
@ -289,8 +281,6 @@ class TsunamiIO : public PioDevice
/** Is the pic interrupting right now or not. */
bool picInterrupting;
Tick clockInterval;
/** A pointer to the Tsunami device which be belong to */
Tsunami *tsunami;
@ -312,33 +302,24 @@ class TsunamiIO : public PioDevice
*/
Tick frequency() const;
struct Params : public BasicPioDevice::Params
{
Tick frequency;
Tsunami *tsunami;
time_t init_time;
};
protected:
const Params *params() const { return (const Params*)_params; }
public:
/**
* Initialize all the data for devices supported by Tsunami I/O.
* @param name name of this device.
* @param t pointer back to the Tsunami object that we belong to.
* @param init_time Time (as in seconds since 1970) to set RTC to.
* @param a address we are mapped at.
* @param mmu pointer to the memory controller that sends us events.
* @param p pointer to Params struct
*/
TsunamiIO(const std::string &name, Tsunami *t, time_t init_time,
Addr a, MemoryController *mmu, HierParams *hier, Bus *pio_bus,
Tick pio_latency, Tick ci);
TsunamiIO(Params *p);
/**
* Process a read to one of the devices we are emulating.
* @param req Contains the address to read from.
* @param data A pointer to write the read data to.
* @return The fault condition of the access.
*/
virtual Fault read(MemReqPtr &req, uint8_t *data);
/**
* Process a write to one of the devices we emulate.
* @param req Contains the address to write to.
* @param data The data to write.
* @return The fault condition of the access.
*/
virtual Fault write(MemReqPtr &req, const uint8_t *data);
virtual Fault read(Packet &pkt);
virtual Fault write(Packet &pkt);
/**
* Post an PIC interrupt to the CPU via the CChip
@ -365,7 +346,6 @@ class TsunamiIO : public PioDevice
*/
virtual void unserialize(Checkpoint *cp, const std::string &section);
Tick cacheAccess(MemReqPtr &req);
};
#endif // __DEV_TSUNAMI_IO_HH__

View file

@ -51,12 +51,10 @@ using namespace std;
//Should this be AlphaISA?
using namespace TheISA;
TsunamiPChip::TsunamiPChip(const string &name, Tsunami *t, Addr a,
MemoryController *mmu, HierParams *hier,
Bus *pio_bus, Tick pio_latency)
: PioDevice(name, t), addr(a), tsunami(t)
TsunamiPChip::TsunamiPChip(Params *p)
: BasicPioDevice(p),
{
mmu->add_child(this, RangeSize(addr, size));
pioSize = 0xfff;
for (int i = 0; i < 4; i++) {
wsba[i] = 0;
@ -64,195 +62,180 @@ TsunamiPChip::TsunamiPChip(const string &name, Tsunami *t, Addr a,
tba[i] = 0;
}
if (pio_bus) {
pioInterface = newPioInterface(name + ".pio", hier, pio_bus, this,
&TsunamiPChip::cacheAccess);
pioInterface->addAddrRange(RangeSize(addr, size));
pioLatency = pio_latency * pio_bus->clockRate;
}
// initialize pchip control register
pctl = (ULL(0x1) << 20) | (ULL(0x1) << 32) | (ULL(0x2) << 36);
//Set back pointer in tsunami
tsunami->pchip = this;
p->tsunami->pchip = this;
}
Tick
TsunamiPChip::read(Packet &pkt)
{
assert(pkt.result == Unknown);
