Merge zed.eecs.umich.edu:/.automount/fox/y/mserrano/m5_dir/m5

into  zed.eecs.umich.edu:/z/benash/bk/m5

dev/ide_ctrl.cc:
dev/ide_ctrl.hh:
dev/ide_disk.cc:
dev/ide_disk.hh:
dev/ns_gige.cc:
dev/pciconfigall.cc:
dev/pcidev.cc:
dev/rtcreg.h:
dev/tsunami_io.cc:
dev/tsunami_io.hh:
dev/uart8250.cc:
dev/uart8250.hh:
python/m5/objects/Tsunami.py:
    Merge code.

--HG--
extra : convert_revision : e97d5dbcc051d2061622201265430d359f995d48
This commit is contained in:
Benjamin Nash 2005-08-15 17:17:17 -04:00
commit bcc333e920
30 changed files with 1213 additions and 830 deletions

View file

@ -272,7 +272,7 @@ full_system_sources = Split('''
dev/simple_disk.cc dev/simple_disk.cc
dev/tsunami.cc dev/tsunami.cc
dev/tsunami_cchip.cc dev/tsunami_cchip.cc
dev/tsunami_fake.cc dev/isa_fake.cc
dev/tsunami_io.cc dev/tsunami_io.cc
dev/tsunami_pchip.cc dev/tsunami_pchip.cc
dev/uart.cc dev/uart.cc

View file

@ -263,7 +263,7 @@ class ExecContext
Fault error; Fault error;
error = mem->read(req, data); error = mem->read(req, data);
data = htoa(data); data = gtoh(data);
return error; return error;
} }
@ -313,7 +313,7 @@ class ExecContext
} }
#endif #endif
return mem->write(req, (T)htoa(data)); return mem->write(req, (T)htog(data));
} }
virtual bool misspeculating(); virtual bool misspeculating();

View file

@ -220,7 +220,7 @@ class AlphaFullCPU : public FullO3CPU<Impl>
Fault error; Fault error;
error = this->mem->read(req, data); error = this->mem->read(req, data);
data = htoa(data); data = gtoh(data);
return error; return error;
} }
@ -277,7 +277,7 @@ class AlphaFullCPU : public FullO3CPU<Impl>
#endif #endif
return this->mem->write(req, (T)htoa(data)); return this->mem->write(req, (T)htog(data));
} }
template <class T> template <class T>

View file

@ -535,7 +535,7 @@ SimpleFetch<Impl>::fetch()
assert(offset <= cacheBlkSize - instSize); assert(offset <= cacheBlkSize - instSize);
// Get the instruction from the array of the cache line. // Get the instruction from the array of the cache line.
inst = htoa(*reinterpret_cast<MachInst *> inst = gtoh(*reinterpret_cast<MachInst *>
(&cacheData[offset])); (&cacheData[offset]));
// Create a new DynInst from the instruction fetched. // Create a new DynInst from the instruction fetched.

View file

@ -738,7 +738,7 @@ SimpleCPU::tick()
comInstEventQueue[0]->serviceEvents(numInst); comInstEventQueue[0]->serviceEvents(numInst);
// decode the instruction // decode the instruction
inst = htoa(inst); inst = gtoh(inst);
curStaticInst = StaticInst<TheISA>::decode(inst); curStaticInst = StaticInst<TheISA>::decode(inst);
traceData = Trace::getInstRecord(curTick, xc, this, curStaticInst, traceData = Trace::getInstRecord(curTick, xc, this, curStaticInst,

View file

@ -237,7 +237,7 @@ void
SafeReadSwap(ifstream &stream, T &data) SafeReadSwap(ifstream &stream, T &data)
{ {
SafeRead(stream, &data, sizeof(data)); SafeRead(stream, &data, sizeof(data));
data = htoa(data); data = letoh(data); //is this the proper byte order conversion?
} }
bool bool
@ -319,7 +319,7 @@ template<class T>
void void
SafeWriteSwap(ofstream &stream, const T &data) SafeWriteSwap(ofstream &stream, const T &data)
{ {
T swappeddata = htoa(data); T swappeddata = letoh(data); //is this the proper byte order conversion?
SafeWrite(stream, &swappeddata, sizeof(data)); SafeWrite(stream, &swappeddata, sizeof(data));
} }
void void

