ruby: Remove RubyMemoryControl and associated files

This patch removes the deprecated RubyMemoryControl. The DRAMCtrl
module should be used instead.
This commit is contained in:
Andreas Hansson 2016-12-05 16:49:07 -05:00
parent ebd9018a13
commit c642d6fc37
10 changed files with 1 additions and 1573 deletions

View file

@ -42,7 +42,6 @@ DebugFlag('RubyCache')
DebugFlag('RubyCacheTrace') DebugFlag('RubyCacheTrace')
DebugFlag('RubyDma') DebugFlag('RubyDma')
DebugFlag('RubyGenerated') DebugFlag('RubyGenerated')
DebugFlag('RubyMemory')
DebugFlag('RubyNetwork') DebugFlag('RubyNetwork')
DebugFlag('RubyPort') DebugFlag('RubyPort')
DebugFlag('RubyPrefetcher') DebugFlag('RubyPrefetcher')
@ -56,7 +55,7 @@ DebugFlag('RubyResourceStalls')
CompoundFlag('Ruby', [ 'RubyQueue', 'RubyNetwork', 'RubyTester', CompoundFlag('Ruby', [ 'RubyQueue', 'RubyNetwork', 'RubyTester',
'RubyGenerated', 'RubySlicc', 'RubySystem', 'RubyCache', 'RubyGenerated', 'RubySlicc', 'RubySystem', 'RubyCache',
'RubyMemory', 'RubyDma', 'RubyPort', 'RubySequencer', 'RubyCacheTrace', 'RubyDma', 'RubyPort', 'RubySequencer', 'RubyCacheTrace',
'RubyPrefetcher']) 'RubyPrefetcher'])
if env['PROTOCOL'] == 'None': if env['PROTOCOL'] == 'None':

View file

@ -1,266 +0,0 @@
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mem/ruby/profiler/MemCntrlProfiler.hh"
using namespace std;
MemCntrlProfiler::MemCntrlProfiler(const string& description,
int banks_per_rank, int ranks_per_dimm, int dimms_per_channel)
{
m_description = description;
m_banks_per_rank = banks_per_rank;
m_ranks_per_dimm = ranks_per_dimm;
m_dimms_per_channel = dimms_per_channel;
}
MemCntrlProfiler::~MemCntrlProfiler()
{
}
void
MemCntrlProfiler::profileMemReq(int bank)
{
m_memReq++;
m_memBankCount[bank]++;
}
void
MemCntrlProfiler::profileMemBankBusy()
{
m_memBankBusy++;
}
void
MemCntrlProfiler::profileMemBusBusy()
{
m_memBusBusy++;
}
void
MemCntrlProfiler::profileMemReadWriteBusy()
{
m_memReadWriteBusy++;
}
void
MemCntrlProfiler::profileMemDataBusBusy()
{
m_memDataBusBusy++;
}
void
MemCntrlProfiler::profileMemTfawBusy()
{
m_memTfawBusy++;
}
void
MemCntrlProfiler::profileMemRefresh()
{
m_memRefresh++;
}
void
MemCntrlProfiler::profileMemRead()
{
m_memRead++;
}
void
MemCntrlProfiler::profileMemWrite()
{
m_memWrite++;
}
void
MemCntrlProfiler::profileMemWaitCycles(int cycles)
{
m_memWaitCycles += cycles;
}
void
MemCntrlProfiler::profileMemInputQ(int cycles)
{
m_memInputQ += cycles;
}
void
MemCntrlProfiler::profileMemBankQ(int cycles)
{
m_memBankQ += cycles;
}
void
MemCntrlProfiler::profileMemArbWait(int cycles)
{
m_memArbWait += cycles;
}
void
MemCntrlProfiler::profileMemRandBusy()
{
m_memRandBusy++;
}
void
MemCntrlProfiler::profileMemNotOld()
{
m_memNotOld++;
}
void
MemCntrlProfiler::regStats()
{
m_memReq
.name(m_description + ".memReq")
.desc("Total number of memory requests")
.flags(Stats::nozero)
;
m_memRead
.name(m_description + ".memRead")
.desc("Number of memory reads")
.flags(Stats::nozero)
;
m_memWrite
.name(m_description + ".memWrite")
.desc("Number of memory writes")
.flags(Stats::nozero)
;
m_memRefresh
.name(m_description + ".memRefresh")
.desc("Number of memory refreshes")
.flags(Stats::nozero)
;
m_memInputQ
.name(m_description + ".memInputQ")
.desc("Delay in the input queue")
.flags(Stats::nozero)
;
m_memBankQ
.name(m_description + ".memBankQ")
.desc("Delay behind the head of the bank queue")
.flags(Stats::nozero)
;
m_memWaitCycles
.name(m_description + ".memWaitCycles")
.desc("Delay stalled at the head of the bank queue")
.flags(Stats::nozero)
;
m_totalStalls
.name(m_description + ".totalStalls")
.desc("Total number of stall cycles")
.flags(Stats::nozero)
;
m_totalStalls = m_memInputQ + m_memBankQ + m_memWaitCycles;
m_stallsPerReq
.name(m_description + ".stallsPerReq")
.desc("Expected number of stall cycles per request")
.flags(Stats::nozero)
;
m_stallsPerReq = m_totalStalls / m_memReq;
// Note: The following "memory stalls" entries are a breakdown of
// the cycles which already showed up in m_memWaitCycles. The
// order is significant; it is the priority of attributing the
// cycles. For example, bank_busy is before arbitration because
// if the bank was busy, we didn't even check arbitration.
// Note: "not old enough" means that since we grouped waiting
// heads-of-queues into batches to avoid starvation, a request in
// a newer batch didn't try to arbitrate yet because there are
// older requests waiting.
m_memBankBusy
.name(m_description + ".memBankBusy")
.desc("memory stalls due to busy bank")
.flags(Stats::nozero)
;
m_memRandBusy
.name(m_description + ".memRandBusy")
.desc("memory stalls due to busy random")
.flags(Stats::nozero)
;
m_memNotOld
.name(m_description + ".memNotOld")
.desc("memory stalls due to anti starvation")
.flags(Stats::nozero)
;
m_memArbWait
.name(m_description + ".memArbWait")
.desc("memory stalls due to arbitration")
.flags(Stats::nozero)
;
m_memBusBusy
.name(m_description + ".memBusBusy")
.desc("memory stalls due to busy bus")
.flags(Stats::nozero)
;
m_memTfawBusy
.name(m_description + ".memTfawBusy")
.desc("memory stalls for Tfaw")
.flags(Stats::nozero)
;
m_memReadWriteBusy
.name(m_description + ".memReadWriteBusy")
.desc("memory stalls due to read write turnaround")
.flags(Stats::nozero)
;
m_memDataBusBusy
.name(m_description + ".memDataBusBusy")
.desc("memory stalls due to read read turnaround")
.flags(Stats::nozero)
;
int totalBanks = m_banks_per_rank * m_ranks_per_dimm * m_dimms_per_channel;
m_memBankCount
.init(totalBanks)
.name(m_description + ".memBankCount")
.desc("Number of accesses per bank")
.flags(Stats::pdf | Stats::total|Stats::oneline)
;
for (int i = 0; i < totalBanks; i++) {
m_memBankCount.subname(i, "");
}
}