assert(pkt.addr >= pioAddr && pkt.addr < pioAddr + pioSize);
pkt.time = curTick + pioDelay;
Addr daddr = pkt.addr - pioAddr;
uint64_t *data64;
if (!pkt.data) {
data64 = new uint64_t;
pkt.data = (uint8_t*)data64;
} else
data64 = (uint64_t*)pkt.data;
DPRINTF(Tsunami, "read va=%#x size=%d\n", pkt.addr, pkt.size);
switch(daddr) {
case TSDEV_PC_WSBA0:
*data64 = wsba[0];
break;
case TSDEV_PC_WSBA1:
*data64 = wsba[1];
break;
case TSDEV_PC_WSBA2:
*data64 = wsba[2];
break;
case TSDEV_PC_WSBA3:
*data64 = wsba[3];
break;
case TSDEV_PC_WSM0:
*data64 = wsm[0];
break;
case TSDEV_PC_WSM1:
*data64 = wsm[1];
break;
case TSDEV_PC_WSM2:
*data64 = wsm[2];
break;
case TSDEV_PC_WSM3:
*data64 = wsm[3];
break;
case TSDEV_PC_TBA0:
*data64 = tba[0];
break;
case TSDEV_PC_TBA1:
*data64 = tba[1];
break;
case TSDEV_PC_TBA2:
*data64 = tba[2];
break;
case Tbreak;
*data64 = tba[3];
break;
case TSDEV_PC_PCTL:
*data64 = pctl;
break;
case TSDEV_PC_PLAT:
panic("PC_PLAT not implemented\n");
case TSDEV_PC_RES:
panic("PC_RES not implemented\n");
case TSDEV_PC_PERROR:
*data64 = 0x00;
break;
case TSDEV_PC_PERRMASK:
*data64 = 0x00;
break;
case TSDEV_PC_PERRSET:
panic("PC_PERRSET not implemented\n");
case TSDEV_PC_TLBIV:
panic("PC_TLBIV not implemented\n");
case TSDEV_PC_TLBIA:
*data64 = 0x00; // shouldn't be readable, but linux
break;
case TSDEV_PC_PMONCTL:
panic("PC_PMONCTL not implemented\n");
case TSDEV_PC_PMONCNT:
panic("PC_PMONCTN not implemented\n");
default:
panic("Default in PChip Read reached reading 0x%x\n", daddr);
}
pkt.result = Success;
return pioDelay;
}
Fault
TsunamiPChip::read(MemReqPtr &req, uint8_t *data)
TsunamiPChip::write(Packet &pkt)
{
DPRINTF(Tsunami, "read va=%#x size=%d\n",
req->vaddr, req->size);
pkt.time = curTick + pioDelay;
Addr daddr = (req->paddr - (addr & EV5::PAddrImplMask)) >> 6;
assert(pkt.result == Unknown);
assert(pkt.addr >= pioAddr && pkt.addr < pioAddr + pioSize);
Addr daddr = pkt.addr - pioAddr;
switch (req->size) {
uint64_t val = *(uint64_t *)pkt.data;
assert(pkt.size == sizeof(uint64_t));
case sizeof(uint64_t):
switch(daddr) {
case TSDEV_PC_WSBA0:
*(uint64_t*)data = wsba[0];
return NoFault;
case TSDEV_PC_WSBA1:
*(uint64_t*)data = wsba[1];
return NoFault;
case TSDEV_PC_WSBA2:
*(uint64_t*)data = wsba[2];
return NoFault;
case TSDEV_PC_WSBA3:
*(uint64_t*)data = wsba[3];
return NoFault;
case TSDEV_PC_WSM0:
*(uint64_t*)data = wsm[0];
return NoFault;
case TSDEV_PC_WSM1:
*(uint64_t*)data = wsm[1];
return NoFault;
case TSDEV_PC_WSM2:
*(uint64_t*)data = wsm[2];
return NoFault;
case TSDEV_PC_WSM3:
*(uint64_t*)data = wsm[3];
return NoFault;
case TSDEV_PC_TBA0:
*(uint64_t*)data = tba[0];
return NoFault;
case TSDEV_PC_TBA1:
*(uint64_t*)data = tba[1];
return NoFault;
case TSDEV_PC_TBA2:
*(uint64_t*)data = tba[2];
return NoFault;
case TSDEV_PC_TBA3:
*(uint64_t*)data = tba[3];
return NoFault;
case TSDEV_PC_PCTL:
*(uint64_t*)data = pctl;