View file

@ -76,10 +76,12 @@ IdeController::IdeController(Params *p)
// zero out all of the registers // zero out all of the registers
memset(bmi_regs.data, 0, sizeof(bmi_regs)); memset(bmi_regs.data, 0, sizeof(bmi_regs));
memset(pci_config_regs.data, 0, sizeof(pci_config_regs.data)); memset(config_regs.data, 0, sizeof(config_regs.data));
// setup initial values // setup initial values
pci_config_regs.idetim = htoa((uint32_t)0x80008000); // enable both channels // enable both channels
config_regs.idetim0 = htole((uint16_t)IDETIM_DECODE_EN);
config_regs.idetim1 = htole((uint16_t)IDETIM_DECODE_EN);
bmi_regs.bmis0 = DMA1CAP | DMA0CAP; bmi_regs.bmis0 = DMA1CAP | DMA0CAP;
bmi_regs.bmis1 = DMA1CAP | DMA0CAP; bmi_regs.bmis1 = DMA1CAP | DMA0CAP;
@ -127,46 +129,46 @@ IdeController::~IdeController()
/// ///
void void
IdeController::parseAddr(const Addr &addr, Addr &offset, bool &primary, IdeController::parseAddr(const Addr &addr, Addr &offset, IdeChannel &channel,
RegType_t &type) IdeRegType &reg_type)
{ {
offset = addr; offset = addr;
if (addr >= pri_cmd_addr && addr < (pri_cmd_addr + pri_cmd_size)) { if (addr >= pri_cmd_addr && addr < (pri_cmd_addr + pri_cmd_size)) {
offset -= pri_cmd_addr; offset -= pri_cmd_addr;
type = COMMAND_BLOCK; reg_type = COMMAND_BLOCK;
primary = true; channel = PRIMARY;
} else if (addr >= pri_ctrl_addr && } else if (addr >= pri_ctrl_addr &&
addr < (pri_ctrl_addr + pri_ctrl_size)) { addr < (pri_ctrl_addr + pri_ctrl_size)) {
offset -= pri_ctrl_addr; offset -= pri_ctrl_addr;
type = CONTROL_BLOCK; reg_type = CONTROL_BLOCK;
primary = true; channel = PRIMARY;
} else if (addr >= sec_cmd_addr && } else if (addr >= sec_cmd_addr &&
addr < (sec_cmd_addr + sec_cmd_size)) { addr < (sec_cmd_addr + sec_cmd_size)) {
offset -= sec_cmd_addr; offset -= sec_cmd_addr;
type = COMMAND_BLOCK; reg_type = COMMAND_BLOCK;
primary = false; channel = SECONDARY;
} else if (addr >= sec_ctrl_addr && } else if (addr >= sec_ctrl_addr &&
addr < (sec_ctrl_addr + sec_ctrl_size)) { addr < (sec_ctrl_addr + sec_ctrl_size)) {
offset -= sec_ctrl_addr; offset -= sec_ctrl_addr;
type = CONTROL_BLOCK; reg_type = CONTROL_BLOCK;
primary = false; channel = SECONDARY;
} else if (addr >= bmi_addr && addr < (bmi_addr + bmi_size)) { } else if (addr >= bmi_addr && addr < (bmi_addr + bmi_size)) {
offset -= bmi_addr; offset -= bmi_addr;
type = BMI_BLOCK; reg_type = BMI_BLOCK;
primary = (offset < BMIC1) ? true : false; channel = (offset < BMIC1) ? PRIMARY : SECONDARY;
} else { } else {
panic("IDE controller access to invalid address: %#x\n", addr); panic("IDE controller access to invalid address: %#x\n", addr);
} }
} }
int int
IdeController::getDisk(bool primary) IdeController::getDisk(IdeChannel channel)
{ {
int disk = 0; int disk = 0;
uint8_t *devBit = &dev[0]; uint8_t *devBit = &dev[0];
if (!primary) { if (channel == SECONDARY) {
disk += 2; disk += 2;
devBit = &dev[1]; devBit = &dev[1];
} }
@ -249,43 +251,33 @@ IdeController::cacheAccess(MemReqPtr &req)
//// ////
void void
IdeController::ReadConfig(int offset, int size, uint8_t *data) IdeController::readConfig(int offset, int size, uint8_t *data)
{ {
union {
uint8_t byte;
uint16_t word;
uint32_t dword;
};
int config_offset; int config_offset;
if (offset < PCI_DEVICE_SPECIFIC) { if (offset < PCI_DEVICE_SPECIFIC) {
PciDev::ReadConfig(offset, size, data); PciDev::readConfig(offset, size, data);
} else if (offset >= IDE_CTRL_CONFIG_START && } else if (offset >= IDE_CTRL_CONF_START &&
(offset + size) <= IDE_CTRL_CONFIG_END) { (offset + size) <= IDE_CTRL_CONF_END) {
config_offset = offset - IDE_CTRL_CONFIG_START; config_offset = offset - IDE_CTRL_CONF_START;
dword = 0;
switch (size) { switch (size) {
case sizeof(uint8_t): case sizeof(uint8_t):
memcpy(&byte, &pci_config_regs.data[config_offset], size); *data = config_regs.data[config_offset];
*data = byte;
break; break;
case sizeof(uint16_t): case sizeof(uint16_t):
memcpy(&byte, &pci_config_regs.data[config_offset], size); *(uint16_t*)data = *(uint16_t*)&config_regs.data[config_offset];
*(uint16_t*)data = htoa(word);
break; break;
case sizeof(uint32_t): case sizeof(uint32_t):
memcpy(&byte, &pci_config_regs.data[config_offset], size); *(uint32_t*)data = *(uint32_t*)&config_regs.data[config_offset];
*(uint32_t*)data = htoa(dword);
break; break;
default: default:
panic("Invalid PCI configuration read size!\n"); panic("Invalid PCI configuration read size!\n");
} }
DPRINTF(IdeCtrl, "PCI read offset: %#x size: %#x data: %#x\n", DPRINTF(IdeCtrl, "PCI read offset: %#x size: %#x data: %#x\n",
offset, size, htoa(dword)); offset, size, *(uint32_t*)data);
} else { } else {
panic("Read of unimplemented PCI config. register: %x\n", offset); panic("Read of unimplemented PCI config. register: %x\n", offset);
@ -293,27 +285,25 @@ IdeController::ReadConfig(int offset, int size, uint8_t *data)
} }
void void
IdeController::WriteConfig(int offset, int size, uint32_t data) IdeController::writeConfig(int offset, int size, const uint8_t *data)
{ {
int config_offset; int config_offset;
uint32_t write_data;
if (offset < PCI_DEVICE_SPECIFIC) { if (offset < PCI_DEVICE_SPECIFIC) {
PciDev::WriteConfig(offset, size, data); PciDev::writeConfig(offset, size, data);
} else if (offset >= IDE_CTRL_CONFIG_START && } else if (offset >= IDE_CTRL_CONF_START &&
(offset + size) <= IDE_CTRL_CONFIG_END) { (offset + size) <= IDE_CTRL_CONF_END) {
config_offset = offset - IDE_CTRL_CONFIG_START; config_offset = offset - IDE_CTRL_CONF_START;
write_data = htoa(data);
switch(size) { switch(size) {
case sizeof(uint8_t): case sizeof(uint8_t):
config_regs.data[config_offset] = *data;
case sizeof(uint16_t): case sizeof(uint16_t):
*(uint16_t*)&config_regs.data[config_offset] = *(uint16_t*)data;
case sizeof(uint32_t): case sizeof(uint32_t):
memcpy(&pci_config_regs.data[config_offset], &write_data, size); *(uint32_t*)&config_regs.data[config_offset] = *(uint32_t*)data;
break; break;
default: default:
panic("Invalid PCI configuration write size!\n"); panic("Invalid PCI configuration write size!\n");
} }
@ -328,12 +318,12 @@ IdeController::WriteConfig(int offset, int size, uint32_t data)
// (like updating the PIO ranges) // (like updating the PIO ranges)
switch (offset) { switch (offset) {
case PCI_COMMAND: case PCI_COMMAND:
if (config.data[offset] & PCI_CMD_IOSE) if (letoh(config.command) & PCI_CMD_IOSE)
io_enabled = true; io_enabled = true;
else else
io_enabled = false; io_enabled = false;
if (config.data[offset] & PCI_CMD_BME) if (letoh(config.command) & PCI_CMD_BME)
bm_enabled = true; bm_enabled = true;
else else
bm_enabled = false; bm_enabled = false;
@ -399,48 +389,26 @@ Fault
IdeController::read(MemReqPtr &req, uint8_t *data) IdeController::read(MemReqPtr &req, uint8_t *data)
{ {
Addr offset; Addr offset;
bool primary; IdeChannel channel;
RegType_t type; IdeRegType reg_type;
int disk; int disk;
/* union parseAddr(req->paddr, offset, channel, reg_type);
* +-- --+-- --+-- --+-- --+
* | 0 | 1 | 2 | 3 |
* +-- --+-- --+-- --+-- --+
* | byte | .. | .. | .. |
* +-- --+-- --+-- --+-- --+
* | word0 | word1 |
* +-- --+-- --+
* | dword |
* +-- --+
*/
union {
uint8_t byte;
uint16_t word[2];
uint32_t dword;
};
dword = 0;
parseAddr(req->paddr, offset, primary, type);
if (!io_enabled) if (!io_enabled)
return No_Fault; return No_Fault;
switch (type) { switch (reg_type) {
case BMI_BLOCK: case BMI_BLOCK:
switch (req->size) { switch (req->size) {
case sizeof(uint8_t): case sizeof(uint8_t):
memcpy(&byte, &bmi_regs.data[offset], sizeof(uint8_t)); *data = bmi_regs.data[offset];
*data = byte;
break; break;
case sizeof(uint16_t): case sizeof(uint16_t):
memcpy(&byte, &bmi_regs.data[offset], sizeof(uint16_t)); *(uint16_t*)data = *(uint16_t*)&bmi_regs.data[offset];
*(uint16_t*)data = htoa(word[0]);
break; break;
case sizeof(uint32_t): case sizeof(uint32_t):
memcpy(&byte, &bmi_regs.data[offset], sizeof(uint32_t)); *(uint32_t*)data = *(uint32_t*)&bmi_regs.data[offset];
*(uint32_t*)data = htoa(dword);
break; break;
default: default:
panic("IDE read of BMI reg invalid size: %#x\n", req->size); panic("IDE read of BMI reg invalid size: %#x\n", req->size);
@ -449,7 +417,7 @@ IdeController::read(MemReqPtr &req, uint8_t *data)
case COMMAND_BLOCK: case COMMAND_BLOCK:
case CONTROL_BLOCK: case CONTROL_BLOCK:
disk = getDisk(primary); disk = getDisk(channel);
if (disks[disk] == NULL) if (disks[disk] == NULL)
break; break;
@ -458,14 +426,12 @@ IdeController::read(MemReqPtr &req, uint8_t *data)
case DATA_OFFSET: case DATA_OFFSET:
switch (req->size) { switch (req->size) {
case sizeof(uint16_t): case sizeof(uint16_t):
disks[disk]->read(offset, type, (uint8_t*)&word[0]); disks[disk]->read(offset, reg_type, data);
*(uint16_t*)data = htoa(word[0]);
break; break;
case sizeof(uint32_t): case sizeof(uint32_t):
disks[disk]->read(offset, type, (uint8_t*)&word[0]); disks[disk]->read(offset, reg_type, data);
disks[disk]->read(offset, type, (uint8_t*)&word[1]); disks[disk]->read(offset, reg_type, &data[2]);
*(uint32_t*)data = htoa(dword);
break; break;
default: default:
@ -474,8 +440,7 @@ IdeController::read(MemReqPtr &req, uint8_t *data)
break; break;
default: default:
if (req->size == sizeof(uint8_t)) { if (req->size == sizeof(uint8_t)) {
disks[disk]->read(offset, type, &byte); disks[disk]->read(offset, reg_type, data);
*data = byte;
} else } else
panic("IDE read of command reg of invalid size: %#x\n", req->size); panic("IDE read of command reg of invalid size: %#x\n", req->size);
} }
@ -485,7 +450,7 @@ IdeController::read(MemReqPtr &req, uint8_t *data)
} }
DPRINTF(IdeCtrl, "read from offset: %#x size: %#x data: %#x\n", DPRINTF(IdeCtrl, "read from offset: %#x size: %#x data: %#x\n",
offset, req->size, htoa(dword)); offset, req->size, *(uint32_t*)data);
return No_Fault; return No_Fault;
} }
@ -494,26 +459,17 @@ Fault
IdeController::write(MemReqPtr &req, const uint8_t *data) IdeController::write(MemReqPtr &req, const uint8_t *data)
{ {
Addr offset; Addr offset;
bool primary; IdeChannel channel;
RegType_t type; IdeRegType reg_type;
int disk; int disk;
union {
uint8_t byte;
uint16_t word[2];
uint32_t dword;
};
dword = 0;
parseAddr(req->paddr, offset, primary, type);
uint8_t oldVal, newVal; uint8_t oldVal, newVal;
parseAddr(req->paddr, offset, channel, reg_type);
if (!io_enabled) if (!io_enabled)
return No_Fault; return No_Fault;
switch (type) { switch (reg_type) {
case BMI_BLOCK: case BMI_BLOCK:
if (!bm_enabled) if (!bm_enabled)
return No_Fault; return No_Fault;
@ -526,11 +482,10 @@ IdeController::write(MemReqPtr &req, const uint8_t *data)
panic("Invalid BMIC write size: %x\n", req->size); panic("Invalid BMIC write size: %x\n", req->size);
// select the current disk based on DEV bit // select the current disk based on DEV bit
disk = getDisk(primary); disk = getDisk(channel);
oldVal = bmi_regs.data[offset]; oldVal = letoh(bmi_regs.chan[channel].bmic);
byte = *data; newVal = letoh(*data);
newVal = byte;
// if a DMA transfer is in progress, R/W control cannot change // if a DMA transfer is in progress, R/W control cannot change
if (oldVal & SSBM) { if (oldVal & SSBM) {
@ -546,7 +501,8 @@ IdeController::write(MemReqPtr &req, const uint8_t *data)
DPRINTF(IdeCtrl, "Stopping DMA transfer\n"); DPRINTF(IdeCtrl, "Stopping DMA transfer\n");
// clear the BMIDEA bit // clear the BMIDEA bit
bmi_regs.data[offset + 0x2] &= ~BMIDEA; bmi_regs.chan[channel].bmis = letoh(
letoh(bmi_regs.chan[channel].bmis) & ~BMIDEA);
if (disks[disk] == NULL) if (disks[disk] == NULL)
panic("DMA stop for disk %d which does not exist\n", panic("DMA stop for disk %d which does not exist\n",
@ -559,22 +515,20 @@ IdeController::write(MemReqPtr &req, const uint8_t *data)
DPRINTF(IdeCtrl, "Starting DMA transfer\n"); DPRINTF(IdeCtrl, "Starting DMA transfer\n");
// set the BMIDEA bit // set the BMIDEA bit
bmi_regs.data[offset + 0x2] |= BMIDEA; bmi_regs.chan[channel].bmis = letoh(
letoh(bmi_regs.chan[channel].bmis) | BMIDEA);
if (disks[disk] == NULL) if (disks[disk] == NULL)
panic("DMA start for disk %d which does not exist\n", panic("DMA start for disk %d which does not exist\n",
disk); disk);
// inform the disk of the DMA transfer start // inform the disk of the DMA transfer start
if (primary) disks[disk]->startDma(letoh(bmi_regs.chan[channel].bmidtp));
disks[disk]->startDma(bmi_regs.bmidtp0);
else
disks[disk]->startDma(bmi_regs.bmidtp1);
} }
} }
// update the register value // update the register value
bmi_regs.data[offset] = newVal; bmi_regs.chan[channel].bmic = letoh(newVal);
break; break;
// Bus master IDE status register // Bus master IDE status register
@ -583,9 +537,8 @@ IdeController::write(MemReqPtr &req, const uint8_t *data)
if (req->size != sizeof(uint8_t)) if (req->size != sizeof(uint8_t))
panic("Invalid BMIS write size: %x\n", req->size); panic("Invalid BMIS write size: %x\n", req->size);
oldVal = bmi_regs.data[offset]; oldVal = letoh(bmi_regs.chan[channel].bmis);
byte = *data; newVal = letoh(*data);
newVal = byte;
// the BMIDEA bit is RO // the BMIDEA bit is RO
newVal |= (oldVal & BMIDEA); newVal |= (oldVal & BMIDEA);
@ -601,7 +554,7 @@ IdeController::write(MemReqPtr &req, const uint8_t *data)
else else
(oldVal & IDEDMAE) ? newVal |= IDEDMAE : newVal &= ~IDEDMAE; (oldVal & IDEDMAE) ? newVal |= IDEDMAE : newVal &= ~IDEDMAE;
bmi_regs.data[offset] = newVal; bmi_regs.chan[channel].bmis = letoh(newVal);
break; break;
// Bus master IDE descriptor table pointer register // Bus master IDE descriptor table pointer register
@ -610,8 +563,8 @@ IdeController::write(MemReqPtr &req, const uint8_t *data)
if (req->size != sizeof(uint32_t)) if (req->size != sizeof(uint32_t))
panic("Invalid BMIDTP write size: %x\n", req->size); panic("Invalid BMIDTP write size: %x\n", req->size);
dword = htoa(*(uint32_t *)data & ~0x3); bmi_regs.chan[channel].bmidtp = letoh(
*(uint32_t *)&bmi_regs.data[offset] = dword; letoh(*(uint32_t*)data) & ~0x3);
break; break;
default: default:
@ -622,17 +575,17 @@ IdeController::write(MemReqPtr &req, const uint8_t *data)
req->size); req->size);
// do a default copy of data into the registers // do a default copy of data into the registers
memcpy((void *)&bmi_regs.data[offset], data, req->size); memcpy(&bmi_regs.data[offset], data, req->size);
} }
break; break;
case COMMAND_BLOCK: case COMMAND_BLOCK:
if (offset == IDE_SELECT_OFFSET) { if (offset == IDE_SELECT_OFFSET) {
uint8_t *devBit = (primary ? &dev[0] : &dev[1]); uint8_t *devBit = &dev[channel];
*devBit = ((*data & IDE_SELECT_DEV_BIT) ? 1 : 0); *devBit = (letoh(*data) & IDE_SELECT_DEV_BIT) ? 1 : 0;
} }
// fall-through ok! // fall-through ok!
case CONTROL_BLOCK: case CONTROL_BLOCK:
disk = getDisk(primary); disk = getDisk(channel);
if (disks[disk] == NULL) if (disks[disk] == NULL)
break; break;
@ -641,14 +594,12 @@ IdeController::write(MemReqPtr &req, const uint8_t *data)
case DATA_OFFSET: case DATA_OFFSET:
switch (req->size) { switch (req->size) {
case sizeof(uint16_t): case sizeof(uint16_t):
word[0] = htoa(*(uint16_t*)data); disks[disk]->write(offset, reg_type, data);
disks[disk]->write(offset, type, (uint8_t*)&word[0]);
break; break;
case sizeof(uint32_t): case sizeof(uint32_t):
dword = htoa(*(uint32_t*)data); disks[disk]->write(offset, reg_type, data);
disks[disk]->write(offset, type, (uint8_t*)&word[0]); disks[disk]->write(offset, reg_type, &data[2]);
disks[disk]->write(offset, type, (uint8_t*)&word[1]);
break; break;
default: default:
panic("IDE write of data reg invalid size: %#x\n", req->size); panic("IDE write of data reg invalid size: %#x\n", req->size);
@ -656,8 +607,7 @@ IdeController::write(MemReqPtr &req, const uint8_t *data)
break; break;
default: default:
if (req->size == sizeof(uint8_t)) { if (req->size == sizeof(uint8_t)) {
byte = *data; disks[disk]->write(offset, reg_type, data);
disks[disk]->write(offset, type, &byte);
} else } else
panic("IDE write of command reg of invalid size: %#x\n", req->size); panic("IDE write of command reg of invalid size: %#x\n", req->size);
} }
@ -667,7 +617,7 @@ IdeController::write(MemReqPtr &req, const uint8_t *data)
} }
DPRINTF(IdeCtrl, "write to offset: %#x size: %#x data: %#x\n", DPRINTF(IdeCtrl, "write to offset: %#x size: %#x data: %#x\n",
offset, req->size, dword); offset, req->size, *(uint32_t*)data);
return No_Fault; return No_Fault;
} }
@ -697,7 +647,7 @@ IdeController::serialize(std::ostream &os)
// Serialize registers // Serialize registers
SERIALIZE_ARRAY(bmi_regs.data, sizeof(bmi_regs)); SERIALIZE_ARRAY(bmi_regs.data, sizeof(bmi_regs));
SERIALIZE_ARRAY(dev, sizeof(dev)); SERIALIZE_ARRAY(dev, sizeof(dev));
SERIALIZE_ARRAY(pci_config_regs.data, sizeof(pci_config_regs)); SERIALIZE_ARRAY(config_regs.data, sizeof(config_regs));
// Serialize internal state // Serialize internal state
SERIALIZE_SCALAR(io_enabled); SERIALIZE_SCALAR(io_enabled);
@ -726,7 +676,7 @@ IdeController::unserialize(Checkpoint *cp, const std::string &section)
// Unserialize registers // Unserialize registers
UNSERIALIZE_ARRAY(bmi_regs.data, sizeof(bmi_regs)); UNSERIALIZE_ARRAY(bmi_regs.data, sizeof(bmi_regs));
UNSERIALIZE_ARRAY(dev, sizeof(dev)); UNSERIALIZE_ARRAY(dev, sizeof(dev));
UNSERIALIZE_ARRAY(pci_config_regs.data, sizeof(pci_config_regs)); UNSERIALIZE_ARRAY(config_regs.data, sizeof(config_regs));
// Unserialize internal state // Unserialize internal state
UNSERIALIZE_SCALAR(io_enabled); UNSERIALIZE_SCALAR(io_enabled);