View file

@ -1,106 +0,0 @@
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __MEM_RUBY_PROFILER_MEMCNTRLPROFILER_HH__
#define __MEM_RUBY_PROFILER_MEMCNTRLPROFILER_HH__
#include <iostream>
#include <string>
#include <vector>
#include "base/statistics.hh"
#include "mem/ruby/common/TypeDefines.hh"
class MemCntrlProfiler
{
public:
MemCntrlProfiler(const std::string& description, int banks_per_rank,
int ranks_per_dimm, int dimms_per_channel);
~MemCntrlProfiler();
void regStats();
void profileMemReq(int bank);
void profileMemBankBusy();
void profileMemBusBusy();
void profileMemTfawBusy();
void profileMemReadWriteBusy();
void profileMemDataBusBusy();
void profileMemRefresh();
void profileMemRead();
void profileMemWrite();
void profileMemWaitCycles(int cycles);
void profileMemInputQ(int cycles);
void profileMemBankQ(int cycles);
void profileMemArbWait(int cycles);
void profileMemRandBusy();
void profileMemNotOld();
void print(std::ostream& out) const;
private:
// Private copy constructor and assignment operator
MemCntrlProfiler(const MemCntrlProfiler& obj);
MemCntrlProfiler& operator=(const MemCntrlProfiler& obj);
std::string m_description;
Stats::Scalar m_memReq;
Stats::Scalar m_memRead;
Stats::Scalar m_memWrite;
Stats::Scalar m_memRefresh;
Stats::Scalar m_memWaitCycles;
Stats::Scalar m_memInputQ;
Stats::Scalar m_memBankQ;
Stats::Formula m_totalStalls;
Stats::Formula m_stallsPerReq;
Stats::Scalar m_memBankBusy;
Stats::Scalar m_memBusBusy;
Stats::Scalar m_memTfawBusy;
Stats::Scalar m_memReadWriteBusy;
Stats::Scalar m_memDataBusBusy;
Stats::Scalar m_memArbWait;
Stats::Scalar m_memRandBusy;
Stats::Scalar m_memNotOld;
Stats::Vector m_memBankCount;
int m_banks_per_rank;
int m_ranks_per_dimm;
int m_dimms_per_channel;
};
inline std::ostream&
operator<<(std::ostream& out, const MemCntrlProfiler& obj)
{
obj.print(out);
out << std::flush;
return out;
}
#endif // __MEM_RUBY_PROFILER_MEMCNTRLPROFILER_HH__

View file

@ -35,6 +35,5 @@ if env['PROTOCOL'] == 'None':
Source('AccessTraceForAddress.cc') Source('AccessTraceForAddress.cc')
Source('AddressProfiler.cc') Source('AddressProfiler.cc')
Source('MemCntrlProfiler.cc')
Source('Profiler.cc') Source('Profiler.cc')
Source('StoreTrace.cc') Source('StoreTrace.cc')

View file

@ -1,41 +0,0 @@
/*
* Copyright (c) 1999 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mem/ruby/structures/MemoryNode.hh"
using namespace std;
void
MemoryNode::print(ostream& out) const
{
out << "[";
out << m_time << ", ";
out << m_msg_counter << ", ";
out << pkt << "; ";
out << "]";
}

View file

@ -1,90 +0,0 @@
/*
* Copyright (c) 2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Description:
* This structure records everything known about a single
* memory request that is queued in the memory controller.
* It is created when the memory request first arrives
* at a memory controller and is deleted when the underlying
* message is enqueued to be sent back to the directory.
*/
#ifndef __MEM_RUBY_STRUCTURES_MEMORYNODE_HH__
#define __MEM_RUBY_STRUCTURES_MEMORYNODE_HH__
#include <iostream>
#include "mem/ruby/common/TypeDefines.hh"
#include "mem/ruby/slicc_interface/Message.hh"
class MemoryNode
{
public:
// old constructor
MemoryNode(const Cycles& time, int counter, const PacketPtr p,
Addr addr, const bool is_mem_read)
: m_time(time), pkt(p)
{
m_msg_counter = counter;
m_addr = addr;
m_is_mem_read = is_mem_read;
m_is_dirty_wb = !is_mem_read;
}
// new constructor
MemoryNode(const Cycles& time, const PacketPtr p,
Addr addr, const bool is_mem_read,
const bool is_dirty_wb)
: m_time(time), pkt(p)
{
m_msg_counter = 0;
m_addr = addr;
m_is_mem_read = is_mem_read;
m_is_dirty_wb = is_dirty_wb;
}
void print(std::ostream& out) const;
Cycles m_time;
int m_msg_counter;
PacketPtr pkt;
Addr m_addr;
bool m_is_mem_read;
bool m_is_dirty_wb;
};
inline std::ostream&
operator<<(std::ostream& out, const MemoryNode& obj)
{
obj.print(out);
out << std::flush;
return out;
}
#endif // __MEM_RUBY_STRUCTURES_MEMORYNODE_HH__