return NoFault;
case TSDEV_PC_PLAT:
panic("PC_PLAT not implemented\n");
case TSDEV_PC_RES:
panic("PC_RES not implemented\n");
case TSDEV_PC_PERROR:
*(uint64_t*)data = 0x00;
return NoFault;
case TSDEV_PC_PERRMASK:
*(uint64_t*)data = 0x00;
return NoFault;
case TSDEV_PC_PERRSET:
panic("PC_PERRSET not implemented\n");
case TSDEV_PC_TLBIV:
panic("PC_TLBIV not implemented\n");
case TSDEV_PC_TLBIA:
*(uint64_t*)data = 0x00; // shouldn't be readable, but linux
return NoFault;
case TSDEV_PC_PMONCTL:
panic("PC_PMONCTL not implemented\n");
case TSDEV_PC_PMONCNT:
panic("PC_PMONCTN not implemented\n");
default:
panic("Default in PChip Read reached reading 0x%x\n", daddr);
DPRINTF(Tsunami, "write - va=%#x size=%d \n", pkt.addr, pkt.size);
} // uint64_t
switch(daddr) {
case TSDEV_PC_WSBA0:
wsba[0] = data64;
break;
case TSDEV_PC_WSBA1:
wsba[1] = data64;
break;
case TSDEV_PC_WSBA2:
wsba[2] = data64;
break;
case TSDEV_PC_WSBA3:
wsba[3] = data64;
break;
case TSDEV_PC_WSM0:
wsm[0] = data64;
break;
case TSDEV_PC_WSM1:
wsm[1] = data64;
break;
case TSDEV_PC_WSM2:
wsm[2] = data64;
break;
case TSDEV_PC_WSM3:
wsm[3] = data64;
break;
case TSDEV_PC_TBA0:
tba[0] = data64;
break;
case TSDEV_PC_TBA1:
tba[1] = data64;
break;
case TSDEV_PC_TBA2:
tba[2] = data64;
break;
case TSDEV_PC_TBA3:
tba[3] = data64;
break;
case TSDEV_PC_PCTL:
pctl = data64;
break;
case TSDEV_PC_PLAT:
panic("PC_PLAT not implemented\n");
case TSDEV_PC_RES:
panic("PC_RES not implemented\n");
case TSDEV_PC_PERROR:
break;
case TSDEV_PC_PERRMASK:
panic("PC_PERRMASK not implemented\n");
case TSDEV_PC_PERRSET:
panic("PC_PERRSET not implemented\n");
case TSDEV_PC_TLBIV:
panic("PC_TLBIV not implemented\n");
case TSDEV_PC_TLBIA:
break; // value ignored, supposted to invalidate SG TLB
case TSDEV_PC_PMONCTL:
panic("PC_PMONCTL not implemented\n");
case TSDEV_PC_PMONCNT:
panic("PC_PMONCTN not implemented\n");
default:
panic("Default in PChip Read reached reading 0x%x\n", daddr);
break;
case sizeof(uint32_t):
case sizeof(uint16_t):
case sizeof(uint8_t):
default:
panic("invalid access size(?) for tsunami register!\n\n");
}
DPRINTFN("Tsunami PChip ERROR: read daddr=%#x size=%d\n", daddr, req->size);
} // uint64_t
return NoFault;
}
Fault
TsunamiPChip::write(MemReqPtr &req, const uint8_t *data)
{
DPRINTF(Tsunami, "write - va=%#x size=%d \n",
req->vaddr, req->size);
Addr daddr = (req->paddr - (addr & EV5::PAddrImplMask)) >> 6;
switch (req->size) {
case sizeof(uint64_t):
switch(daddr) {
case TSDEV_PC_WSBA0:
wsba[0] = *(uint64_t*)data;
return NoFault;
case TSDEV_PC_WSBA1:
wsba[1] = *(uint64_t*)data;
return NoFault;
case TSDEV_PC_WSBA2:
wsba[2] = *(uint64_t*)data;
return NoFault;
case TSDEV_PC_WSBA3:
wsba[3] = *(uint64_t*)data;
return NoFault;
case TSDEV_PC_WSM0:
wsm[0] = *(uint64_t*)data;
return NoFault;
case TSDEV_PC_WSM1:
wsm[1] = *(uint64_t*)data;
return NoFault;
case TSDEV_PC_WSM2:
wsm[2] = *(uint64_t*)data;