View file

@ -63,16 +63,19 @@
#define IDE_FEATURE_OFFSET IDE_ERROR_OFFSET #define IDE_FEATURE_OFFSET IDE_ERROR_OFFSET
#define IDE_COMMAND_OFFSET IDE_STATUS_OFFSET #define IDE_COMMAND_OFFSET IDE_STATUS_OFFSET
// IDE Timing Register bit fields
#define IDETIM_DECODE_EN 0x8000
// PCI device specific register byte offsets // PCI device specific register byte offsets
#define IDE_CTRL_CONFIG_START 0x40 #define IDE_CTRL_CONF_START 0x40
#define IDE_CTRL_CONFIG_END ((IDE_CTRL_CONFIG_START) + sizeof(pci_config_regs)) #define IDE_CTRL_CONF_END ((IDE_CTRL_CONF_START) + sizeof(config_regs))
typedef enum RegType { enum IdeRegType {
COMMAND_BLOCK = 0, COMMAND_BLOCK,
CONTROL_BLOCK, CONTROL_BLOCK,
BMI_BLOCK BMI_BLOCK
} RegType_t; };
class BaseInterface; class BaseInterface;
class Bus; class Bus;
@ -91,6 +94,11 @@ class IdeController : public PciDev
{ {
friend class IdeDisk; friend class IdeDisk;
enum IdeChannel {
PRIMARY = 0,
SECONDARY = 1
};
private: private:
/** Primary command block registers */ /** Primary command block registers */
Addr pri_cmd_addr; Addr pri_cmd_addr;
@ -115,16 +123,25 @@ class IdeController : public PciDev
struct { struct {
uint8_t bmic0; uint8_t bmic0;
uint8_t padding_0; uint8_t reserved_0;
uint8_t bmis0; uint8_t bmis0;
uint8_t padding_1; uint8_t reserved_1;
uint32_t bmidtp0; uint32_t bmidtp0;
uint8_t bmic1; uint8_t bmic1;
uint8_t padding_2; uint8_t reserved_2;
uint8_t bmis1; uint8_t bmis1;
uint8_t padding_3; uint8_t reserved_3;
uint32_t bmidtp1; uint32_t bmidtp1;
}; };
struct {
uint8_t bmic;
uint8_t reserved_4;
uint8_t bmis;
uint8_t reserved_5;
uint32_t bmidtp;
} chan[2];
} bmi_regs; } bmi_regs;
/** Shadows of the device select bit */ /** Shadows of the device select bit */
uint8_t dev[2]; uint8_t dev[2];
@ -133,25 +150,17 @@ class IdeController : public PciDev
uint8_t data[22]; uint8_t data[22];
struct { struct {
uint32_t idetim; uint16_t idetim0;
uint16_t idetim1;
uint8_t sidetim; uint8_t sidetim;
uint8_t reserved_45; uint8_t reserved_0[3];
uint8_t reserved_46;
uint8_t reserved_47;
uint8_t udmactl; uint8_t udmactl;
uint8_t reserved_49; uint8_t reserved_1;
uint16_t udmatim; uint16_t udmatim;
uint8_t reserved_4c; uint8_t reserved_2[8];
uint8_t reserved_4d;
uint8_t reserved_4e;
uint8_t reserved_4f;
uint8_t reserved_50;
uint8_t reserved_51;
uint8_t reserved_52;
uint8_t reserved_53;
uint16_t ideconfig; uint16_t ideconfig;
}; };
} pci_config_regs; } config_regs;
// Internal management variables // Internal management variables
bool io_enabled; bool io_enabled;
@ -164,11 +173,11 @@ class IdeController : public PciDev
private: private:
/** Parse the access address to pass on to device */ /** Parse the access address to pass on to device */
void parseAddr(const Addr &addr, Addr &offset, bool &primary, void parseAddr(const Addr &addr, Addr &offset, IdeChannel &channel,
RegType_t &type); IdeRegType &reg_type);
/** Select the disk based on the channel and device bit */ /** Select the disk based on the channel and device bit */
int getDisk(bool primary); int getDisk(IdeChannel channel);
/** Select the disk based on a pointer */ /** Select the disk based on a pointer */
int getDisk(IdeDisk *diskPtr); int getDisk(IdeDisk *diskPtr);
@ -192,8 +201,8 @@ class IdeController : public PciDev
IdeController(Params *p); IdeController(Params *p);
~IdeController(); ~IdeController();
virtual void WriteConfig(int offset, int size, uint32_t data); virtual void writeConfig(int offset, int size, const uint8_t *data);
virtual void ReadConfig(int offset, int size, uint8_t *data); virtual void readConfig(int offset, int size, uint8_t *data);
void setDmaComplete(IdeDisk *disk); void setDmaComplete(IdeDisk *disk);

View file

@ -162,6 +162,8 @@ IdeDisk::reset(int id)
// set the device ready bit // set the device ready bit
status = STATUS_DRDY_BIT; status = STATUS_DRDY_BIT;
/* The error register must be set to 0x1 on start-up to
indicate that no diagnostic error was detected */
cmdReg.error = 0x1; cmdReg.error = 0x1;
} }
@ -212,16 +214,16 @@ IdeDisk::bytesInDmaPage(Addr curAddr, uint32_t bytesLeft)
//// ////
void void
IdeDisk::read(const Addr &offset, RegType_t type, uint8_t *data) IdeDisk::read(const Addr &offset, IdeRegType reg_type, uint8_t *data)
{ {
DevAction_t action = ACT_NONE; DevAction_t action = ACT_NONE;
switch (type) { switch (reg_type) {
case COMMAND_BLOCK: case COMMAND_BLOCK:
switch (offset) { switch (offset) {
// Data transfers occur two bytes at a time // Data transfers occur two bytes at a time
case DATA_OFFSET: case DATA_OFFSET:
memcpy(data, &cmdReg.data, sizeof(uint16_t)); *(uint16_t*)data = cmdReg.data;
action = ACT_DATA_READ_SHORT; action = ACT_DATA_READ_SHORT;
break; break;
case ERROR_OFFSET: case ERROR_OFFSET:
@ -265,15 +267,15 @@ IdeDisk::read(const Addr &offset, RegType_t type, uint8_t *data)
} }
void void
IdeDisk::write(const Addr &offset, RegType_t type, const uint8_t *data) IdeDisk::write(const Addr &offset, IdeRegType reg_type, const uint8_t *data)
{ {
DevAction_t action = ACT_NONE; DevAction_t action = ACT_NONE;
switch (type) { switch (reg_type) {
case COMMAND_BLOCK: case COMMAND_BLOCK:
switch (offset) { switch (offset) {
case DATA_OFFSET: case DATA_OFFSET:
memcpy(&cmdReg.data, data, sizeof(uint16_t)); cmdReg.data = *(uint16_t*)data;
action = ACT_DATA_WRITE_SHORT; action = ACT_DATA_WRITE_SHORT;
break; break;
case FEATURES_OFFSET: case FEATURES_OFFSET:

View file

@ -270,8 +270,8 @@ class IdeDisk : public SimObject
} }
// Device register read/write // Device register read/write
void read(const Addr &offset, RegType_t type, uint8_t *data); void read(const Addr &offset, IdeRegType regtype, uint8_t *data);
void write(const Addr &offset, RegType_t type, const uint8_t *data); void write(const Addr &offset, IdeRegType regtype, const uint8_t *data);
// Start/abort functions // Start/abort functions
void startDma(const uint32_t &prdTableBase); void startDma(const uint32_t &prdTableBase);

139
dev/isa_fake.cc Executable file
View file

@ -0,0 +1,139 @@
/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file
* Isa Fake Device implementation
*/
#include <deque>
#include <string>
#include <vector>
#include "base/trace.hh"
#include "cpu/exec_context.hh"
#include "dev/isa_fake.hh"
#include "mem/bus/bus.hh"
#include "mem/bus/pio_interface.hh"
#include "mem/bus/pio_interface_impl.hh"
#include "mem/functional/memory_control.hh"
#include "sim/builder.hh"
#include "sim/system.hh"
using namespace std;
IsaFake::IsaFake(const string &name, Addr a, MemoryController *mmu,
HierParams *hier, Bus *bus, Addr size)
: PioDevice(name, NULL), addr(a)
{
mmu->add_child(this, RangeSize(addr, size));
if (bus) {
pioInterface = newPioInterface(name, hier, bus, this,
&IsaFake::cacheAccess);
pioInterface->addAddrRange(RangeSize(addr, size));
}
}
Fault
IsaFake::read(MemReqPtr &req, uint8_t *data)
{
DPRINTF(Tsunami, "read va=%#x size=%d\n",
req->vaddr, req->size);
#if TRACING_ON
Addr daddr = (req->paddr - (addr & EV5::PAddrImplMask)) >> 6;
#endif
switch (req->size) {
case sizeof(uint64_t):
*(uint64_t*)data = 0xFFFFFFFFFFFFFFFFULL;
return No_Fault;
case sizeof(uint32_t):
*(uint32_t*)data = 0xFFFFFFFF;
return No_Fault;
case sizeof(uint16_t):
*(uint16_t*)data = 0xFFFF;
return No_Fault;
case sizeof(uint8_t):
*(uint8_t*)data = 0xFF;
return No_Fault;
default:
panic("invalid access size(?) for PCI configspace!\n");
}
DPRINTFN("Isa FakeSMC ERROR: read daddr=%#x size=%d\n", daddr, req->size);
return No_Fault;
}
Fault
IsaFake::write(MemReqPtr &req, const uint8_t *data)
{
DPRINTF(Tsunami, "write - va=%#x size=%d \n",
req->vaddr, req->size);
//:Addr daddr = (req->paddr & addr_mask) >> 6;
return No_Fault;
}
Tick
IsaFake::cacheAccess(MemReqPtr &req)
{
return curTick;
}
BEGIN_DECLARE_SIM_OBJECT_PARAMS(IsaFake)
SimObjectParam<MemoryController *> mmu;
Param<Addr> addr;
SimObjectParam<Bus*> io_bus;
Param<Tick> pio_latency;
SimObjectParam<HierParams *> hier;
Param<Addr> size;
END_DECLARE_SIM_OBJECT_PARAMS(IsaFake)
BEGIN_INIT_SIM_OBJECT_PARAMS(IsaFake)
INIT_PARAM(mmu, "Memory Controller"),
INIT_PARAM(addr, "Device Address"),
INIT_PARAM_DFLT(io_bus, "The IO Bus to attach to", NULL),
INIT_PARAM_DFLT(pio_latency, "Programmed IO latency", 1000),
INIT_PARAM_DFLT(hier, "Hierarchy global variables", &defaultHierParams),
INIT_PARAM_DFLT(size, "Size of address range", 0x8)
END_INIT_SIM_OBJECT_PARAMS(IsaFake)
CREATE_SIM_OBJECT(IsaFake)
{
return new IsaFake(getInstanceName(), addr, mmu, hier, io_bus, size);
}
REGISTER_SIM_OBJECT("IsaFake", IsaFake)

85
dev/isa_fake.hh Executable file
View file

@ -0,0 +1,85 @@
/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file
* Declaration of a fake device.
*/
#ifndef __ISA_FAKE_HH__
#define __ISA_FAKE_HH__
#include "dev/tsunami.hh"
#include "base/range.hh"
#include "dev/io_device.hh"
/**
* IsaFake is a device that returns -1 on all reads and
* accepts all writes. It is meant to be placed at an address range
* so that an mcheck doesn't occur when an os probes a piece of hw
* that doesn't exist (e.g. UARTs1-3).
*/
class IsaFake : public PioDevice
{
private:
/** The address in memory that we respond to */
Addr addr;
public:
/**
* The constructor for Tsunmami Fake just registers itself with the MMU.
* @param name name of this device.
* @param a address to respond to.
* @param mmu the mmu we register with.
* @param size number of addresses to respond to
*/
IsaFake(const std::string &name, Addr a, MemoryController *mmu,
HierParams *hier, Bus *bus, Addr size = 0x8);
/**
* This read always returns -1.
* @param req The memory request.
* @param data Where to put the data.
*/
virtual Fault read(MemReqPtr &req, uint8_t *data);
/**
* All writes are simply ignored.
* @param req The memory request.
* @param data the data to not write.
*/
virtual Fault write(MemReqPtr &req, const uint8_t *data);
/**
* Return how long this access will take.
* @param req the memory request to calcuate
* @return Tick when the request is done
*/
Tick cacheAccess(MemReqPtr &req);
};
#endif // __ISA_FAKE_HH__

View file

@ -491,10 +491,10 @@ NSGigE::regStats()
* This is to read the PCI general configuration registers * This is to read the PCI general configuration registers
*/ */
void void
NSGigE::ReadConfig(int offset, int size, uint8_t *data) NSGigE::readConfig(int offset, int size, uint8_t *data)
{ {
if (offset < PCI_DEVICE_SPECIFIC) if (offset < PCI_DEVICE_SPECIFIC)
PciDev::ReadConfig(offset, size, data); PciDev::readConfig(offset, size, data);
else else
panic("Device specific PCI config space not implemented!\n"); panic("Device specific PCI config space not implemented!\n");
} }
@ -503,10 +503,10 @@ NSGigE::ReadConfig(int offset, int size, uint8_t *data)
* This is to write to the PCI general configuration registers * This is to write to the PCI general configuration registers
*/ */
void void
NSGigE::WriteConfig(int offset, int size, uint32_t data) NSGigE::writeConfig(int offset, int size, const uint8_t* data)
{ {
if (offset < PCI_DEVICE_SPECIFIC) if (offset < PCI_DEVICE_SPECIFIC)
PciDev::WriteConfig(offset, size, data); PciDev::writeConfig(offset, size, data);
else else
panic("Device specific PCI config space not implemented!\n"); panic("Device specific PCI config space not implemented!\n");
@ -577,7 +577,7 @@ NSGigE::read(MemReqPtr &req, uint8_t *data)
if (daddr > LAST && daddr <= RESERVED) { if (daddr > LAST && daddr <= RESERVED) {
panic("Accessing reserved register"); panic("Accessing reserved register");
} else if (daddr > RESERVED && daddr <= 0x3FC) { } else if (daddr > RESERVED && daddr <= 0x3FC) {
ReadConfig(daddr & 0xff, req->size, data); readConfig(daddr & 0xff, req->size, data);
return No_Fault; return No_Fault;
} else if (daddr >= MIB_START && daddr <= MIB_END) { } else if (daddr >= MIB_START && daddr <= MIB_END) {
// don't implement all the MIB's. hopefully the kernel // don't implement all the MIB's. hopefully the kernel
@ -797,7 +797,7 @@ NSGigE::write(MemReqPtr &req, const uint8_t *data)
if (daddr > LAST && daddr <= RESERVED) { if (daddr > LAST && daddr <= RESERVED) {
panic("Accessing reserved register"); panic("Accessing reserved register");
} else if (daddr > RESERVED && daddr <= 0x3FC) { } else if (daddr > RESERVED && daddr <= 0x3FC) {
WriteConfig(daddr & 0xff, req->size, *(uint32_t *)data); writeConfig(daddr & 0xff, req->size, data);
return No_Fault; return No_Fault;
} else if (daddr > 0x3FC) } else if (daddr > 0x3FC)
panic("Something is messed up!\n"); panic("Something is messed up!\n");