View file

@ -1,802 +0,0 @@
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* Copyright (c) 2012 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Description: This module simulates a basic DDR-style memory controller
* (and can easily be extended to do FB-DIMM as well).
*
* This module models a single channel, connected to any number of
* DIMMs with any number of ranks of DRAMs each. If you want multiple
* address/data channels, you need to instantiate multiple copies of
* this module.
*
* Each memory request is placed in a queue associated with a specific
* memory bank. This queue is of finite size; if the queue is full
* the request will back up in an (infinite) common queue and will
* effectively throttle the whole system. This sort of behavior is
* intended to be closer to real system behavior than if we had an
* infinite queue on each bank. If you want the latter, just make
* the bank queues unreasonably large.
*
* The head item on a bank queue is issued when all of the
* following are true:
* the bank is available
* the address path to the DIMM is available
* the data path to or from the DIMM is available
*
* Note that we are not concerned about fixed offsets in time. The bank
* will not be used at the same moment as the address path, but since
* there is no queue in the DIMM or the DRAM it will be used at a constant
* number of cycles later, so it is treated as if it is used at the same
* time.
*
* We are assuming closed bank policy; that is, we automatically close
* each bank after a single read or write. Adding an option for open
* bank policy is for future work.
*
* We are assuming "posted CAS"; that is, we send the READ or WRITE
* immediately after the ACTIVATE. This makes scheduling the address
* bus trivial; we always schedule a fixed set of cycles. For DDR-400,
* this is a set of two cycles; for some configurations such as
* DDR-800 the parameter tRRD forces this to be set to three cycles.
*
* We assume a four-bit-time transfer on the data wires. This is
* the minimum burst length for DDR-2. This would correspond
* to (for example) a memory where each DIMM is 72 bits wide
* and DIMMs are ganged in pairs to deliver 64 bytes at a shot.
* This gives us the same occupancy on the data wires as on the
* address wires (for the two-address-cycle case).
*
* The only non-trivial scheduling problem is the data wires.
* A write will use the wires earlier in the operation than a read
* will; typically one cycle earlier as seen at the DRAM, but earlier
* by a worst-case round-trip wire delay when seen at the memory controller.
* So, while reads from one rank can be scheduled back-to-back
* every two cycles, and writes (to any rank) scheduled every two cycles,
* when a read is followed by a write we need to insert a bubble.
* Furthermore, consecutive reads from two different ranks may need
* to insert a bubble due to skew between when one DRAM stops driving the
* wires and when the other one starts. (These bubbles are parameters.)
*
* This means that when some number of reads and writes are at the
* heads of their queues, reads could starve writes, and/or reads
* to the same rank could starve out other requests, since the others
* would never see the data bus ready.
* For this reason, we have implemented an anti-starvation feature.
* A group of requests is marked "old", and a counter is incremented
* each cycle as long as any request from that batch has not issued.
* if the counter reaches twice the bank busy time, we hold off any
* newer requests until all of the "old" requests have issued.
*
* We also model tFAW. This is an obscure DRAM parameter that says
* that no more than four activate requests can happen within a window
* of a certain size. For most configurations this does not come into play,
* or has very little effect, but it could be used to throttle the power
* consumption of the DRAM. In this implementation (unlike in a DRAM
* data sheet) TFAW is measured in memory bus cycles; i.e. if TFAW = 16
* then no more than four activates may happen within any 16 cycle window.
* Refreshes are included in the activates.
*
*/
#include "base/cast.hh"
#include "base/cprintf.hh"
#include "base/random.hh"
#include "debug/RubyMemory.hh"
#include "mem/ruby/common/Address.hh"
#include "mem/ruby/profiler/Profiler.hh"
#include "mem/ruby/slicc_interface/Message.hh"
#include "mem/ruby/slicc_interface/RubySlicc_ComponentMapping.hh"
