mem: Ensure DRAM refresh respects timings

This patch adds a state machine for the refresh scheduling to
ensure that no accesses are allowed while the refresh is in progress,
and that all banks are propely precharged.

As part of this change, the precharging of banks of broken out into a
method of its own, making is similar to how activations are dealt
with. The idle accounting is also updated to ensure that the refresh
duration is not added to the time that the DRAM is in the idle state
with all banks precharged.
This commit is contained in:
Andreas Hansson 2014-05-09 18:58:48 -04:00
parent 5c2c3f598e
commit babf072c1c
2 changed files with 241 additions and 97 deletions

View file

@ -56,8 +56,8 @@ DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
port(name() + ".port", *this), port(name() + ".port", *this),
retryRdReq(false), retryWrReq(false), retryRdReq(false), retryWrReq(false),
rowHitFlag(false), busState(READ), rowHitFlag(false), busState(READ),
respondEvent(this), respondEvent(this), refreshEvent(this),
refreshEvent(this), nextReqEvent(this), drainManager(NULL), nextReqEvent(this), drainManager(NULL),
deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
deviceRowBufferSize(p->device_rowbuffer_size), deviceRowBufferSize(p->device_rowbuffer_size),
devicesPerRank(p->devices_per_rank), devicesPerRank(p->devices_per_rank),
@ -81,8 +81,8 @@ DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
maxAccessesPerRow(p->max_accesses_per_row), maxAccessesPerRow(p->max_accesses_per_row),
frontendLatency(p->static_frontend_latency), frontendLatency(p->static_frontend_latency),
backendLatency(p->static_backend_latency), backendLatency(p->static_backend_latency),
busBusyUntil(0), prevArrival(0), busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE), prevArrival(0),
nextReqTime(0), startTickPrechargeAll(0), numBanksActive(0) nextReqTime(0), idleStartTick(0), numBanksActive(0)
{ {
// create the bank states based on the dimensions of the ranks and // create the bank states based on the dimensions of the ranks and
// banks // banks
@ -131,6 +131,12 @@ DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
"address map\n", name()); "address map\n", name());
} }
} }
// some basic sanity checks
if (tREFI <= tRP || tREFI <= tRFC) {
fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
tREFI, tRP, tRFC);
}
} }
void void
@ -148,7 +154,7 @@ DRAMCtrl::startup()
{ {
// update the start tick for the precharge accounting to the // update the start tick for the precharge accounting to the
// current tick // current tick
startTickPrechargeAll = curTick(); idleStartTick = curTick();
// shift the bus busy time sufficiently far ahead that we never // shift the bus busy time sufficiently far ahead that we never
// have to worry about negative values when computing the time for // have to worry about negative values when computing the time for
@ -159,8 +165,9 @@ DRAMCtrl::startup()
// print the configuration of the controller // print the configuration of the controller
printParams(); printParams();
// kick off the refresh // kick off the refresh, and give ourselves enough time to
schedule(refreshEvent, curTick() + tREFI); // precharge
schedule(refreshEvent, curTick() + tREFI - tRP);
} }
Tick Tick
@ -835,7 +842,7 @@ DRAMCtrl::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
// If the there is no open row (open adaptive), then there // If the there is no open row (open adaptive), then there
// is no precharge delay, otherwise go with tRP // is no precharge delay, otherwise go with tRP
Tick precharge_delay = bank.openRow == -1 ? 0 : tRP; Tick precharge_delay = bank.openRow == Bank::NO_ROW ? 0 : tRP;
//The bank is free, and you may be able to activate //The bank is free, and you may be able to activate
potentialActTick = inTime + accLat + precharge_delay; potentialActTick = inTime + accLat + precharge_delay;
@ -870,28 +877,39 @@ DRAMCtrl::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
} }
void void
DRAMCtrl::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank) DRAMCtrl::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank,