View file

@ -392,8 +392,8 @@ class NSGigE : public PciDev
~NSGigE(); ~NSGigE();
const Params *params() const { return (const Params *)_params; } const Params *params() const { return (const Params *)_params; }
virtual void WriteConfig(int offset, int size, uint32_t data); virtual void writeConfig(int offset, int size, const uint8_t *data);
virtual void ReadConfig(int offset, int size, uint8_t *data); virtual void readConfig(int offset, int size, uint8_t *data);
virtual Fault read(MemReqPtr &req, uint8_t *data); virtual Fault read(MemReqPtr &req, uint8_t *data);
virtual Fault write(MemReqPtr &req, const uint8_t *data); virtual Fault write(MemReqPtr &req, const uint8_t *data);

View file

@ -65,7 +65,7 @@ PciConfigAll::PciConfigAll(const string &name,
// Make all the pointers to devices null // Make all the pointers to devices null
for(int x=0; x < MAX_PCI_DEV; x++) for(int x=0; x < MAX_PCI_DEV; x++)
for(int y=0; y < MAX_PCI_FUNC; y++) for(int y=0; y < MAX_PCI_FUNC; y++)
devices[x][y] = NULL; devices[x][y] = NULL;
} }
// If two interrupts share the same line largely bad things will happen. // If two interrupts share the same line largely bad things will happen.
@ -130,7 +130,7 @@ PciConfigAll::read(MemReqPtr &req, uint8_t *data)
case sizeof(uint32_t): case sizeof(uint32_t):
case sizeof(uint16_t): case sizeof(uint16_t):
case sizeof(uint8_t): case sizeof(uint8_t):
devices[device][func]->ReadConfig(reg, req->size, data); devices[device][func]->readConfig(reg, req->size, data);
return No_Fault; return No_Fault;
default: default:
panic("invalid access size(?) for PCI configspace!\n"); panic("invalid access size(?) for PCI configspace!\n");
@ -152,30 +152,17 @@ PciConfigAll::write(MemReqPtr &req, const uint8_t *data)
int func = (daddr >> 8) & 0x7; int func = (daddr >> 8) & 0x7;
int reg = daddr & 0xFF; int reg = daddr & 0xFF;
uint32_t word_value = 0;
if (devices[device][func] == NULL) if (devices[device][func] == NULL)
panic("Attempting to write to config space on non-existant device\n"); panic("Attempting to write to config space on non-existant device\n");
else { else if (req->size != sizeof(uint8_t) &&
switch (req->size) { req->size != sizeof(uint16_t) &&
case sizeof(uint8_t): req->size != sizeof(uint32_t))
word_value = *(uint8_t*)data; panic("invalid access size(?) for PCI configspace!\n");
break;
case sizeof(uint16_t):
word_value = *(uint16_t*)data;
break;
case sizeof(uint32_t):
word_value = *(uint32_t*)data;
break;
default:
panic("invalid access size(?) for PCI configspace!\n");
}
}
DPRINTF(PciConfigAll, "write - va=%#x size=%d data=%#x\n", DPRINTF(PciConfigAll, "write - va=%#x size=%d data=%#x\n",
req->vaddr, req->size, word_value); req->vaddr, req->size, *(uint32_t*)data);
devices[device][func]->WriteConfig(reg, req->size, word_value); devices[device][func]->writeConfig(reg, req->size, data);
return No_Fault; return No_Fault;
} }

View file

@ -71,31 +71,20 @@ PciDev::PciDev(Params *p)
} }
void void
PciDev::ReadConfig(int offset, int size, uint8_t *data) PciDev::readConfig(int offset, int size, uint8_t *data)
{ {
union {
uint8_t byte;
uint16_t word;
uint32_t dword;
};
if (offset >= PCI_DEVICE_SPECIFIC) if (offset >= PCI_DEVICE_SPECIFIC)
panic("Device specific PCI config space not implemented!\n"); panic("Device specific PCI config space not implemented!\n");
dword = 0;
switch(size) { switch(size) {
case sizeof(uint8_t): case sizeof(uint8_t):
memcpy(&byte, &config.data[offset], size); *data = config.data[offset];
*data = byte;
break; break;
case sizeof(uint16_t): case sizeof(uint16_t):
memcpy(&byte, &config.data[offset], size); *(uint16_t*)data = *(uint16_t*)&config.data[offset];
*(uint16_t*)data = htoa(word);
break; break;
case sizeof(uint32_t): case sizeof(uint32_t):
memcpy(&byte, &config.data[offset], size); *(uint32_t*)data = *(uint32_t*)&config.data[offset];
*(uint32_t*)data = htoa(dword);
break; break;
default: default:
panic("Invalid PCI configuration read size!\n"); panic("Invalid PCI configuration read size!\n");
@ -104,32 +93,32 @@ PciDev::ReadConfig(int offset, int size, uint8_t *data)
DPRINTF(PCIDEV, DPRINTF(PCIDEV,
"read device: %#x function: %#x register: %#x %d bytes: data: %#x\n", "read device: %#x function: %#x register: %#x %d bytes: data: %#x\n",
params()->deviceNum, params()->functionNum, offset, size, params()->deviceNum, params()->functionNum, offset, size,
htoa(dword)); *(uint32_t*)data);
} }
void void
PciDev::WriteConfig(int offset, int size, uint32_t data) PciDev::writeConfig(int offset, int size, const uint8_t *data)
{ {
if (offset >= PCI_DEVICE_SPECIFIC) if (offset >= PCI_DEVICE_SPECIFIC)
panic("Device specific PCI config space not implemented!\n"); panic("Device specific PCI config space not implemented!\n");
uint32_t barnum; uint8_t &data8 = *(uint8_t*)data;
uint16_t &data16 = *(uint16_t*)data;
uint32_t &data32 = *(uint32_t*)data;
DPRINTF(PCIDEV, DPRINTF(PCIDEV,
"write device: %#x function: %#x reg: %#x size: %d data: %#x\n", "write device: %#x function: %#x reg: %#x size: %d data: %#x\n",
params()->deviceNum, params()->functionNum, offset, size, params()->deviceNum, params()->functionNum, offset, size, data32);
data);
barnum = (offset - PCI0_BASE_ADDR0) >> 2;
switch (size) { switch (size) {
case sizeof(uint8_t): // 1-byte access case sizeof(uint8_t): // 1-byte access
uint8_t byte_value = data;
switch (offset) { switch (offset) {
case PCI0_INTERRUPT_LINE: case PCI0_INTERRUPT_LINE:
config.interruptLine = data8;
case PCI_CACHE_LINE_SIZE: case PCI_CACHE_LINE_SIZE:
config.cacheLineSize = data8;
case PCI_LATENCY_TIMER: case PCI_LATENCY_TIMER:
*(uint8_t *)&config.data[offset] = htoa(byte_value); config.latencyTimer = data8;
break; break;
/* Do nothing for these read-only registers */ /* Do nothing for these read-only registers */
case PCI0_INTERRUPT_PIN: case PCI0_INTERRUPT_PIN:
@ -144,21 +133,20 @@ PciDev::WriteConfig(int offset, int size, uint32_t data)
break; break;
case sizeof(uint16_t): // 2-byte access case sizeof(uint16_t): // 2-byte access
uint16_t half_value = data;
switch (offset) { switch (offset) {
case PCI_COMMAND: case PCI_COMMAND:
config.command = data16;
case PCI_STATUS: case PCI_STATUS:
config.status = data16;
case PCI_CACHE_LINE_SIZE: case PCI_CACHE_LINE_SIZE:
*(uint16_t *)&config.data[offset] = htoa(half_value); config.cacheLineSize = data16;
break; break;
default: default:
panic("writing to a read only register"); panic("writing to a read only register");
} }
break; break;
case sizeof(uint32_t): // 4-byte access case sizeof(uint32_t): // 4-byte access
uint32_t word_value = data;
switch (offset) { switch (offset) {
case PCI0_BASE_ADDR0: case PCI0_BASE_ADDR0:
case PCI0_BASE_ADDR1: case PCI0_BASE_ADDR1:
@ -166,87 +154,65 @@ PciDev::WriteConfig(int offset, int size, uint32_t data)
case PCI0_BASE_ADDR3: case PCI0_BASE_ADDR3:
case PCI0_BASE_ADDR4: case PCI0_BASE_ADDR4:
case PCI0_BASE_ADDR5: case PCI0_BASE_ADDR5:
uint32_t barnum, bar_mask;
Addr base_addr, base_size, space_base;
barnum = BAR_NUMBER(offset);
if (BAR_IO_SPACE(letoh(config.baseAddr[barnum]))) {
bar_mask = BAR_IO_MASK;
space_base = TSUNAMI_PCI0_IO;
} else {
bar_mask = BAR_MEM_MASK;
space_base = TSUNAMI_PCI0_MEMORY;
}
// Writing 0xffffffff to a BAR tells the card to set the // Writing 0xffffffff to a BAR tells the card to set the
// value of the bar // value of the bar to size of memory it needs
// to size of memory it needs if (letoh(data32) == 0xffffffff) {
if (word_value == 0xffffffff) {
// This is I/O Space, bottom two bits are read only // This is I/O Space, bottom two bits are read only
if (htoa(config.data[offset]) & 0x1) {
*(uint32_t *)&config.data[offset] = htoa( config.baseAddr[barnum] = letoh(
(~(BARSize[barnum] - 1) & ~0x3) | (~(BARSize[barnum] - 1) & ~bar_mask) |
(htoa(config.data[offset]) & 0x3)); (letoh(config.baseAddr[barnum]) & bar_mask));
} else {
// This is memory space, bottom four bits are read only
*(uint32_t *)&config.data[offset] = htoa(
(~(BARSize[barnum] - 1) & ~0xF) |
(htoa(config.data[offset]) & 0xF));
}
} else { } else {
MemoryController *mmu = params()->mmu; MemoryController *mmu = params()->mmu;
// This is I/O Space, bottom two bits are read only config.baseAddr[barnum] = letoh(
if(htoa(config.data[offset]) & 0x1) { (letoh(data32) & ~bar_mask) |
*(uint32_t *)&config.data[offset] = (letoh(config.baseAddr[barnum]) & bar_mask));
htoa((word_value & ~0x3) |
(htoa(config.data[offset]) & 0x3));
if (word_value & ~0x1) { if (letoh(config.baseAddr[barnum]) & ~bar_mask) {
Addr base_addr = (word_value & ~0x1) + TSUNAMI_PCI0_IO; base_addr = (letoh(data32) & ~bar_mask) + space_base;
Addr base_size = BARSize[barnum]; base_size = BARSize[barnum];
// It's never been set // It's never been set
if (BARAddrs[barnum] == 0) if (BARAddrs[barnum] == 0)
mmu->add_child((FunctionalMemory *)this, mmu->add_child((FunctionalMemory *)this,
RangeSize(base_addr, base_size)); RangeSize(base_addr, base_size));
else else
mmu->update_child((FunctionalMemory *)this, mmu->update_child((FunctionalMemory *)this,
RangeSize(BARAddrs[barnum], RangeSize(BARAddrs[barnum], base_size),
base_size), RangeSize(base_addr, base_size));
RangeSize(base_addr, base_size));
BARAddrs[barnum] = base_addr; BARAddrs[barnum] = base_addr;
} }
} else {
// This is memory space, bottom four bits are read only
*(uint32_t *)&config.data[offset] =
htoa((word_value & ~0xF) |
(htoa(config.data[offset]) & 0xF));
if (word_value & ~0x3) {
Addr base_addr = (word_value & ~0x3) +
TSUNAMI_PCI0_MEMORY;
Addr base_size = BARSize[barnum];
// It's never been set
if (BARAddrs[barnum] == 0)
mmu->add_child((FunctionalMemory *)this,
RangeSize(base_addr, base_size));
else
mmu->update_child((FunctionalMemory *)this,
RangeSize(BARAddrs[barnum],
base_size),
RangeSize(base_addr, base_size));
BARAddrs[barnum] = base_addr;
}
}
} }
break; break;
case PCI0_ROM_BASE_ADDR: case PCI0_ROM_BASE_ADDR:
if (word_value == 0xfffffffe) if (letoh(data32) == 0xfffffffe)
*(uint32_t *)&config.data[offset] = 0xffffffff; config.expansionROM = letoh(0xffffffff);
else else
*(uint32_t *)&config.data[offset] = htoa(word_value); config.expansionROM = data32;
break; break;
case PCI_COMMAND: case PCI_COMMAND:
// This could also clear some of the error bits in the Status // This could also clear some of the error bits in the Status
// register. However they should never get set, so lets ignore // register. However they should never get set, so lets ignore
// it for now // it for now
*(uint16_t *)&config.data[offset] = htoa(half_value); config.command = data16;
break; break;
default: default:
@ -262,17 +228,17 @@ PciDev::WriteConfig(int offset, int size, uint32_t data)
void void
PciDev::serialize(ostream &os) PciDev::serialize(ostream &os)
{ {
SERIALIZE_ARRAY(BARSize, 6); SERIALIZE_ARRAY(BARSize, sizeof(BARSize));
SERIALIZE_ARRAY(BARAddrs, 6); SERIALIZE_ARRAY(BARAddrs, sizeof(BARAddrs));
SERIALIZE_ARRAY(config.data, 64); SERIALIZE_ARRAY(config.data, sizeof(config.data));
} }
void void
PciDev::unserialize(Checkpoint *cp, const std::string &section) PciDev::unserialize(Checkpoint *cp, const std::string &section)
{ {
UNSERIALIZE_ARRAY(BARSize, 6); UNSERIALIZE_ARRAY(BARSize, sizeof(BARSize));
UNSERIALIZE_ARRAY(BARAddrs, 6); UNSERIALIZE_ARRAY(BARAddrs, sizeof(BARAddrs));
UNSERIALIZE_ARRAY(config.data, 64); UNSERIALIZE_ARRAY(config.data, sizeof(config.data));
// Add the MMU mappings for the BARs // Add the MMU mappings for the BARs
for (int i=0; i < 6; i++) { for (int i=0; i < 6; i++) {
@ -361,33 +327,33 @@ CREATE_SIM_OBJECT(PciConfigData)
{ {
PciConfigData *data = new PciConfigData(getInstanceName()); PciConfigData *data = new PciConfigData(getInstanceName());
data->config.hdr.vendor = htoa(VendorID); data->config.vendor = htole(VendorID);
data->config.hdr.device = htoa(DeviceID); data->config.device = htole(DeviceID);
data->config.hdr.command = htoa(Command); data->config.command = htole(Command);
data->config.hdr.status = htoa(Status); data->config.status = htole(Status);
data->config.hdr.revision = htoa(Revision); data->config.revision = htole(Revision);
data->config.hdr.progIF = htoa(ProgIF); data->config.progIF = htole(ProgIF);
data->config.hdr.subClassCode = htoa(SubClassCode); data->config.subClassCode = htole(SubClassCode);
data->config.hdr.classCode = htoa(ClassCode); data->config.classCode = htole(ClassCode);
data->config.hdr.cacheLineSize = htoa(CacheLineSize); data->config.cacheLineSize = htole(CacheLineSize);
data->config.hdr.latencyTimer = htoa(LatencyTimer); data->config.latencyTimer = htole(LatencyTimer);
data->config.hdr.headerType = htoa(HeaderType); data->config.headerType = htole(HeaderType);
data->config.hdr.bist = htoa(BIST); data->config.bist = htole(BIST);
data->config.hdr.pci0.baseAddr0 = htoa(BAR0); data->config.baseAddr0 = htole(BAR0);
data->config.hdr.pci0.baseAddr1 = htoa(BAR1); data->config.baseAddr1 = htole(BAR1);
data->config.hdr.pci0.baseAddr2 = htoa(BAR2); data->config.baseAddr2 = htole(BAR2);
data->config.hdr.pci0.baseAddr3 = htoa(BAR3); data->config.baseAddr3 = htole(BAR3);
data->config.hdr.pci0.baseAddr4 = htoa(BAR4); data->config.baseAddr4 = htole(BAR4);
data->config.hdr.pci0.baseAddr5 = htoa(BAR5); data->config.baseAddr5 = htole(BAR5);
data->config.hdr.pci0.cardbusCIS = htoa(CardbusCIS); data->config.cardbusCIS = htole(CardbusCIS);
data->config.hdr.pci0.subsystemVendorID = htoa(SubsystemVendorID); data->config.subsystemVendorID = htole(SubsystemVendorID);
data->config.hdr.pci0.subsystemID = htoa(SubsystemVendorID); data->config.subsystemID = htole(SubsystemVendorID);
data->config.hdr.pci0.expansionROM = htoa(ExpansionROM); data->config.expansionROM = htole(ExpansionROM);
data->config.hdr.pci0.interruptLine = htoa(InterruptLine); data->config.interruptLine = htole(InterruptLine);
data->config.hdr.pci0.interruptPin = htoa(InterruptPin); data->config.interruptPin = htole(InterruptPin);
data->config.hdr.pci0.minimumGrant = htoa(MinimumGrant); data->config.minimumGrant = htole(MinimumGrant);
data->config.hdr.pci0.maximumLatency = htoa(MaximumLatency); data->config.maximumLatency = htole(MaximumLatency);
data->BARSize[0] = BAR0Size; data->BARSize[0] = BAR0Size;
data->BARSize[1] = BAR1Size; data->BARSize[1] = BAR1Size;