#include "mem/ruby/structures/RubyMemoryControl.hh"
#include "mem/ruby/system/RubySystem.hh"
using namespace std;
// Value to reset watchdog timer to.
// If we're idle for this many memory control cycles,
// shut down our clock (our rescheduling of ourselves).
// Refresh shuts down as well.
// When we restart, we'll be in a different phase
// with respect to ruby cycles, so this introduces
// a slight inaccuracy. But it is necessary or the
// ruby tester never terminates because the event
// queue is never empty.
#define IDLECOUNT_MAX_VALUE 1000
// Output operator definition
ostream&
operator<<(ostream& out, const RubyMemoryControl& obj)
{
obj.print(out);
out << flush;
return out;
}
// ****************************************************************
// CONSTRUCTOR
RubyMemoryControl::RubyMemoryControl(const Params *p)
: AbstractMemory(p), Consumer(this), port(name() + ".port", *this),
m_event(this)
{
m_banks_per_rank = p->banks_per_rank;
m_ranks_per_dimm = p->ranks_per_dimm;
m_dimms_per_channel = p->dimms_per_channel;
m_bank_bit_0 = p->bank_bit_0;
m_rank_bit_0 = p->rank_bit_0;
m_dimm_bit_0 = p->dimm_bit_0;
m_bank_queue_size = p->bank_queue_size;
m_bank_busy_time = p->bank_busy_time;
m_rank_rank_delay = p->rank_rank_delay;
m_read_write_delay = p->read_write_delay;
m_basic_bus_busy_time = p->basic_bus_busy_time;
m_mem_ctl_latency = p->mem_ctl_latency;
m_refresh_period = p->refresh_period;
m_tFaw = p->tFaw;
m_mem_random_arbitrate = p->mem_random_arbitrate;
m_mem_fixed_delay = p->mem_fixed_delay;
m_profiler_ptr = new MemCntrlProfiler(name(),
m_banks_per_rank,
m_ranks_per_dimm,
m_dimms_per_channel);
warn("RubyMemoryControl is deprecated, use a DRAMCtrl subclass instead\n");
}
void
RubyMemoryControl::init()
{
m_msg_counter = 0;
assert(m_tFaw <= 62); // must fit in a uint64_t shift register
m_total_banks = m_banks_per_rank * m_ranks_per_dimm * m_dimms_per_channel;
m_total_ranks = m_ranks_per_dimm * m_dimms_per_channel;
m_refresh_period_system = m_refresh_period / m_total_banks;
m_bankQueues = new list<MemoryNode *> [m_total_banks];
assert(m_bankQueues);
m_bankBusyCounter = new int [m_total_banks];
assert(m_bankBusyCounter);
m_oldRequest = new int [m_total_banks];
assert(m_oldRequest);
for (int i = 0; i < m_total_banks; i++) {
m_bankBusyCounter[i] = 0;
m_oldRequest[i] = 0;
}
m_busBusyCounter_Basic = 0;
m_busBusyCounter_Write = 0;
m_busBusyCounter_ReadNewRank = 0;
m_busBusy_WhichRank = 0;
m_roundRobin = 0;
m_refresh_count = 1;
m_need_refresh = 0;
m_refresh_bank = 0;
m_idleCount = 0;
m_ageCounter = 0;
// Each tfaw shift register keeps a moving bit pattern
// which shows when recent activates have occurred.
// m_tfaw_count keeps track of how many 1 bits are set
// in each shift register. When m_tfaw_count is >= 4,
// new activates are not allowed.
m_tfaw_shift = new uint64_t[m_total_ranks];
m_tfaw_count = new int[m_total_ranks];
for (int i = 0; i < m_total_ranks; i++) {
m_tfaw_shift[i] = 0;
m_tfaw_count[i] = 0;
}
}
BaseSlavePort&
RubyMemoryControl::getSlavePort(const string &if_name, PortID idx)
{
if (if_name != "port") {
return MemObject::getSlavePort(if_name, idx);
} else {
return port;
}
}
void
RubyMemoryControl::reset()
{
m_msg_counter = 0;
assert(m_tFaw <= 62); // must fit in a uint64_t shift register
m_total_banks = m_banks_per_rank * m_ranks_per_dimm * m_dimms_per_channel;
m_total_ranks = m_ranks_per_dimm * m_dimms_per_channel;
m_refresh_period_system = m_refresh_period / m_total_banks;
assert(m_bankQueues);
assert(m_bankBusyCounter);
assert(m_oldRequest);
for (int i = 0; i < m_total_banks; i++) {
m_bankBusyCounter[i] = 0;
m_oldRequest[i] = 0;
}
m_busBusyCounter_Basic = 0;
m_busBusyCounter_Write = 0;
m_busBusyCounter_ReadNewRank = 0;
m_busBusy_WhichRank = 0;
m_roundRobin = 0;
m_refresh_count = 1;
m_need_refresh = 0;
m_refresh_bank = 0;
m_idleCount = 0;
m_ageCounter = 0;
// Each tfaw shift register keeps a moving bit pattern
// which shows when recent activates have occurred.
// m_tfaw_count keeps track of how many 1 bits are set
// in each shift register. When m_tfaw_count is >= 4,
// new activates are not allowed.
for (int i = 0; i < m_total_ranks; i++) {
m_tfaw_shift[i] = 0;
m_tfaw_count[i] = 0;
}
}
RubyMemoryControl::~RubyMemoryControl()
{
delete [] m_bankQueues;
delete [] m_bankBusyCounter;
delete [] m_oldRequest;
delete m_profiler_ptr;
}
// enqueue new request from directory
bool
RubyMemoryControl::recvTimingReq(PacketPtr pkt)