return NoFault;
case TSDEV_PC_WSM3:
wsm[3] = *(uint64_t*)data;
return NoFault;
case TSDEV_PC_TBA0:
tba[0] = *(uint64_t*)data;
return NoFault;
case TSDEV_PC_TBA1:
tba[1] = *(uint64_t*)data;
return NoFault;
case TSDEV_PC_TBA2:
tba[2] = *(uint64_t*)data;
return NoFault;
case TSDEV_PC_TBA3:
tba[3] = *(uint64_t*)data;
return NoFault;
case TSDEV_PC_PCTL:
pctl = *(uint64_t*)data;
return NoFault;
case TSDEV_PC_PLAT:
panic("PC_PLAT not implemented\n");
case TSDEV_PC_RES:
panic("PC_RES not implemented\n");
case TSDEV_PC_PERROR:
return NoFault;
case TSDEV_PC_PERRMASK:
panic("PC_PERRMASK not implemented\n");
case TSDEV_PC_PERRSET:
panic("PC_PERRSET not implemented\n");
case TSDEV_PC_TLBIV:
panic("PC_TLBIV not implemented\n");
case TSDEV_PC_TLBIA:
return NoFault; // value ignored, supposted to invalidate SG TLB
case TSDEV_PC_PMONCTL:
panic("PC_PMONCTL not implemented\n");
case TSDEV_PC_PMONCNT:
panic("PC_PMONCTN not implemented\n");
default:
panic("Default in PChip Read reached reading 0x%x\n", daddr);
} // uint64_t
break;
case sizeof(uint32_t):
case sizeof(uint16_t):
case sizeof(uint8_t):
default:
panic("invalid access size(?) for tsunami register!\n\n");
}
DPRINTFN("Tsunami ERROR: write daddr=%#x size=%d\n", daddr, req->size);
return NoFault;
pkt.result = Success;
return pioDelay;
}
#define DMA_ADDR_MASK ULL(0x3ffffffff)
@ -312,10 +295,7 @@ TsunamiPChip::translatePciToDma(Addr busAddr)
baMask = (wsm[i] & (ULL(0xfff) << 20)) | (ULL(0x7f) << 13);
pteAddr = (tba[i] & tbaMask) | ((busAddr & baMask) >> 10);
memcpy((void *)&pteEntry,
tsunami->system->
physmem->dma_addr(pteAddr, sizeof(uint64_t)),
sizeof(uint64_t));
pioPort->readBlob(&pteEntry, pteAddr, sizeof(uint64_t));
dmaAddr = ((pteEntry & ~ULL(0x1)) << 12) | (busAddr & ULL(0x1fff));
@ -360,30 +340,34 @@ TsunamiPChip::cacheAccess(MemReqPtr &req)
BEGIN_DECLARE_SIM_OBJECT_PARAMS(TsunamiPChip)
SimObjectParam<Tsunami *> tsunami;
SimObjectParam<MemoryController *> mmu;
Param<Addr> addr;
SimObjectParam<Bus*> pio_bus;
Param<Addr> pio_addr;
Param<Tick> pio_latency;
SimObjectParam<HierParams *> hier;
SimObjectParam<Platform *> platform;
SimObjectParam<System *> system;
SimObjectParam<Tsunami *> tsunami;
END_DECLARE_SIM_OBJECT_PARAMS(TsunamiPChip)
BEGIN_INIT_SIM_OBJECT_PARAMS(TsunamiPChip)
INIT_PARAM(tsunami, "Tsunami"),
INIT_PARAM(mmu, "Memory Controller"),
INIT_PARAM(addr, "Device Address"),
INIT_PARAM_DFLT(pio_bus, "The IO Bus to attach to", NULL),
INIT_PARAM_DFLT(pio_latency, "Programmed IO latency in bus cycles", 1),
INIT_PARAM_DFLT(hier, "Hierarchy global variables", &defaultHierParams)
INIT_PARAM(pio_addr, "Device Address"),
INIT_PARAM(pio_latency, "Programmed IO latency"),
INIT_PARAM(platform, "platform"),
INIT_PARAM(system, "system object"),
INIT_PARAM(tsunami, "Tsunami")
END_INIT_SIM_OBJECT_PARAMS(TsunamiPChip)
CREATE_SIM_OBJECT(TsunamiPChip)
{