View file

@ -37,6 +37,12 @@
#include "dev/pcireg.h" #include "dev/pcireg.h"
#include "dev/platform.hh" #include "dev/platform.hh"
#define BAR_IO_MASK 0x3
#define BAR_MEM_MASK 0xF
#define BAR_IO_SPACE_BIT 0x1
#define BAR_IO_SPACE(x) ((x) & BAR_IO_SPACE_BIT)
#define BAR_NUMBER(x) (((x) - PCI0_BASE_ADDR0) >> 0x2);
class PciConfigAll; class PciConfigAll;
class MemoryController; class MemoryController;
@ -136,15 +142,15 @@ class PciDev : public DmaDevice
void void
intrPost() intrPost()
{ plat->postPciInt(configData->config.hdr.pci0.interruptLine); } { plat->postPciInt(configData->config.interruptLine); }
void void
intrClear() intrClear()
{ plat->clearPciInt(configData->config.hdr.pci0.interruptLine); } { plat->clearPciInt(configData->config.interruptLine); }
uint8_t uint8_t
interruptLine() interruptLine()
{ return configData->config.hdr.pci0.interruptLine; } { return configData->config.interruptLine; }
public: public:
/** /**
@ -169,7 +175,7 @@ class PciDev : public DmaDevice
* @param size the size of the write * @param size the size of the write
* @param data the data to write * @param data the data to write
*/ */
virtual void WriteConfig(int offset, int size, uint32_t data); virtual void writeConfig(int offset, int size, const uint8_t* data);
/** /**
@ -180,7 +186,7 @@ class PciDev : public DmaDevice
* @param size the size of the read * @param size the size of the read
* @param data pointer to the location where the read value should be stored * @param data pointer to the location where the read value should be stored
*/ */
virtual void ReadConfig(int offset, int size, uint8_t *data); virtual void readConfig(int offset, int size, uint8_t *data);
/** /**
* Serialize this object to the given output stream. * Serialize this object to the given output stream.

View file

@ -36,68 +36,44 @@
#include <sys/types.h> #include <sys/types.h>
union PCIConfig { union PCIConfig {
uint8_t data[64]; uint8_t data[64];
struct hdr {
uint16_t vendor;
uint16_t device;
uint16_t command;
uint16_t status;
uint8_t revision;
uint8_t progIF;
uint8_t subClassCode;
uint8_t classCode;
uint8_t cacheLineSize;
uint8_t latencyTimer;
uint8_t headerType;
uint8_t bist;
struct {
uint16_t vendor;
uint16_t device;
uint16_t command;
uint16_t status;
uint8_t revision;
uint8_t progIF;
uint8_t subClassCode;
uint8_t classCode;
uint8_t cacheLineSize;
uint8_t latencyTimer;
uint8_t headerType;
uint8_t bist;
union { union {
struct { uint32_t baseAddr[6];
uint32_t baseAddr0;
uint32_t baseAddr1;
uint32_t baseAddr2;
uint32_t baseAddr3;
uint32_t baseAddr4;
uint32_t baseAddr5;
uint32_t cardbusCIS;
uint16_t subsystemVendorID;
uint16_t subsystemID;
uint32_t expansionROM;
uint32_t reserved0;
uint32_t reserved1;
uint8_t interruptLine;
uint8_t interruptPin;
uint8_t minimumGrant;
uint8_t maximumLatency;
} pci0;
struct { struct {
uint32_t baseAddr0; uint32_t baseAddr0;
uint32_t baseAddr1; uint32_t baseAddr1;
uint8_t priBusNum; uint32_t baseAddr2;
uint8_t secBusNum; uint32_t baseAddr3;
uint8_t subBusNum; uint32_t baseAddr4;
uint8_t secLatency; uint32_t baseAddr5;
uint8_t ioBase; };
uint8_t minimumGrantioLimit;
uint16_t secStatus;
uint16_t memBase;
uint16_t memLimit;
uint16_t prefetchMemBase;
uint16_t prefetchMemLimit;
uint32_t prfBaseUpper32;
uint32_t prfLimitUpper32;
uint16_t ioBaseUpper16;
uint16_t ioLimitUpper16;
uint32_t reserved0;
uint32_t expansionROM;
uint8_t interruptLine;
uint8_t interruptPin;
uint16_t bridgeControl;
} pci1;
}; };
} hdr; uint32_t cardbusCIS;
uint16_t subsystemVendorID;
uint16_t subsystemID;
uint32_t expansionROM;
uint32_t reserved0;
uint32_t reserved1;
uint8_t interruptLine;
uint8_t interruptPin;
uint8_t minimumGrant;
uint8_t maximumLatency;
};
}; };
// Common PCI offsets // Common PCI offsets

73
dev/pitreg.h Normal file
View file

@ -0,0 +1,73 @@
/*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* @file
* Device register definitions for a device's PCI config space
*/
#ifndef __PITREG_H__
#define __PITREG_H__
#include <sys/types.h>
// Control Word Format
#define PIT_SEL_SHFT 0x6
#define PIT_RW_SHFT 0x4
#define PIT_MODE_SHFT 0x1
#define PIT_BCD_SHFT 0x0
#define PIT_SEL_MASK 0x3
#define PIT_RW_MASK 0x3
#define PIT_MODE_MASK 0x7
#define PIT_BCD_MASK 0x1
#define GET_CTRL_FIELD(x, s, m) (((x) >> s) & m)
#define GET_CTRL_SEL(x) GET_CTRL_FIELD(x, PIT_SEL_SHFT, PIT_SEL_MASK)
#define GET_CTRL_RW(x) GET_CTRL_FIELD(x, PIT_RW_SHFT, PIT_RW_MASK)
#define GET_CTRL_MODE(x) GET_CTRL_FIELD(x, PIT_MODE_SHFT, PIT_MODE_MASK)
#define GET_CTRL_BCD(x) GET_CTRL_FIELD(x, PIT_BCD_SHFT, PIT_BCD_MASK)
#define PIT_READ_BACK 0x3
#define PIT_RW_LATCH_COMMAND 0x0
#define PIT_RW_LSB_ONLY 0x1
#define PIT_RW_MSB_ONLY 0x2
#define PIT_RW_16BIT 0x3
#define PIT_MODE_INTTC 0x0
#define PIT_MODE_ONESHOT 0x1
#define PIT_MODE_RATEGEN 0x2
#define PIT_MODE_SQWAVE 0x3
#define PIT_MODE_SWSTROBE 0x4
#define PIT_MODE_HWSTROBE 0x5
#define PIT_BCD_FALSE 0x0
#define PIT_BCD_TRUE 0x1
#endif // __PITREG_H__

View file

@ -37,12 +37,12 @@
#define RTC_MON 0x08 #define RTC_MON 0x08
#define RTC_YEAR 0x09 #define RTC_YEAR 0x09
#define RTC_CNTRL_REGA 0x0A #define RTC_STAT_REGA 0x0A
#define RTCA_1024HZ 0x06 /* 1024Hz periodic interrupt frequency */ #define RTCA_1024HZ 0x06 /* 1024Hz periodic interrupt frequency */
#define RTCA_32768HZ 0x20 /* 22-stage divider, 32.768KHz timebase */ #define RTCA_32768HZ 0x20 /* 22-stage divider, 32.768KHz timebase */
#define RTCA_UIP 0x80 /* 1 = date and time update in progress */ #define RTCA_UIP 0x80 /* 1 = date and time update in progress */
#define RTC_CNTRL_REGB 0x0B #define RTC_STAT_REGB 0x0B
#define RTCB_DST 0x01 /* USA Daylight Savings Time enable */ #define RTCB_DST 0x01 /* USA Daylight Savings Time enable */
#define RTCB_24HR 0x02 /* 0 = 12 hours, 1 = 24 hours */ #define RTCB_24HR 0x02 /* 0 = 12 hours, 1 = 24 hours */
#define RTCB_BIN 0x04 /* 0 = BCD, 1 = Binary coded time */ #define RTCB_BIN 0x04 /* 0 = BCD, 1 = Binary coded time */
@ -52,6 +52,6 @@
#define RTCB_PRDC_IE 0x40 /* 1 = enable periodic clock interrupt */ #define RTCB_PRDC_IE 0x40 /* 1 = enable periodic clock interrupt */
#define RTCB_NO_UPDT 0x80 /* stop clock updates */ #define RTCB_NO_UPDT 0x80 /* stop clock updates */
#define RTC_CNTRL_REGC 0x0C #define RTC_STAT_REGC 0x0C
#define RTC_CNTRL_REGD 0x0D #define RTC_STAT_REGD 0x0D

View file

@ -296,12 +296,12 @@ Device::regStats()
* This is to write to the PCI general configuration registers * This is to write to the PCI general configuration registers
*/ */
void void
Device::WriteConfig(int offset, int size, uint32_t data) Device::writeConfig(int offset, int size, const uint8_t *data)
{ {
switch (offset) { switch (offset) {
case PCI0_BASE_ADDR0: case PCI0_BASE_ADDR0:
// Need to catch writes to BARs to update the PIO interface // Need to catch writes to BARs to update the PIO interface
PciDev::WriteConfig(offset, size, data); PciDev::writeConfig(offset, size, data);
if (BARAddrs[0] != 0) { if (BARAddrs[0] != 0) {
if (pioInterface) if (pioInterface)
pioInterface->addAddrRange(RangeSize(BARAddrs[0], BARSize[0])); pioInterface->addAddrRange(RangeSize(BARAddrs[0], BARSize[0]));
@ -311,7 +311,7 @@ Device::WriteConfig(int offset, int size, uint32_t data)
break; break;
default: default:
PciDev::WriteConfig(offset, size, data); PciDev::writeConfig(offset, size, data);
} }
} }
@ -322,7 +322,7 @@ Device::WriteConfig(int offset, int size, uint32_t data)
Fault Fault
Device::read(MemReqPtr &req, uint8_t *data) Device::read(MemReqPtr &req, uint8_t *data)
{ {
assert(config.hdr.command & PCI_CMD_MSE); assert(config.command & PCI_CMD_MSE);
//The mask is to give you only the offset into the device register file //The mask is to give you only the offset into the device register file
Addr daddr = req->paddr & 0xfff; Addr daddr = req->paddr & 0xfff;
@ -409,7 +409,7 @@ Device::read(MemReqPtr &req, uint8_t *data)
Fault Fault
Device::write(MemReqPtr &req, const uint8_t *data) Device::write(MemReqPtr &req, const uint8_t *data)
{ {
assert(config.hdr.command & PCI_CMD_MSE); assert(config.command & PCI_CMD_MSE);
Addr daddr = req->paddr & 0xfff; Addr daddr = req->paddr & 0xfff;
if (Regs::regSize(daddr) == 0) if (Regs::regSize(daddr) == 0)