{
Cycles arrival_time = curCycle();
Addr addr = pkt->getAddr();
bool is_mem_read = pkt->isRead();
access(pkt);
MemoryNode *thisReq = new MemoryNode(arrival_time, pkt, addr,
is_mem_read, !is_mem_read);
enqueueMemRef(thisReq);
return true;
}
// Alternate entry point used when we already have a MemoryNode
// structure built.
void
RubyMemoryControl::enqueueMemRef(MemoryNode *memRef)
{
m_msg_counter++;
memRef->m_msg_counter = m_msg_counter;
Addr addr = memRef->m_addr;
int bank = getBank(addr);
m_profiler_ptr->profileMemReq(bank);
m_input_queue.push_back(memRef);
if (!m_event.scheduled()) {
schedule(m_event, clockEdge());
}
}
void
RubyMemoryControl::print(ostream& out) const
{
}
// Queue up a completed request to send back to directory
void
RubyMemoryControl::enqueueToDirectory(MemoryNode *req, Cycles latency)
{
Tick arrival_time = clockEdge(latency);
PacketPtr pkt = req->pkt;
// access already turned the packet into a response
assert(pkt->isResponse());
// queue the packet in the response queue to be sent out after
// the static latency has passed
port.schedTimingResp(pkt, arrival_time);
DPRINTF(RubyMemory, "Enqueueing msg %#08x %c back to directory at %15d\n",
req->m_addr, req->m_is_mem_read ? 'R':'W', arrival_time);
}
// getBank returns an integer that is unique for each
// bank across this memory controller.
int
RubyMemoryControl::getBank(const Addr addr) const
{
int dimm = (addr >> m_dimm_bit_0) & (m_dimms_per_channel - 1);
int rank = (addr >> m_rank_bit_0) & (m_ranks_per_dimm - 1);
int bank = (addr >> m_bank_bit_0) & (m_banks_per_rank - 1);
return (dimm * m_ranks_per_dimm * m_banks_per_rank)
+ (rank * m_banks_per_rank)
+ bank;
}
int
RubyMemoryControl::getRank(const Addr addr) const
{
int bank = getBank(addr);
int rank = (bank / m_banks_per_rank);
assert (rank < (m_ranks_per_dimm * m_dimms_per_channel));
return rank;
}
// getRank returns an integer that is unique for each rank
// and independent of individual bank.
int
RubyMemoryControl::getRank(int bank) const
{
int rank = (bank / m_banks_per_rank);
assert (rank < (m_ranks_per_dimm * m_dimms_per_channel));
return rank;
}
// Not used!
int
RubyMemoryControl::getChannel(const Addr addr) const
{
assert(false);
return -1;
}
// Not used!
int
RubyMemoryControl::getRow(const Addr addr) const
{
assert(false);
return -1;
}
// queueReady determines if the head item in a bank queue
// can be issued this cycle
bool
RubyMemoryControl::queueReady(int bank)
{
if ((m_bankBusyCounter[bank] > 0) && !m_mem_fixed_delay) {
m_profiler_ptr->profileMemBankBusy();
DPRINTF(RubyMemory, "bank %x busy %d\n", bank, m_bankBusyCounter[bank]);
return false;
}
if (m_mem_random_arbitrate >= 2) {
if (random_mt.random(0, 100) < m_mem_random_arbitrate) {
m_profiler_ptr->profileMemRandBusy();
return false;
}
}
if (m_mem_fixed_delay)
return true;
if ((m_ageCounter > (2 * m_bank_busy_time)) && !m_oldRequest[bank]) {
m_profiler_ptr->profileMemNotOld();
return false;
}
if (m_busBusyCounter_Basic == m_basic_bus_busy_time) {
// Another bank must have issued this same cycle. For
// profiling, we count this as an arb wait rather than a bus
// wait. This is a little inaccurate since it MIGHT have also
// been blocked waiting for a read-write or a read-read
// instead, but it's pretty close.
m_profiler_ptr->profileMemArbWait(1);
return false;
}
if (m_busBusyCounter_Basic > 0) {
m_profiler_ptr->profileMemBusBusy();
return false;
}
int rank = getRank(bank);
if (m_tfaw_count[rank] >= ACTIVATE_PER_TFAW) {
m_profiler_ptr->profileMemTfawBusy();
return false;
}
bool write = !m_bankQueues[bank].front()->m_is_mem_read;
if (write && (m_busBusyCounter_Write > 0)) {
m_profiler_ptr->profileMemReadWriteBusy();
return false;
}
if (!write && (rank != m_busBusy_WhichRank)
&& (m_busBusyCounter_ReadNewRank > 0)) {
m_profiler_ptr->profileMemDataBusBusy();
return false;
}
return true;
}
// issueRefresh checks to see if this bank has a refresh scheduled
// and, if so, does the refresh and returns true
bool
RubyMemoryControl::issueRefresh(int bank)
{
if (!m_need_refresh || (m_refresh_bank != bank))
return false;
if (m_bankBusyCounter[bank] > 0)
return false;
// Note that m_busBusyCounter will prevent multiple issues during
// the same cycle, as well as on different but close cycles:
if (m_busBusyCounter_Basic > 0)
return false;
int rank = getRank(bank);
if (m_tfaw_count[rank] >= ACTIVATE_PER_TFAW)
return false;
// Issue it:
