X86: Redo the bit test instructions.

--HG--
extra : convert_revision : 433c2a9f3675ed02f3be5ce759a440f2686d2ccd
This commit is contained in:
Gabe Black 2008-01-12 06:41:32 -05:00
parent b705eba6e5
commit c08b7802a9
2 changed files with 125 additions and 110 deletions

View file

@ -1,4 +1,32 @@
# Copyright (c) 2007 The Hewlett-Packard Development Company
# Copyright (c) 2008 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Gabe Black
# Copyright (c) 2007-2008 The Hewlett-Packard Development Company
# All rights reserved.
#
# Redistribution and use of this software in source and binary forms,
@ -63,19 +91,14 @@ def macroop BT_M_I {
# This fudges just a tiny bit, but it's reasonable to expect the
# microcode generation logic to have the log of the various sizes
# floating around as well.
srai t2, t1, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
add t2, t2, base, dataSize=asz
ld t1, seg, [scale, index, t2], disp
ld t1, seg, sib, disp
sexti t0, t1, imm, flags=(CF,)
};
def macroop BT_P_I {
rdip t7
limm t1, imm, dataSize=asz
srai t2, t1, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
ld t1, seg, [1, t2, t7]
ld t1, seg, riprel, disp, dataSize=asz
sexti t0, t1, imm, flags=(CF,)
};
@ -84,18 +107,19 @@ def macroop BT_R_R {
};
def macroop BT_M_R {
srai t2, reg, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
add t2, t2, base, dataSize=asz
ld t1, seg, [scale, index, t2], disp
srai t2, reg, 3, dataSize=asz
srai t3, t2, ldsz, dataSize=asz
lea t3, flatseg, [dsz, t3, base], dataSize=asz
ld t1, seg, [scale, index, t3], disp
sext t0, t1, reg, flags=(CF,)
};
def macroop BT_P_R {
rdip t7
srai t2, reg, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
ld t1, seg, [1, t2, t7]
srai t2, reg, 3, dataSize=asz
srai t3, t2, ldsz, dataSize=asz
lea t3, flatseg, [ldsz, t3, base], dataSize=asz
ld t1, seg, [1, t3, t7], disp
sext t0, t1, reg, flags=(CF,)
};
@ -111,28 +135,23 @@ def macroop BTC_M_I {
# This fudges just a tiny bit, but it's reasonable to expect the
# microcode generation logic to have the log of the various sizes
# floating around as well.
srai t2, t1, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
add t2, t2, base, dataSize=asz
limm t3, 1
roli t3, t3, imm
ldst t1, seg, [scale, index, t2], disp
limm t4, 1
roli t4, t4, imm
ldst t1, seg, sib, disp
sexti t0, t1, imm, flags=(CF,)
xor t1, t1, t3
st t1, seg, [scale, index, t2], disp
xor t1, t1, t4
st t1, seg, sib, disp
};
def macroop BTC_P_I {
rdip t7, dataSize=asz
limm t1, imm, dataSize=asz
srai t2, t1, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
limm t3, 1
roli t3, t3, imm
ldst t1, seg, [1, t2, t7]
limm t4, 1
roli t4, t4, imm
ldst t1, seg, riprel, disp
sexti t0, t1, imm, flags=(CF,)
xor t1, t1, t3
st t1, seg, [1, t2, t7], disp
xor t1, t1, t4
st t1, seg, riprel, disp
};
def macroop BTC_R_R {
@ -143,26 +162,27 @@ def macroop BTC_R_R {
};
def macroop BTC_M_R {
srai t2, reg, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
add t2, t2, base, dataSize=asz
limm t3, 1
rol t3, t3, reg
ldst t1, seg, [scale, index, t2], disp
srai t2, reg, 3, dataSize=asz
srai t3, t2, ldsz, dataSize=asz
lea t3, flatseg, [dsz, t3, base], dataSize=asz
limm t4, 1
rol t4, t4, reg
ldst t1, seg, [scale, index, t3], disp
sext t0, t1, reg, flags=(CF,)
xor t1, t1, t3
st t1, seg, [scale, index, t2], disp
xor t1, t1, t4
st t1, seg, [scale, index, t3], disp
};
def macroop BTC_P_R {
rdip t7, dataSize=asz
srai t2, reg, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
limm t3, 1
rol t3, t3, reg
ldst t1, seg, [1, t2, t7]
srai t2, reg, 3, dataSize=asz
srai t3, t2, ldsz, dataSize=asz
lea t3, flatseg, [dsz, t3, base], dataSize=asz
limm t4, 1
rol t4, t4, reg
ldst t1, seg, [1, t2, t7], disp
sext t0, t1, reg, flags=(CF,)
xor t1, t1, t3
xor t1, t1, t4
st t1, seg, [1, t2, t7], disp
};
@ -175,31 +195,23 @@ def macroop BTR_R_I {
def macroop BTR_M_I {
limm t1, imm, dataSize=asz
# This fudges just a tiny bit, but it's reasonable to expect the
# microcode generation logic to have the log of the various sizes
# floating around as well.
srai t2, t1, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
add t2, t2, base, dataSize=asz
limm t3, "(uint64_t(-(2ULL)))"
roli t3, t3, imm
ldst t1, seg, [scale, index, t2], disp