View file

@ -238,7 +238,7 @@ class Device : public Base
* PCI Configuration interface * PCI Configuration interface
*/ */
public: public:
virtual void WriteConfig(int offset, int size, uint32_t data); virtual void writeConfig(int offset, int size, const uint8_t *data);
/** /**
* Memory Interface * Memory Interface

View file

@ -39,6 +39,7 @@
#include "base/trace.hh" #include "base/trace.hh"
#include "dev/tsunami_io.hh" #include "dev/tsunami_io.hh"
#include "dev/tsunami.hh" #include "dev/tsunami.hh"
#include "dev/pitreg.h"
#include "mem/bus/bus.hh" #include "mem/bus/bus.hh"
#include "mem/bus/pio_interface.hh" #include "mem/bus/pio_interface.hh"
#include "mem/bus/pio_interface_impl.hh" #include "mem/bus/pio_interface_impl.hh"
@ -50,18 +51,136 @@
using namespace std; using namespace std;
#define UNIX_YEAR_OFFSET 52 TsunamiIO::RTC::RTC(Tsunami* t, Tick i)
: SimObject("RTC"), event(t, i), addr(0)
{
memset(clock_data, 0, sizeof(clock_data));
stat_regA = RTCA_32768HZ | RTCA_1024HZ;
stat_regB = RTCB_PRDC_IE |RTCB_BIN | RTCB_24HR;
}
// Timer Event for Periodic interrupt of RTC void
TsunamiIO::RTCEvent::RTCEvent(Tsunami* t, Tick i) TsunamiIO::RTC::set_time(time_t t)
{
struct tm tm;
gmtime_r(&t, &tm);
sec = tm.tm_sec;
min = tm.tm_min;
hour = tm.tm_hour;
wday = tm.tm_wday + 1;
mday = tm.tm_mday;
mon = tm.tm_mon + 1;
year = tm.tm_year;
DPRINTFN("Real-time clock set to %s", asctime(&tm));
}
void
TsunamiIO::RTC::writeAddr(const uint8_t *data)
{
if (*data <= RTC_STAT_REGD)
addr = *data;
else
panic("RTC addresses over 0xD are not implemented.\n");
}
void
TsunamiIO::RTC::writeData(const uint8_t *data)
{
if (addr < RTC_STAT_REGA)
clock_data[addr] = *data;
else {
switch (addr) {
case RTC_STAT_REGA:
if (*data != (RTCA_32768HZ | RTCA_1024HZ))
panic("Unimplemented RTC register A value write!\n");
stat_regA = *data;
break;
case RTC_STAT_REGB:
if ((*data & ~(RTCB_PRDC_IE | RTCB_SQWE)) != (RTCB_BIN | RTCB_24HR))
panic("Write to RTC reg B bits that are not implemented!\n");
if (*data & RTCB_PRDC_IE) {
if (!event.scheduled())
event.scheduleIntr();
} else {
if (event.scheduled())
event.deschedule();
}
stat_regB = *data;
break;
case RTC_STAT_REGC:
case RTC_STAT_REGD:
panic("RTC status registers C and D are not implemented.\n");
break;
}
}
}
void
TsunamiIO::RTC::readData(uint8_t *data)
{
if (addr < RTC_STAT_REGA)
*data = clock_data[addr];
else {
switch (addr) {
case RTC_STAT_REGA:
// toggle UIP bit for linux
stat_regA ^= RTCA_UIP;
*data = stat_regA;
break;
case RTC_STAT_REGB:
*data = stat_regB;
break;
case RTC_STAT_REGC:
case RTC_STAT_REGD:
*data = 0x00;
break;
}
}
}
void
TsunamiIO::RTC::serialize(std::ostream &os)
{
SERIALIZE_SCALAR(addr);
SERIALIZE_ARRAY(clock_data, sizeof(clock_data));
SERIALIZE_SCALAR(stat_regA);
SERIALIZE_SCALAR(stat_regB);
// serialize the RTC event
nameOut(os, csprintf("%s.event", name()));
event.serialize(os);
}
void
TsunamiIO::RTC::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_SCALAR(addr);
UNSERIALIZE_ARRAY(clock_data, sizeof(clock_data));
UNSERIALIZE_SCALAR(stat_regA);
UNSERIALIZE_SCALAR(stat_regB);
// unserialze the event
event.unserialize(cp, csprintf("%s.event", section));
}
TsunamiIO::RTC::RTCEvent::RTCEvent(Tsunami*t, Tick i)
: Event(&mainEventQueue), tsunami(t), interval(i) : Event(&mainEventQueue), tsunami(t), interval(i)
{ {
DPRINTF(MC146818, "RTC Event Initializing\n"); DPRINTF(MC146818, "RTC Event Initilizing\n");
schedule(curTick + interval); schedule(curTick + interval);
} }
void void
TsunamiIO::RTCEvent::process() TsunamiIO::RTC::RTCEvent::scheduleIntr()
{
schedule(curTick + interval);
}
void
TsunamiIO::RTC::RTCEvent::process()
{ {
DPRINTF(MC146818, "RTC Timer Interrupt\n"); DPRINTF(MC146818, "RTC Timer Interrupt\n");
schedule(curTick + interval); schedule(curTick + interval);
@ -70,152 +189,256 @@ TsunamiIO::RTCEvent::process()
} }
const char * const char *
TsunamiIO::RTCEvent::description() TsunamiIO::RTC::RTCEvent::description()
{ {
return "tsunami RTC interrupt"; return "tsunami RTC interrupt";
} }
void void
TsunamiIO::RTCEvent::serialize(std::ostream &os) TsunamiIO::RTC::RTCEvent::serialize(std::ostream &os)
{ {
Tick time = when(); Tick time = when();
SERIALIZE_SCALAR(time); SERIALIZE_SCALAR(time);
} }
void void
TsunamiIO::RTCEvent::unserialize(Checkpoint *cp, const std::string &section) TsunamiIO::RTC::RTCEvent::unserialize(Checkpoint *cp, const std::string &section)
{ {
Tick time; Tick time;
UNSERIALIZE_SCALAR(time); UNSERIALIZE_SCALAR(time);
reschedule(time); reschedule(time);
} }
void TsunamiIO::PITimer::PITimer()
TsunamiIO::RTCEvent::scheduleIntr() : SimObject("PITimer"), counter0(counter[0]), counter1(counter[1]),
counter2(counter[2])
{ {
schedule(curTick + interval);
} }
// Timer Event for PIT Timers void
TsunamiIO::ClockEvent::ClockEvent() TsunamiIO::PITimer::writeControl(const uint8_t *data)
{
int rw;
int sel;
sel = GET_CTRL_SEL(*data);
if (sel == PIT_READ_BACK)
panic("PITimer Read-Back Command is not implemented.\n");
rw = GET_CTRL_RW(*data);
if (rw == PIT_RW_LATCH_COMMAND)
counter[sel].latchCount();
else {
counter[sel].setRW(rw);
counter[sel].setMode(GET_CTRL_MODE(*data));
counter[sel].setBCD(GET_CTRL_BCD(*data));
}
}
void
TsunamiIO::PITimer::serialize(std::ostream &os)
{
// serialize the counters
nameOut(os, csprintf("%s.counter0", name()));
counter0.serialize(os);
nameOut(os, csprintf("%s.counter1", name()));
counter1.serialize(os);
nameOut(os, csprintf("%s.counter2", name()));
counter2.serialize(os);
}
void
TsunamiIO::PITimer::unserialize(Checkpoint *cp, const std::string &section)
{
// unserialze the counters
counter0.unserialize(cp, csprintf("%s.counter0", section));
counter1.unserialize(cp, csprintf("%s.counter1", section));
counter2.unserialize(cp, csprintf("%s.counter2", section));
}
TsunamiIO::PITimer::Counter::Counter()
: SimObject("Counter"), event(this), count(0), latched_count(0), period(0),
mode(0), output_high(false), latch_on(false), read_byte(LSB),
write_byte(LSB)
{
}
void
TsunamiIO::PITimer::Counter::latchCount()
{
// behave like a real latch
if(!latch_on) {
latch_on = true;
read_byte = LSB;
latched_count = count;
}
}
void
TsunamiIO::PITimer::Counter::read(uint8_t *data)
{
if (latch_on) {
switch (read_byte) {
case LSB:
read_byte = MSB;
*data = (uint8_t)latched_count;
break;
case MSB:
read_byte = LSB;
latch_on = false;
*data = latched_count >> 8;
break;
}
} else {
switch (read_byte) {
case LSB:
read_byte = MSB;
*data = (uint8_t)count;
break;
case MSB:
read_byte = LSB;
*data = count >> 8;
break;
}
}
}
void
TsunamiIO::PITimer::Counter::write(const uint8_t *data)
{
switch (write_byte) {
case LSB:
count = (count & 0xFF00) | *data;
if (event.scheduled())
event.deschedule();
output_high = false;
write_byte = MSB;
break;
case MSB:
count = (count & 0x00FF) | (*data << 8);
period = count;
if (period > 0) {
DPRINTF(Tsunami, "Timer set to curTick + %d\n", count * event.interval);
event.schedule(curTick + count * event.interval);
}
write_byte = LSB;
break;
}
}
void
TsunamiIO::PITimer::Counter::setRW(int rw_val)
{
if (rw_val != PIT_RW_16BIT)
panic("Only LSB/MSB read/write is implemented.\n");
}
void
TsunamiIO::PITimer::Counter::setMode(int mode_val)
{
if(mode_val != PIT_MODE_INTTC && mode_val != PIT_MODE_RATEGEN &&
mode_val != PIT_MODE_SQWAVE)
panic("PIT mode %#x is not implemented: \n", mode_val);
mode = mode_val;
}
void
TsunamiIO::PITimer::Counter::setBCD(int bcd_val)
{
if (bcd_val != PIT_BCD_FALSE)
panic("PITimer does not implement BCD counts.\n");
}
bool
TsunamiIO::PITimer::Counter::outputHigh()
{
return output_high;
}
void
TsunamiIO::PITimer::Counter::serialize(std::ostream &os)
{
SERIALIZE_SCALAR(count);
SERIALIZE_SCALAR(latched_count);
SERIALIZE_SCALAR(period);
SERIALIZE_SCALAR(mode);
SERIALIZE_SCALAR(output_high);
SERIALIZE_SCALAR(latch_on);
SERIALIZE_SCALAR(read_byte);
SERIALIZE_SCALAR(write_byte);
// serialize the counter event
nameOut(os, csprintf("%s.event", name()));
event.serialize(os);
}
void
TsunamiIO::PITimer::Counter::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_SCALAR(count);
UNSERIALIZE_SCALAR(latched_count);
UNSERIALIZE_SCALAR(period);
UNSERIALIZE_SCALAR(mode);
UNSERIALIZE_SCALAR(output_high);
UNSERIALIZE_SCALAR(latch_on);
UNSERIALIZE_SCALAR(read_byte);
UNSERIALIZE_SCALAR(write_byte);
// unserialze the counter event
event.unserialize(cp, csprintf("%s.event", section));
}
TsunamiIO::PITimer::Counter::CounterEvent::CounterEvent(Counter* c_ptr)
: Event(&mainEventQueue) : Event(&mainEventQueue)
{ {
/* This is the PIT Tick Rate. A constant for the 8254 timer. The
* Tsunami platform has one of these cycle counters on the Cypress
* South Bridge and it is used by linux for estimating the cycle
* frequency of the machine it is running on. --Ali
*/
interval = (Tick)(Clock::Float::s / 1193180.0); interval = (Tick)(Clock::Float::s / 1193180.0);
counter = c_ptr;
DPRINTF(Tsunami, "Clock Event Initilizing\n");
mode = 0;
current_count = 0;
latched_count = 0;
latch_on = false;
read_byte = READ_LSB;
} }
void void
TsunamiIO::ClockEvent::process() TsunamiIO::PITimer::Counter::CounterEvent::process()
{ {
DPRINTF(Tsunami, "Timer Interrupt\n"); DPRINTF(Tsunami, "Timer Interrupt\n");
if (mode == 0) switch (counter->mode) {
status = 0x20; // set bit that linux is looking for case PIT_MODE_INTTC:
else if (mode == 2) counter->output_high = true;
schedule(curTick + current_count*interval); case PIT_MODE_RATEGEN:
} case PIT_MODE_SQWAVE:
break;
void default:
TsunamiIO::ClockEvent::Program(int count) panic("Unimplemented PITimer mode.\n");
{ }
DPRINTF(Tsunami, "Timer set to curTick + %d\n", count * interval);
schedule(curTick + count * interval);
status = 0;
current_count = (uint16_t)count;
} }
const char * const char *
TsunamiIO::ClockEvent::description() TsunamiIO::PITimer::Counter::CounterEvent::description()
{ {
return "tsunami 8254 Interval timer"; return "tsunami 8254 Interval timer";
} }
void void
TsunamiIO::ClockEvent::ChangeMode(uint8_t md) TsunamiIO::PITimer::Counter::CounterEvent::serialize(std::ostream &os)