DPRINTF(RubyMemory, "Refresh bank %3x\n", bank);
m_profiler_ptr->profileMemRefresh();
m_need_refresh--;
m_refresh_bank++;
if (m_refresh_bank >= m_total_banks)
m_refresh_bank = 0;
m_bankBusyCounter[bank] = m_bank_busy_time;
m_busBusyCounter_Basic = m_basic_bus_busy_time;
m_busBusyCounter_Write = m_basic_bus_busy_time;
m_busBusyCounter_ReadNewRank = m_basic_bus_busy_time;
markTfaw(rank);
return true;
}
// Mark the activate in the tFaw shift register
void
RubyMemoryControl::markTfaw(int rank)
{
if (m_tFaw) {
m_tfaw_shift[rank] |= (1 << (m_tFaw-1));
m_tfaw_count[rank]++;
}
}
// Issue a memory request: Activate the bank, reserve the address and
// data buses, and queue the request for return to the requesting
// processor after a fixed latency.
void
RubyMemoryControl::issueRequest(int bank)
{
int rank = getRank(bank);
MemoryNode *req = m_bankQueues[bank].front();
m_bankQueues[bank].pop_front();
DPRINTF(RubyMemory, "Mem issue request%7d: %#08x %c "
"bank=%3x sched %c\n", req->m_msg_counter, req->m_addr,
req->m_is_mem_read? 'R':'W',
bank, m_event.scheduled() ? 'Y':'N');
enqueueToDirectory(req, Cycles(m_mem_ctl_latency + m_mem_fixed_delay));
m_oldRequest[bank] = 0;
markTfaw(rank);
m_bankBusyCounter[bank] = m_bank_busy_time;
m_busBusy_WhichRank = rank;
if (req->m_is_mem_read) {
m_profiler_ptr->profileMemRead();
m_busBusyCounter_Basic = m_basic_bus_busy_time;
m_busBusyCounter_Write = m_basic_bus_busy_time + m_read_write_delay;
m_busBusyCounter_ReadNewRank =
m_basic_bus_busy_time + m_rank_rank_delay;
} else {
m_profiler_ptr->profileMemWrite();
m_busBusyCounter_Basic = m_basic_bus_busy_time;
m_busBusyCounter_Write = m_basic_bus_busy_time;
m_busBusyCounter_ReadNewRank = m_basic_bus_busy_time;
}
delete req;
}
// executeCycle: This function is called once per memory clock cycle
// to simulate all the periodic hardware.
void
RubyMemoryControl::executeCycle()
{
// Keep track of time by counting down the busy counters:
for (int bank=0; bank < m_total_banks; bank++) {
if (m_bankBusyCounter[bank] > 0) m_bankBusyCounter[bank]--;
}
if (m_busBusyCounter_Write > 0)
m_busBusyCounter_Write--;
if (m_busBusyCounter_ReadNewRank > 0)
m_busBusyCounter_ReadNewRank--;
if (m_busBusyCounter_Basic > 0)
m_busBusyCounter_Basic--;
// Count down the tFAW shift registers:
for (int rank=0; rank < m_total_ranks; rank++) {
if (m_tfaw_shift[rank] & 1) m_tfaw_count[rank]--;
m_tfaw_shift[rank] >>= 1;
}
// After time period expires, latch an indication that we need a refresh.
// Disable refresh if in mem_fixed_delay mode.
if (!m_mem_fixed_delay) m_refresh_count--;
if (m_refresh_count == 0) {
m_refresh_count = m_refresh_period_system;
// Are we overrunning our ability to refresh?
assert(m_need_refresh < 10);
m_need_refresh++;
}
// If this batch of requests is all done, make a new batch:
m_ageCounter++;
int anyOld = 0;
for (int bank=0; bank < m_total_banks; bank++) {
anyOld |= m_oldRequest[bank];
}
if (!anyOld) {
for (int bank=0; bank < m_total_banks; bank++) {
if (!m_bankQueues[bank].empty()) m_oldRequest[bank] = 1;
}
m_ageCounter = 0;
}
// If randomness desired, re-randomize round-robin position each cycle
if (m_mem_random_arbitrate) {
m_roundRobin = random_mt.random(0, m_total_banks - 1);
}
// For each channel, scan round-robin, and pick an old, ready
// request and issue it. Treat a refresh request as if it were at
// the head of its bank queue. After we issue something, keep
// scanning the queues just to gather statistics about how many
// are waiting. If in mem_fixed_delay mode, we can issue more
// than one request per cycle.
int queueHeads = 0;
int banksIssued = 0;
for (int i = 0; i < m_total_banks; i++) {
m_roundRobin++;
if (m_roundRobin >= m_total_banks) m_roundRobin = 0;
issueRefresh(m_roundRobin);
int qs = m_bankQueues[m_roundRobin].size();
if (qs > 1) {
m_profiler_ptr->profileMemBankQ(qs-1);
}
if (qs > 0) {
// we're not idle if anything is queued
m_idleCount = IDLECOUNT_MAX_VALUE;
queueHeads++;
if (queueReady(m_roundRobin)) {
issueRequest(m_roundRobin);
banksIssued++;
if (m_mem_fixed_delay) {
m_profiler_ptr->profileMemWaitCycles(m_mem_fixed_delay);
}
}
}
}
// memWaitCycles is a redundant catch-all for the specific
// counters in queueReady
m_profiler_ptr->profileMemWaitCycles(queueHeads - banksIssued);
// Check input queue and move anything to bank queues if not full.
// Since this is done here at the end of the cycle, there will
// always be at least one cycle of latency in the bank queue. We