limm t4, "(uint64_t(-(2ULL)))"
roli t4, t4, imm
ldst t1, seg, sib, disp
sexti t0, t1, imm, flags=(CF,)
and t1, t1, t3
st t1, seg, [scale, index, t2], disp
and t1, t1, t4
st t1, seg, sib, disp
};
def macroop BTR_P_I {
rdip t7, dataSize=asz
limm t1, imm, dataSize=asz
srai t2, t1, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
limm t3, "(uint64_t(-(2ULL)))"
roli t3, t3, imm
ldst t1, seg, [1, t2, t7]
limm t4, "(uint64_t(-(2ULL)))"
roli t4, t4, imm
ldst t1, seg, riprel, disp
sexti t0, t1, imm, flags=(CF,)
and t1, t1, t3
st t1, seg, [1, t2, t7], disp
and t1, t1, t4
st t1, seg, riprel, disp
};
def macroop BTR_R_R {
@ -210,27 +222,28 @@ def macroop BTR_R_R {
};
def macroop BTR_M_R {
srai t2, reg, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
add t2, t2, base, dataSize=asz
limm t3, "(uint64_t(-(2ULL)))"
rol t3, t3, reg
ldst t1, seg, [scale, index, t2], disp
srai t2, reg, 3, dataSize=asz
srai t3, t2, ldsz, dataSize=asz
lea t3, flatseg, [dsz, t3, base], dataSize=asz
limm t4, "(uint64_t(-(2ULL)))"
rol t4, t4, reg
ldst t1, seg, [scale, index, t3], disp
sext t0, t1, reg, flags=(CF,)
and t1, t1, t3
st t1, seg, [scale, index, t2], disp
and t1, t1, t4
st t1, seg, [scale, index, t3], disp
};
def macroop BTR_P_R {
rdip t7, dataSize=asz
srai t2, reg, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
limm t3, "(uint64_t(-(2ULL)))"
rol t3, t3, reg
ldst t1, seg, [1, t2, t7]
srai t2, reg, 3, dataSize=asz
srai t3, t2, ldsz, dataSize=asz
lea t3, flatseg, [dsz, t3, base], dataSize=asz
limm t4, "(uint64_t(-(2ULL)))"
rol t4, t4, reg
ldst t1, seg, [1, t3, t7], disp
sext t0, t1, reg, flags=(CF,)
and t1, t1, t3
st t1, seg, [1, t2, t7], disp
and t1, t1, t4
st t1, seg, [1, t3, t7], disp
};
def macroop BTS_R_I {
@ -242,31 +255,23 @@ def macroop BTS_R_I {
def macroop BTS_M_I {
limm t1, imm, dataSize=asz
# This fudges just a tiny bit, but it's reasonable to expect the
# microcode generation logic to have the log of the various sizes
# floating around as well.
srai t2, t1, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
add t2, t2, base, dataSize=asz
limm t3, 1
roli t3, t3, imm
ldst t1, seg, [scale, index, t2], disp
limm t4, 1
roli t4, t4, imm
ldst t1, seg, sib, disp
sexti t0, t1, imm, flags=(CF,)
or t1, t1, t3
st t1, seg, [scale, index, t2], disp
or t1, t1, t4
st t1, seg, sib, disp
};
def macroop BTS_P_I {
rdip t7, dataSize=asz
limm t1, imm, dataSize=asz
srai t2, t1, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
limm t3, 1
roli t3, t3, imm
ldst t1, seg, [1, t2, t7]
limm t4, 1
roli t4, t4, imm
ldst t1, seg, riprel, disp
sexti t0, t1, imm, flags=(CF,)
or t1, t1, t3
st t1, seg, [1, t2, t7], disp
or t1, t1, t4
st t1, seg, riprel, disp
};
def macroop BTS_R_R {
@ -277,26 +282,27 @@ def macroop BTS_R_R {
};
def macroop BTS_M_R {
srai t2, reg, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
add t2, t2, base, dataSize=asz
limm t3, 1
rol t3, t3, reg
ldst t1, seg, [scale, index, t2], disp
srai t2, reg, 3, dataSize=asz
srai t3, t2, ldsz, dataSize=asz
lea t3, flatseg, [dsz, t3, base], dataSize=asz
limm t4, 1
rol t4, t4, reg
ldst t1, seg, [scale, index, t3], disp
sext t0, t1, reg, flags=(CF,)
or t1, t1, t3
st t1, seg, [scale, index, t2], disp
or t1, t1, t4
st t1, seg, [scale, index, t3], disp
};
def macroop BTS_P_R {
rdip t7, dataSize=asz
srai t2, reg, "(env.dataSize == 8) ? 3 : ((env.dataSize == 4) ? 2 : 1)", \
dataSize=asz
limm t3, 1
rol t3, t3, reg
ldst t1, seg, [1, t2, t7]
srai t2, reg, 3, dataSize=asz
srai t3, t2, ldsz, dataSize=asz
lea t3, flatseg, [dsz, t3, base], dataSize=asz
limm t4, 1
rol t4, t4, reg
ldst t1, seg, [1, t3, t7], disp
sext t0, t1, reg, flags=(CF,)
or t1, t1, t3
st t1, seg, [1, t2, t7], disp
or t1, t1, t4
st t1, seg, [1, t3, t7], disp
};
'''

View file

@ -107,6 +107,15 @@ let {{
}
assembler.symbols.update(symbols)
assembler.symbols["ldsz"] = \
"((env.dataSize == 8) ? 3 : (env.dataSize == 4) ? 2 : 1)"
assembler.symbols["lasz"] = \
"((env.addressSize == 8) ? 3 : (env.addressSize == 4) ? 2 : 1)"
assembler.symbols["lssz"] = \
"((env.stackSize == 8) ? 3 : (env.stackSize == 4) ? 2 : 1)"
# Short hand for common scale-index-base combinations.
assembler.symbols["sib"] = \
[symbols["scale"], symbols["index"], symbols["base"]]