{
mode = md;
}
uint8_t
TsunamiIO::ClockEvent::Status()
{
return status;
}
void
TsunamiIO::ClockEvent::LatchCount()
{
// behave like a real latch
if(!latch_on) {
latch_on = true;
read_byte = READ_LSB;
latched_count = current_count;
}
}
uint8_t
TsunamiIO::ClockEvent::Read()
{
uint8_t result = 0;
if(latch_on) {
switch (read_byte) {
case READ_LSB:
read_byte = READ_MSB;
result = (uint8_t)latched_count;
break;
case READ_MSB:
read_byte = READ_LSB;
latch_on = false;
result = latched_count >> 8;
break;
}
} else {
switch (read_byte) {
case READ_LSB:
read_byte = READ_MSB;
result = (uint8_t)current_count;
break;
case READ_MSB:
read_byte = READ_LSB;
result = current_count >> 8;
break;
}
}
return result;
}
void
TsunamiIO::ClockEvent::serialize(std::ostream &os)
{ {
Tick time = scheduled() ? when() : 0; Tick time = scheduled() ? when() : 0;
SERIALIZE_SCALAR(time); SERIALIZE_SCALAR(time);
SERIALIZE_SCALAR(status);
SERIALIZE_SCALAR(mode);
SERIALIZE_SCALAR(interval); SERIALIZE_SCALAR(interval);
} }
void void
TsunamiIO::ClockEvent::unserialize(Checkpoint *cp, const std::string &section) TsunamiIO::PITimer::Counter::CounterEvent::unserialize(Checkpoint *cp, const std::string &section)
{ {
Tick time; Tick time;
UNSERIALIZE_SCALAR(time); UNSERIALIZE_SCALAR(time);
UNSERIALIZE_SCALAR(status);
UNSERIALIZE_SCALAR(mode);
UNSERIALIZE_SCALAR(interval); UNSERIALIZE_SCALAR(interval);
if (time) if (time)
schedule(time); schedule(time);
@ -239,8 +462,7 @@ TsunamiIO::TsunamiIO(const string &name, Tsunami *t, time_t init_time,
tsunami->io = this; tsunami->io = this;
timerData = 0; timerData = 0;
set_time(init_time == 0 ? time(NULL) : init_time); rtc.set_time(init_time == 0 ? time(NULL) : init_time);
uip = 1;
picr = 0; picr = 0;
picInterrupting = false; picInterrupting = false;
} }
@ -251,13 +473,6 @@ TsunamiIO::frequency() const
return Clock::Frequency / clockInterval; return Clock::Frequency / clockInterval;
} }
void
TsunamiIO::set_time(time_t t)
{
gmtime_r(&t, &tm);
DPRINTFN("Real-time clock set to %s", asctime(&tm));
}
Fault Fault
TsunamiIO::read(MemReqPtr &req, uint8_t *data) TsunamiIO::read(MemReqPtr &req, uint8_t *data)
{ {
@ -287,59 +502,24 @@ TsunamiIO::read(MemReqPtr &req, uint8_t *data)
// PIC2 not implemnted... just return 0 // PIC2 not implemnted... just return 0
*(uint8_t*)data = 0x00; *(uint8_t*)data = 0x00;
return No_Fault; return No_Fault;
case TSDEV_TMR_CTL:
*(uint8_t*)data = timer2.Status();
return No_Fault;
case TSDEV_TMR0_DATA: case TSDEV_TMR0_DATA:
*(uint8_t *)data = timer0.Read(); pitimer.counter0.read(data);
return No_Fault;
case TSDEV_TMR1_DATA:
pitimer.counter1.read(data);
return No_Fault;
case TSDEV_TMR2_DATA:
pitimer.counter2.read(data);
return No_Fault; return No_Fault;
case TSDEV_RTC_DATA: case TSDEV_RTC_DATA:
switch(RTCAddress) { rtc.readData(data);
case RTC_CNTRL_REGA: return No_Fault;
*(uint8_t*)data = uip << 7 | RTCA_32768HZ | RTCA_1024HZ; case TSDEV_CTRL_PORTB:
uip = !uip; if (pitimer.counter2.outputHigh())
return No_Fault; *data = PORTB_SPKR_HIGH;
case RTC_CNTRL_REGB: else
// DM and 24/12 and UIE *data = 0x00;
*(uint8_t*)data = RTCB_PRDC_IE | RTCB_BIN | RTCB_24HR; return No_Fault;
return No_Fault;
case RTC_CNTRL_REGC:
// If we want to support RTC user access in linux
// This won't work, but for now it's fine
*(uint8_t*)data = 0x00;
return No_Fault;
case RTC_CNTRL_REGD:
panic("RTC Control Register D not implemented");
case RTC_SEC_ALRM:
case RTC_MIN_ALRM:
case RTC_HR_ALRM:
// RTC alarm functionality is not currently implemented
*(uint8_t *)data = 0x00;
return No_Fault;
case RTC_SEC:
*(uint8_t *)data = tm.tm_sec;
return No_Fault;
case RTC_MIN:
*(uint8_t *)data = tm.tm_min;
return No_Fault;
case RTC_HR:
*(uint8_t *)data = tm.tm_hour;
return No_Fault;
case RTC_DOW:
*(uint8_t *)data = tm.tm_wday + 1;
return No_Fault;
case RTC_DOM:
*(uint8_t *)data = tm.tm_mday;
return No_Fault;
case RTC_MON:
*(uint8_t *)data = tm.tm_mon + 1;
return No_Fault;
case RTC_YEAR:
*(uint8_t *)data = tm.tm_year;
return No_Fault;
default:
panic("Unknown RTC Address\n");
}
default: default:
panic("I/O Read - va%#x size %d\n", req->vaddr, req->size); panic("I/O Read - va%#x size %d\n", req->vaddr, req->size);
} }
@ -410,6 +590,14 @@ TsunamiIO::write(MemReqPtr &req, const uint8_t *data)
if (!(picr & mask1)) if (!(picr & mask1))
tsunami->cchip->clearDRIR(55); tsunami->cchip->clearDRIR(55);
return No_Fault; return No_Fault;
case TSDEV_DMA1_CMND:
return No_Fault;
case TSDEV_DMA2_CMND:
return No_Fault;
case TSDEV_DMA1_MMASK:
return No_Fault;
case TSDEV_DMA2_MMASK:
return No_Fault;
case TSDEV_PIC2_ACK: case TSDEV_PIC2_ACK:
return No_Fault; return No_Fault;
case TSDEV_DMA1_RESET: case TSDEV_DMA1_RESET:
@ -425,117 +613,31 @@ TsunamiIO::write(MemReqPtr &req, const uint8_t *data)
case TSDEV_DMA1_MASK: case TSDEV_DMA1_MASK:
case TSDEV_DMA2_MASK: case TSDEV_DMA2_MASK:
return No_Fault; return No_Fault;
case TSDEV_TMR_CTL: case TSDEV_TMR0_DATA:
pitimer.counter0.write(data);
return No_Fault; return No_Fault;
case TSDEV_TMR2_CTL: case TSDEV_TMR1_DATA:
switch((*(uint8_t*)data >> 4) & 0x3) { pitimer.counter1.write(data);
case 0x0:
switch(*(uint8_t*)data >> 6) {
case 0:
timer0.LatchCount();
return No_Fault;
case 2:
timer2.LatchCount();
return No_Fault;
default:
panic("Read Back Command not implemented\n");
}
break;
case 0x3:
break;
default:
panic("Only L/M write and Counter-Latch read supported\n");
}
switch(*(uint8_t*)data >> 6) {
case 0:
timer0.ChangeMode((*(uint8_t*)data & 0xF) >> 1);
break;
case 2:
timer2.ChangeMode((*(uint8_t*)data & 0xF) >> 1);
break;
default:
panic("Read Back Command not implemented\n");
}
return No_Fault; return No_Fault;
case TSDEV_TMR2_DATA: case TSDEV_TMR2_DATA:
/* two writes before we actually start the Timer pitimer.counter2.write(data);
so I set a flag in the timerData */
if(timerData & 0x1000) {
timerData &= 0x1000;
timerData += *(uint8_t*)data << 8;
timer2.Program(timerData);
} else {
timerData = *(uint8_t*)data;
timerData |= 0x1000;
}
return No_Fault; return No_Fault;
case TSDEV_TMR0_DATA: case TSDEV_TMR_CTRL:
/* two writes before we actually start the Timer pitimer.writeControl(data);
so I set a flag in the timerData */
if(timerData & 0x1000) {
timerData &= ~0x1000;
timerData += *(uint8_t*)data << 8;
timer0.Program(timerData);
timerData = 0;
} else {
timerData = *(uint8_t*)data;
timerData |= 0x1000;
}
return No_Fault; return No_Fault;
case TSDEV_RTC_ADDR: case TSDEV_RTC_ADDR:
RTCAddress = *(uint8_t*)data; rtc.writeAddr(data);
return No_Fault; return No_Fault;
case TSDEV_KBD: case TSDEV_KBD:
return No_Fault; return No_Fault;
case TSDEV_RTC_DATA: case TSDEV_RTC_DATA:
switch(RTCAddress) { rtc.writeData(data);
case RTC_CNTRL_REGA: return No_Fault;
if (*data != (RTCA_32768HZ | RTCA_1024HZ)) case TSDEV_CTRL_PORTB:
panic("Unimplemented RTC register A value write!\n"); // System Control Port B not implemented
return No_Fault; return No_Fault;
case RTC_CNTRL_REGB:
if ((*data & ~(RTCB_PRDC_IE | RTCB_SQWE)) != (RTCB_BIN | RTCB_24HR))
panic("Write to RTC reg B bits that are not implemented!\n");
if (*data & RTCB_PRDC_IE) {
if (!rtc.scheduled())
rtc.scheduleIntr();
} else {
if (rtc.scheduled())
rtc.deschedule();
}
return No_Fault;
case RTC_CNTRL_REGC:
panic("Write to RTC reg C not implemented!\n");
return No_Fault;
case RTC_CNTRL_REGD:
panic("Write to RTC reg D not implemented!\n");
return No_Fault;
case RTC_SEC:
tm.tm_sec = *(uint8_t *)data;
return No_Fault;
case RTC_MIN:
tm.tm_min = *(uint8_t *)data;
return No_Fault;
case RTC_HR:
tm.tm_hour = *(uint8_t *)data;
return No_Fault;
case RTC_DOW:
tm.tm_wday = *(uint8_t *)data;
return No_Fault;
case RTC_DOM:
tm.tm_mday = *(uint8_t *)data;
return No_Fault;
case RTC_MON:
tm.tm_mon = *(uint8_t *)data;
return No_Fault;
case RTC_YEAR:
tm.tm_year = *(uint8_t *)data;
return No_Fault;
}
default: default:
panic("I/O Write - va%#x size %d\n", req->vaddr, req->size); panic("I/O Write - va%#x size %d data %#x\n", req->vaddr, req->size, (int)*data);
} }
case sizeof(uint16_t): case sizeof(uint16_t):
case sizeof(uint32_t): case sizeof(uint32_t):
@ -581,20 +683,16 @@ void
TsunamiIO::serialize(std::ostream &os) TsunamiIO::serialize(std::ostream &os)
{ {
SERIALIZE_SCALAR(timerData); SERIALIZE_SCALAR(timerData);
SERIALIZE_SCALAR(uip);
SERIALIZE_SCALAR(mask1); SERIALIZE_SCALAR(mask1);
SERIALIZE_SCALAR(mask2); SERIALIZE_SCALAR(mask2);
SERIALIZE_SCALAR(mode1); SERIALIZE_SCALAR(mode1);
SERIALIZE_SCALAR(mode2); SERIALIZE_SCALAR(mode2);
SERIALIZE_SCALAR(picr); SERIALIZE_SCALAR(picr);
SERIALIZE_SCALAR(picInterrupting); SERIALIZE_SCALAR(picInterrupting);
SERIALIZE_SCALAR(RTCAddress);
// Serialize the timers // Serialize the timers
nameOut(os, csprintf("%s.timer0", name())); nameOut(os, csprintf("%s.pitimer", name()));
timer0.serialize(os); pitimer.serialize(os);
nameOut(os, csprintf("%s.timer2", name()));
timer2.serialize(os);
nameOut(os, csprintf("%s.rtc", name())); nameOut(os, csprintf("%s.rtc", name()));
rtc.serialize(os); rtc.serialize(os);
} }
@ -603,18 +701,15 @@ void
TsunamiIO::unserialize(Checkpoint *cp, const std::string &section) TsunamiIO::unserialize(Checkpoint *cp, const std::string &section)
{ {
UNSERIALIZE_SCALAR(timerData); UNSERIALIZE_SCALAR(timerData);
UNSERIALIZE_SCALAR(uip);
UNSERIALIZE_SCALAR(mask1); UNSERIALIZE_SCALAR(mask1);
UNSERIALIZE_SCALAR(mask2); UNSERIALIZE_SCALAR(mask2);
UNSERIALIZE_SCALAR(mode1); UNSERIALIZE_SCALAR(mode1);
UNSERIALIZE_SCALAR(mode2); UNSERIALIZE_SCALAR(mode2);
UNSERIALIZE_SCALAR(picr); UNSERIALIZE_SCALAR(picr);
UNSERIALIZE_SCALAR(picInterrupting); UNSERIALIZE_SCALAR(picInterrupting);
UNSERIALIZE_SCALAR(RTCAddress);
// Unserialize the timers // Unserialize the timers
timer0.unserialize(cp, csprintf("%s.timer0", section)); pitimer.unserialize(cp, csprintf("%s.pitimer", section));
timer2.unserialize(cp, csprintf("%s.timer2", section));
rtc.unserialize(cp, csprintf("%s.rtc", section)); rtc.unserialize(cp, csprintf("%s.rtc", section));
} }