// deliberately move at most one request per cycle (to simulate
// typical hardware). Note that if one bank queue fills up, other
// requests can get stuck behind it here.
if (!m_input_queue.empty()) {
// we're not idle if anything is pending
m_idleCount = IDLECOUNT_MAX_VALUE;
MemoryNode *req = m_input_queue.front();
int bank = getBank(req->m_addr);
if (m_bankQueues[bank].size() < m_bank_queue_size) {
m_input_queue.pop_front();
m_bankQueues[bank].push_back(req);
}
m_profiler_ptr->profileMemInputQ(m_input_queue.size());
}
}
DrainState
RubyMemoryControl::drain()
{
DPRINTF(RubyMemory, "MemoryController drain\n");
if (m_event.scheduled()) {
deschedule(m_event);
}
return DrainState::Drained;
}
// wakeup: This function is called once per memory controller clock cycle.
void
RubyMemoryControl::wakeup()
{
DPRINTF(RubyMemory, "MemoryController wakeup\n");
// execute everything
executeCycle();
m_idleCount--;
if (m_idleCount > 0) {
assert(!m_event.scheduled());
schedule(m_event, clockEdge(Cycles(1)));
}
}
/**
* This function reads the different buffers that exist in the Ruby Memory
* Controller, and figures out if any of the buffers hold a message that
* contains the data for the address provided in the packet. True is returned
* if any of the messages was read, otherwise false is returned.
*
* I think we should move these buffers to being message buffers, instead of
* being lists.
*/
bool
RubyMemoryControl::functionalRead(Packet *pkt)
{
for (std::list<MemoryNode *>::iterator it = m_input_queue.begin();
it != m_input_queue.end(); ++it) {
PacketPtr msg = (*it)->pkt;
if (pkt->checkFunctional(msg)) {
return true;
}
}
for (std::list<MemoryNode *>::iterator it = m_response_queue.begin();
it != m_response_queue.end(); ++it) {
PacketPtr msg = (*it)->pkt;
if (pkt->checkFunctional(msg)) {
return true;
}
}
for (uint32_t bank = 0; bank < m_total_banks; ++bank) {
for (std::list<MemoryNode *>::iterator it = m_bankQueues[bank].begin();
it != m_bankQueues[bank].end(); ++it) {
PacketPtr msg = (*it)->pkt;
if (pkt->checkFunctional(msg)) {
return true;
}
}
}
functionalAccess(pkt);
return true;
}
/**
* This function reads the different buffers that exist in the Ruby Memory
* Controller, and figures out if any of the buffers hold a message that
* needs to functionally written with the data in the packet.
*
* The number of messages written is returned at the end. This is required
* for debugging purposes.
*/
uint32_t
RubyMemoryControl::functionalWrite(Packet *pkt)
{
uint32_t num_functional_writes = 0;
for (std::list<MemoryNode *>::iterator it = m_input_queue.begin();
it != m_input_queue.end(); ++it) {
PacketPtr msg = (*it)->pkt;
if (pkt->checkFunctional(msg)) {
num_functional_writes++;
}
}
for (std::list<MemoryNode *>::iterator it = m_response_queue.begin();
it != m_response_queue.end(); ++it) {
PacketPtr msg = (*it)->pkt;
if (pkt->checkFunctional(msg)) {
num_functional_writes++;
}
}
for (uint32_t bank = 0; bank < m_total_banks; ++bank) {
for (std::list<MemoryNode *>::iterator it = m_bankQueues[bank].begin();
it != m_bankQueues[bank].end(); ++it) {
PacketPtr msg = (*it)->pkt;
if (pkt->checkFunctional(msg)) {
num_functional_writes++;
}
}
}
functionalAccess(pkt);
num_functional_writes++;
return num_functional_writes;
}
void
RubyMemoryControl::regStats()
{
m_profiler_ptr->regStats();
AbstractMemory::regStats();
}
RubyMemoryControl *
RubyMemoryControlParams::create()
{
return new RubyMemoryControl(this);
}
RubyMemoryControl::MemoryPort::MemoryPort(const std::string& name,
RubyMemoryControl& _memory)
: QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
memory(_memory)
{ }
AddrRangeList
RubyMemoryControl::MemoryPort::getAddrRanges() const
{
AddrRangeList ranges;
ranges.push_back(memory.getAddrRange());
return ranges;
}
void
RubyMemoryControl::MemoryPort::recvFunctional(PacketPtr pkt)
{
pkt->pushLabel(memory.name());
if (!queue.checkFunctional(pkt)) {
// Default implementation of SimpleTimingPort::recvFunctional()
// calls recvAtomic() and throws away the latency; we can save a
// little here by just not calculating the latency.
memory.functionalWrite(pkt);
}
pkt->popLabel();
}
Tick
RubyMemoryControl::MemoryPort::recvAtomic(PacketPtr pkt)
{
panic("This controller does not support recv atomic!\n");
}
bool
RubyMemoryControl::MemoryPort::recvTimingReq(PacketPtr pkt)
{
// pass it to the memory controller
return memory.recvTimingReq(pkt);
}