return new TsunamiPChip(getInstanceName(), tsunami, addr, mmu, hier,
pio_bus, pio_latency);
TsunamiPChip::Params *p = new TsunamiPChip::Params;
p->name = getInstanceName();
p->pio_addr = pio_addr;
p->pio_delay = pio_latency;
p->platform = platform;
p->system = system;
p->tsunami = tsunami;
return new TsunamiPChip(p);
}
REGISTER_SIM_OBJECT("TsunamiPChip", TsunamiPChip)

View file

@ -37,28 +37,12 @@
#include "base/range.hh"
#include "dev/io_device.hh"
class MemoryController;
/**
* A very simple implementation of the Tsunami PCI interface chips.
*/
class TsunamiPChip : public PioDevice
class TsunamiPChip : public BasicPioDevice
{
private:
/** The base address of this device */
Addr addr;
/** The size of mappad from the above address */
static const Addr size = 0xfff;
protected:
/**
* pointer to the tsunami object.
* This is our access to all the other tsunami
* devices.
*/
Tsunami *tsunami;
/** Pchip control register */
uint64_t pctl;
@ -71,19 +55,20 @@ class TsunamiPChip : public PioDevice
/** Translated Base Addresses */
uint64_t tba[4];
public:
struct Params : public BasicPioDevice::Params
{
Tsunami *tsunami;
};
protected:
const Params *params() const { return (const Params*)_params; }
public:
/**
* Register the PChip with the mmu and init all wsba, wsm, and tba to 0
* @param name the name of thes device
* @param t a pointer to the tsunami device
* @param a the address which we respond to
* @param mmu the mmu we are to register with
* @param hier object to store parameters universal the device hierarchy
* @param bus The bus that this device is attached to
* @param p pointer to the parameters struct
*/
TsunamiPChip(const std::string &name, Tsunami *t, Addr a,
MemoryController *mmu, HierParams *hier, Bus *pio_bus,
Tick pio_latency);
TsunamiPChip(Params *p);
/**
* Translate a PCI bus address to a memory address for DMA.
@ -93,21 +78,8 @@ class TsunamiPChip : public PioDevice
*/
Addr translatePciToDma(Addr busAddr);
/**
* Process a read to the PChip.
* @param req Contains the address to read from.
* @param data A pointer to write the read data to.
* @return The fault condition of the access.
*/
virtual Fault read(MemReqPtr &req, uint8_t *data);
/**
* Process a write to the PChip.
* @param req Contains the address to write to.
* @param data The data to write.
* @return The fault condition of the access.
*/
virtual Fault write(MemReqPtr &req, const uint8_t *data);
virtual Fault read(Packet &pkt);
virtual Fault write(Packet &pkt);
/**
* Serialize this object to the given output stream.
@ -121,13 +93,6 @@ class TsunamiPChip : public PioDevice
* @param section The section name of this object
*/
virtual void unserialize(Checkpoint *cp, const std::string &section);
/**
* Return how long this access will take.
* @param req the memory request to calcuate
* @return Tick when the request is done
*/
Tick cacheAccess(MemReqPtr &req);
};
#endif // __TSUNAMI_PCHIP_HH__