View file

@ -53,129 +53,95 @@ class TsunamiIO : public PioDevice
struct tm tm; struct tm tm;
/**
* In Tsunami RTC only has two i/o ports one for data and one for
* address, so you write the address and then read/write the
* data. This store the address you are going to be reading from
* on a read.
*/
uint8_t RTCAddress;
protected: protected:
/** /** Real-Time Clock (MC146818) */
* The ClockEvent is handles the PIT interrupts class RTC : public SimObject
*/
class ClockEvent : public Event
{ {
protected: /** Event for RTC periodic interrupt */
/** how often the PIT fires */ class RTCEvent : public Event
Tick interval; {
/** The mode of the PIT */ private:
uint8_t mode; /** A pointer back to tsunami to create interrupt the processor. */
/** The status of the PIT */ Tsunami* tsunami;
uint8_t status; Tick interval;
/** The current count of the PIT */
uint16_t current_count; public:
/** The latched count of the PIT */ RTCEvent(Tsunami* t, Tick i);
uint16_t latched_count;
/** The state of the output latch of the PIT */ /** Schedule the RTC periodic interrupt */
bool latch_on; void scheduleIntr();
/** The next count half (byte) to read */
enum {READ_LSB, READ_MSB} read_byte; /** Event process to occur at interrupt*/
virtual void process();
/** Event description */
virtual const char *description();
/**
* Serialize this object to the given output stream.
* @param os The stream to serialize to.
*/
virtual void serialize(std::ostream &os);
/**
* Reconstruct the state of this object from a checkpoint.
* @param cp The checkpoint use.
* @param section The section name of this object
*/
virtual void unserialize(Checkpoint *cp, const std::string &section);
};
private:
/** RTC periodic interrupt event */
RTCEvent event;
/** Current RTC register address/index */
int addr;
/** Data for real-time clock function */
union {
uint8_t clock_data[10];
struct {
uint8_t sec;
uint8_t sec_alrm;
uint8_t min;
uint8_t min_alrm;
uint8_t hour;
uint8_t hour_alrm;
uint8_t wday;
uint8_t mday;
uint8_t mon;
uint8_t year;
};
};
/** RTC status register A */
uint8_t stat_regA;
/** RTC status register B */
uint8_t stat_regB;
public: public:
/** RTC(Tsunami* t, Tick i);
* Just set the mode to 0
*/ /** Set the initial RTC time/date */
ClockEvent(); void set_time(time_t t);
/** RTC address port: write address of RTC RAM data to access */
void writeAddr(const uint8_t *data);
/** RTC write data */
void writeData(const uint8_t *data);
/** RTC read data */
void readData(uint8_t *data);
/** /**
* processs the timer event * Serialize this object to the given output stream.
*/ * @param os The stream to serialize to.
virtual void process(); */
/**
* Returns a description of this event
* @return the description
*/
virtual const char *description();
/**
* Schedule a timer interrupt to occur sometime in the future.
*/
void Program(int count);
/**
* Write the mode bits of the PIT.
* @param mode the new mode
*/
void ChangeMode(uint8_t mode);
/**
* The current PIT status.
* @return the status of the PIT
*/
uint8_t Status();
/**
* Latch the count of the PIT.
*/
void LatchCount();
/**
* The current PIT count.
* @return the count of the PIT
*/
uint8_t Read();
/**
* Serialize this object to the given output stream.
* @param os The stream to serialize to.
*/
virtual void serialize(std::ostream &os);
/**
* Reconstruct the state of this object from a checkpoint.
* @param cp The checkpoint use.
* @param section The section name of this object
*/
virtual void unserialize(Checkpoint *cp, const std::string &section);
};
/**
* Process RTC timer events and generate interrupts appropriately.
*/
class RTCEvent : public Event
{
protected:
/** A pointer back to tsunami to create interrupt the processor. */
Tsunami* tsunami;
Tick interval;
public:
/**
* RTC Event initializes the RTC event by scheduling an event
* RTC_RATE times pre second.
*/
RTCEvent(Tsunami* t, Tick i);
/**
* Interrupt the processor and reschedule the event.
*/
virtual void process();
/**
* Return a description of this event.
* @return a description
*/
virtual const char *description();
/**
* Serialize this object to the given output stream.
* @param os The stream to serialize to.
*/
virtual void serialize(std::ostream &os); virtual void serialize(std::ostream &os);
/** /**
@ -184,16 +150,140 @@ class TsunamiIO : public PioDevice
* @param section The section name of this object * @param section The section name of this object
*/ */
virtual void unserialize(Checkpoint *cp, const std::string &section); virtual void unserialize(Checkpoint *cp, const std::string &section);
void scheduleIntr();
}; };
/** uip UpdateInProgess says that the rtc is updating, but we just fake it /** Programmable Interval Timer (Intel 8254) */
* by alternating it on every read of the bit since we are going to class PITimer : public SimObject
* override the loop_per_jiffy time that it is trying to use the UIP to {
* calculate. /** Counter element for PIT */
*/ class Counter : public SimObject
uint8_t uip; {
/** Event for counter interrupt */
class CounterEvent : public Event
{
private:
/** Pointer back to Counter */
Counter* counter;
Tick interval;
public:
CounterEvent(Counter*);
/** Event process */
virtual void process();
/** Event description */
virtual const char *description();
/**
* Serialize this object to the given output stream.
* @param os The stream to serialize to.
*/
virtual void serialize(std::ostream &os);
/**
* Reconstruct the state of this object from a checkpoint.
* @param cp The checkpoint use.
* @param section The section name of this object
*/
virtual void unserialize(Checkpoint *cp, const std::string &section);
friend class Counter;
};
private:
CounterEvent event;
/** Current count value */
uint16_t count;
/** Latched count */
uint16_t latched_count;
/** Interrupt period */
uint16_t period;
/** Current mode of operation */
uint8_t mode;
/** Output goes high when the counter reaches zero */
bool output_high;
/** State of the count latch */
bool latch_on;
/** Set of values for read_byte and write_byte */
enum {LSB, MSB};
/** Determine which byte of a 16-bit count value to read/write */
uint8_t read_byte, write_byte;
public:
Counter();
/** Latch the current count (if one is not already latched) */
void latchCount();
/** Set the read/write mode */
void setRW(int rw_val);
/** Set operational mode */
void setMode(int mode_val);
/** Set count encoding */
void setBCD(int bcd_val);
/** Read a count byte */
void read(uint8_t *data);
/** Write a count byte */
void write(const uint8_t *data);
/** Is the output high? */
bool outputHigh();
/**
* Serialize this object to the given output stream.
* @param os The stream to serialize to.
*/
virtual void serialize(std::ostream &os);
/**
* Reconstruct the state of this object from a checkpoint.
* @param cp The checkpoint use.
* @param section The section name of this object
*/
virtual void unserialize(Checkpoint *cp, const std::string &section);
};
private:
/** PIT has three seperate counters */
Counter counter[3];
public:
/** Public way to access individual counters (avoid array accesses) */
Counter &counter0;
Counter &counter1;
Counter &counter2;
PITimer();
/** Write control word */
void writeControl(const uint8_t* data);
/**
* Serialize this object to the given output stream.
* @param os The stream to serialize to.
*/
virtual void serialize(std::ostream &os);
/**
* Reconstruct the state of this object from a checkpoint.
* @param cp The checkpoint use.
* @param section The section name of this object
*/
virtual void unserialize(Checkpoint *cp, const std::string &section);
};
/** Mask of the PIC1 */ /** Mask of the PIC1 */
uint8_t mask1; uint8_t mask1;
@ -218,25 +308,10 @@ class TsunamiIO : public PioDevice
/** A pointer to the Tsunami device which be belong to */ /** A pointer to the Tsunami device which be belong to */
Tsunami *tsunami; Tsunami *tsunami;
/** /** Intel 8253 Periodic Interval Timer */
* This timer is initilized, but after I wrote the code PITimer pitimer;
* it doesn't seem to be used again, and best I can tell
* it too is not connected to any interrupt port
*/
ClockEvent timer0;
/** RTC rtc;
* This timer is used to control the speaker, which
* we normally could care less about, however it is
* also used to calculated the clockspeed and hense
* bogomips which is kinda important to the scheduler
* so we need to implemnt it although after boot I can't
* imagine we would be playing with the PC speaker much
*/
ClockEvent timer2;
/** This is the event used to interrupt the cpu like an RTC. */
RTCEvent rtc;
/** The interval is set via two writes to the PIT. /** The interval is set via two writes to the PIT.
* This variable contains a flag as to how many writes have happened, and * This variable contains a flag as to how many writes have happened, and
@ -263,11 +338,6 @@ class TsunamiIO : public PioDevice
Addr a, MemoryController *mmu, HierParams *hier, Bus *bus, Addr a, MemoryController *mmu, HierParams *hier, Bus *bus,
Tick pio_latency, Tick ci); Tick pio_latency, Tick ci);
/**
* Create the tm struct from seconds since 1970
*/
void set_time(time_t t);
/** /**
* Process a read to one of the devices we are emulating. * Process a read to one of the devices we are emulating.
* @param req Contains the address to read from. * @param req Contains the address to read from.

View file

@ -118,10 +118,18 @@
#define TSDEV_DMA2_MODE 0xD6 #define TSDEV_DMA2_MODE 0xD6
#define TSDEV_DMA1_MASK 0x0A #define TSDEV_DMA1_MASK 0x0A
#define TSDEV_DMA2_MASK 0xD4 #define TSDEV_DMA2_MASK 0xD4
#define TSDEV_TMR_CTL 0x61 #define TSDEV_CTRL_PORTB 0x61
#define TSDEV_TMR2_CTL 0x43
#define TSDEV_TMR2_DATA 0x42
#define TSDEV_TMR0_DATA 0x40 #define TSDEV_TMR0_DATA 0x40
#define TSDEV_TMR1_DATA 0x41
#define TSDEV_TMR2_DATA 0x42
#define TSDEV_TMR_CTRL 0x43
#define TSDEV_KBD 0x64
#define TSDEV_DMA1_CMND 0x08
#define TSDEV_DMA1_STAT TSDEV_DMA1_CMND
#define TSDEV_DMA2_CMND 0xD0
#define TSDEV_DMA2_STAT TSDEV_DMA2_CMND
#define TSDEV_DMA1_MMASK 0x0F
#define TSDEV_DMA2_MMASK 0xDE
/* Added for keyboard accesses */ /* Added for keyboard accesses */
#define TSDEV_KBD 0x64 #define TSDEV_KBD 0x64
@ -157,4 +165,7 @@
#define UART_MCR_LOOP 0x10 #define UART_MCR_LOOP 0x10
// System Control PortB Status Bits
#define PORTB_SPKR_HIGH 0x20
#endif // __TSUNAMIREG_H__ #endif // __TSUNAMIREG_H__

View file

@ -146,7 +146,10 @@ Uart8250::read(MemReqPtr &req, uint8_t *data)
break; break;
case 0x2: // Intr Identification Register (IIR) case 0x2: // Intr Identification Register (IIR)
DPRINTF(Uart, "IIR Read, status = %#x\n", (uint32_t)status); DPRINTF(Uart, "IIR Read, status = %#x\n", (uint32_t)status);
//Tx interrupts are cleared on IIR reads
status &= ~TX_INT; status &= ~TX_INT;
if (status & RX_INT) if (status & RX_INT)
*(uint8_t*)data = IIR_RXID; *(uint8_t*)data = IIR_RXID;
else else

View file

@ -38,8 +38,19 @@
#include "dev/io_device.hh" #include "dev/io_device.hh"
#include "dev/uart.hh" #include "dev/uart.hh"
/* UART8250 Interrupt ID Register
* bit 0 Interrupt Pending 0 = true, 1 = false
* bit 2:1 ID of highest priority interrupt
* bit 7:3 zeroes
*/
#define IIR_NOPEND 0x1 #define IIR_NOPEND 0x1
#define IIR_RXID 0x4
// Interrupt IDs
#define IIR_MODEM 0x00 /* Modem Status (lowest priority) */
#define IIR_TXID 0x02 /* Tx Data */
#define IIR_RXID 0x04 /* Rx Data */
#define IIR_LINE 0x06 /* Rx Line Status (highest priority)*/
class SimConsole; class SimConsole;
class Platform; class Platform;

View file

@ -92,7 +92,7 @@ LinuxSystem::LinuxSystem(Params *p)
char *dp264_mv = (char *)physmem->dma_addr(paddr, sizeof(uint64_t)); char *dp264_mv = (char *)physmem->dma_addr(paddr, sizeof(uint64_t));
if (dp264_mv) { if (dp264_mv) {
*(uint32_t*)(dp264_mv+0x18) = htoa((uint32_t)127); *(uint32_t*)(dp264_mv+0x18) = htog((uint32_t)127);
} else } else
panic("could not translate dp264_mv addr\n"); panic("could not translate dp264_mv addr\n");

View file

@ -11,9 +11,9 @@ class TsunamiCChip(FooPioDevice):
type = 'TsunamiCChip' type = 'TsunamiCChip'
tsunami = Param.Tsunami(Parent.any, "Tsunami") tsunami = Param.Tsunami(Parent.any, "Tsunami")
class TsunamiFake(FooPioDevice): class IsaFake(FooPioDevice):
type = 'TsunamiFake' type = 'IsaFake'
size = Param.Addr(0x8, "Size of address range") size = Param.Addr("Size of address range")
class TsunamiIO(FooPioDevice): class TsunamiIO(FooPioDevice):
type = 'TsunamiIO' type = 'TsunamiIO'

View file

@ -154,8 +154,8 @@ System::System(Params *p)
if (!hwrpb) if (!hwrpb)
panic("could not translate hwrpb addr\n"); panic("could not translate hwrpb addr\n");
*(uint64_t*)(hwrpb+0x50) = htoa(params->system_type); *(uint64_t*)(hwrpb+0x50) = htog(params->system_type);
*(uint64_t*)(hwrpb+0x58) = htoa(params->system_rev); *(uint64_t*)(hwrpb+0x58) = htog(params->system_rev);
} else } else
panic("could not find hwrpb\n"); panic("could not find hwrpb\n");
@ -192,7 +192,7 @@ System::setAlphaAccess(Addr access)
if (!m5AlphaAccess) if (!m5AlphaAccess)
panic("could not translate m5AlphaAccess addr\n"); panic("could not translate m5AlphaAccess addr\n");
*m5AlphaAccess = htoa(EV5::Phys2K0Seg(access)); *m5AlphaAccess = htog(EV5::Phys2K0Seg(access));
} else } else
panic("could not find m5AlphaAccess\n"); panic("could not find m5AlphaAccess\n");
} }