View file

@ -1,205 +0,0 @@
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* Copyright (c) 2012 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __MEM_RUBY_STRUCTURES_MEMORY_CONTROL_HH__
#define __MEM_RUBY_STRUCTURES_MEMORY_CONTROL_HH__
#include <iostream>
#include <list>
#include <string>
#include "mem/abstract_mem.hh"
#include "mem/protocol/MemoryMsg.hh"
#include "mem/ruby/common/Address.hh"
#include "mem/ruby/profiler/MemCntrlProfiler.hh"
#include "mem/ruby/structures/MemoryNode.hh"
#include "mem/ruby/system/RubySystem.hh"
#include "params/RubyMemoryControl.hh"
// This constant is part of the definition of tFAW; see
// the comments in header to RubyMemoryControl.cc
#define ACTIVATE_PER_TFAW 4
//////////////////////////////////////////////////////////////////////////////
class RubyMemoryControl : public AbstractMemory, public Consumer
{
public:
typedef RubyMemoryControlParams Params;
RubyMemoryControl(const Params *p);
void init() override;
void reset();
~RubyMemoryControl();
virtual BaseSlavePort& getSlavePort(const std::string& if_name,
PortID idx = InvalidPortID) override;
DrainState drain() override;
void wakeup() override;
void setDescription(const std::string& name) { m_description = name; };
std::string getDescription() { return m_description; };
// Called from the directory:
bool recvTimingReq(PacketPtr pkt);
void recvFunctional(PacketPtr pkt);
void enqueueMemRef(MemoryNode *memRef);
bool areNSlotsAvailable(int n) { return true; }; // infinite queue length
void print(std::ostream& out) const override;
void regStats() override;
int getBank(const Addr addr) const;
int getRank(const Addr addr) const;
// not used in Ruby memory controller
int getChannel(const Addr addr) const;
int getRow(const Addr addr) const;
//added by SS
int getBanksPerRank() { return m_banks_per_rank; };
int getRanksPerDimm() { return m_ranks_per_dimm; };
int getDimmsPerChannel() { return m_dimms_per_channel; }
bool functionalRead(Packet *pkt);
uint32_t functionalWrite(Packet *pkt);
private:
void enqueueToDirectory(MemoryNode *req, Cycles latency);
int getRank(int bank) const;
bool queueReady(int bank);
void issueRequest(int bank);
bool issueRefresh(int bank);
void markTfaw(int rank);
void executeCycle();
// Private copy constructor and assignment operator
RubyMemoryControl (const RubyMemoryControl& obj);
RubyMemoryControl& operator=(const RubyMemoryControl& obj);
private:
// For now, make use of a queued slave port to avoid dealing with
// flow control for the responses being sent back
class MemoryPort : public QueuedSlavePort
{
RespPacketQueue queue;
RubyMemoryControl& memory;
public:
MemoryPort(const std::string& name, RubyMemoryControl& _memory);
protected:
Tick recvAtomic(PacketPtr pkt);
void recvFunctional(PacketPtr pkt);
bool recvTimingReq(PacketPtr);
virtual AddrRangeList getAddrRanges() const;
};
/**
* Our incoming port, for a multi-ported controller add a crossbar
* in front of it
*/
MemoryPort port;
// data members
std::string m_description;
int m_msg_counter;
int m_banks_per_rank;
int m_ranks_per_dimm;
int m_dimms_per_channel;
int m_bank_bit_0;
int m_rank_bit_0;
int m_dimm_bit_0;
unsigned int m_bank_queue_size;
int m_bank_busy_time;
int m_rank_rank_delay;
int m_read_write_delay;
int m_basic_bus_busy_time;
Cycles m_mem_ctl_latency;
int m_refresh_period;
int m_mem_random_arbitrate;
int m_tFaw;
Cycles m_mem_fixed_delay;
int m_total_banks;
int m_total_ranks;
int m_refresh_period_system;
// queues where memory requests live
std::list<MemoryNode *> m_response_queue;
std::list<MemoryNode *> m_input_queue;
std::list<MemoryNode *>* m_bankQueues;
// Each entry indicates number of address-bus cycles until bank
// is reschedulable:
int *m_bankBusyCounter;
int *m_oldRequest;
uint64_t *m_tfaw_shift;
int *m_tfaw_count;
// Each of these indicates number of address-bus cycles until
// we can issue a new request of the corresponding type:
int m_busBusyCounter_Write;
int m_busBusyCounter_ReadNewRank;
int m_busBusyCounter_Basic;
int m_busBusy_WhichRank; // which rank last granted
int m_roundRobin; // which bank queue was last granted
int m_refresh_count; // cycles until next refresh
int m_need_refresh; // set whenever m_refresh_count goes to zero
int m_refresh_bank; // which bank to refresh next
int m_ageCounter; // age of old requests; to detect starvation
int m_idleCount; // watchdog timer for shutting down
MemCntrlProfiler *m_profiler_ptr;
class MemCntrlEvent : public Event
{
public:
MemCntrlEvent(RubyMemoryControl *_mem_cntrl)
{
mem_cntrl = _mem_cntrl;
}
private:
void process() { mem_cntrl->wakeup(); }
RubyMemoryControl* mem_cntrl;
};
MemCntrlEvent m_event;
};
std::ostream& operator<<(std::ostream& out, const RubyMemoryControl& obj);
#endif // __MEM_RUBY_STRUCTURES_MEMORY_CONTROL_HH__

View file

@ -1,57 +0,0 @@
# Copyright (c) 2009 Advanced Micro Devices, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Steve Reinhardt
# Brad Beckmann
from m5.params import *
from AbstractMemory import AbstractMemory
class RubyMemoryControl(AbstractMemory):
type = 'RubyMemoryControl'
cxx_class = 'RubyMemoryControl'
cxx_header = "mem/ruby/structures/RubyMemoryControl.hh"
banks_per_rank = Param.Int(8, "");
ranks_per_dimm = Param.Int(2, "");
dimms_per_channel = Param.Int(2, "");
bank_bit_0 = Param.Int(8, "");
rank_bit_0 = Param.Int(11, "");
dimm_bit_0 = Param.Int(12, "");
bank_queue_size = Param.Int(12, "");
bank_busy_time = Param.Int(11, "");
rank_rank_delay = Param.Int(1, "");
read_write_delay = Param.Int(2, "");
basic_bus_busy_time = Param.Int(2, "");
mem_ctl_latency = Param.Cycles(12, "");
refresh_period = Param.Cycles(1560, "");
tFaw = Param.Int(0, "");
mem_random_arbitrate = Param.Int(0, "");
mem_fixed_delay = Param.Cycles(0, "");
# single-ported on the system interface side, instantiate with a
# crossbar in front of the controller for multiple ports
port = SlavePort("Slave port")

View file

@ -38,7 +38,6 @@ SimObject('DirectoryMemory.py')
SimObject('LRUReplacementPolicy.py') SimObject('LRUReplacementPolicy.py')
SimObject('PseudoLRUReplacementPolicy.py') SimObject('PseudoLRUReplacementPolicy.py')
SimObject('ReplacementPolicy.py') SimObject('ReplacementPolicy.py')
SimObject('RubyMemoryControl.py')
SimObject('RubyPrefetcher.py') SimObject('RubyPrefetcher.py')
SimObject('WireBuffer.py') SimObject('WireBuffer.py')
@ -48,8 +47,6 @@ Source('CacheMemory.cc')
Source('LRUPolicy.cc') Source('LRUPolicy.cc')
Source('PseudoLRUPolicy.cc') Source('PseudoLRUPolicy.cc')
Source('WireBuffer.cc') Source('WireBuffer.cc')
Source('RubyMemoryControl.cc')
Source('MemoryNode.cc')
Source('PersistentTable.cc') Source('PersistentTable.cc')
Source('Prefetcher.cc') Source('Prefetcher.cc')
Source('TimerTable.cc') Source('TimerTable.cc')