uint16_t row)
{ {
assert(0 <= rank && rank < ranksPerChannel); assert(0 <= rank && rank < ranksPerChannel);
assert(actTicks[rank].size() == activationLimit); assert(actTicks[rank].size() == activationLimit);
DPRINTF(DRAM, "Activate at tick %d\n", act_tick); DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
// Tracking accesses after all banks are precharged. // idleStartTick is the tick when all the banks were
// startTickPrechargeAll: is the tick when all the banks were again // precharged. Thus, the difference between act_tick and
// precharged. The difference between act_tick and startTickPrechargeAll // idleStartTick gives the time for which the DRAM is in an idle
// gives the time for which DRAM doesn't get any accesses after refreshing // state with all banks precharged. Note that we may end up
// or after a page is closed in closed-page or open-adaptive-page policy. // "changing history" by scheduling an activation before an
if ((numBanksActive == 0) && (act_tick > startTickPrechargeAll)) { // already scheduled precharge, effectively canceling it out.
prechargeAllTime += act_tick - startTickPrechargeAll; if (numBanksActive == 0 && act_tick > idleStartTick) {
prechargeAllTime += act_tick - idleStartTick;
} }
// No need to update number of active banks for closed-page policy as only 1 // update the open row
// bank will be activated at any given point, which will be instatntly assert(banks[rank][bank].openRow == Bank::NO_ROW);
// precharged banks[rank][bank].openRow = row;
if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive ||
pageMgmt == Enums::close_adaptive) // start counting anew, this covers both the case when we
// auto-precharged, and when this access is forced to
// precharge
banks[rank][bank].bytesAccessed = 0;
banks[rank][bank].rowAccesses = 0;
++numBanksActive; ++numBanksActive;
assert(numBanksActive <= banksPerRank * ranksPerChannel);
DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
act_tick, numBanksActive);
// start by enforcing tRRD // start by enforcing tRRD
for(int i = 0; i < banksPerRank; i++) { for(int i = 0; i < banksPerRank; i++) {
@ -935,6 +953,35 @@ DRAMCtrl::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank)
} }
} }
void
DRAMCtrl::prechargeBank(Bank& bank, Tick free_at)
{
// make sure the bank has an open row
assert(bank.openRow != Bank::NO_ROW);
// sample the bytes per activate here since we are closing
// the page
bytesPerActivate.sample(bank.bytesAccessed);
bank.openRow = Bank::NO_ROW;
bank.freeAt = free_at;
assert(numBanksActive != 0);
--numBanksActive;
DPRINTF(DRAM, "Precharged bank, done at tick %lld, now got %d active\n",
bank.freeAt, numBanksActive);
// if we reached zero, then special conditions apply as we track
// if all banks are precharged for the power models
if (numBanksActive == 0) {
idleStartTick = std::max(idleStartTick, bank.freeAt);
DPRINTF(DRAM, "All banks precharged at tick: %ld\n",
idleStartTick);
}
}
void void
DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
{ {
@ -961,30 +1008,30 @@ DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
// Update bank state // Update bank state
if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive || if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive ||
pageMgmt == Enums::close_adaptive) { pageMgmt == Enums::close_adaptive) {
if (rowHitFlag) {
bank.freeAt = curTick() + addDelay + accessLat;
} else {
// If there is a page open, precharge it.
if (bank.openRow != Bank::NO_ROW) {
prechargeBank(bank, std::max(std::max(bank.freeAt,
bank.tRASDoneAt),
curTick()) + tRP);
}
// Any precharge is already part of the latency
// estimation, so update the bank free time
bank.freeAt = curTick() + addDelay + accessLat; bank.freeAt = curTick() + addDelay + accessLat;
// If you activated a new row do to this access, the next access
// will have to respect tRAS for this bank.
if (!rowHitFlag) {
// any waiting for banks account for in freeAt // any waiting for banks account for in freeAt
actTick = bank.freeAt - tCL - tRCD; actTick = bank.freeAt - tCL - tRCD;
// If you activated a new row do to this access, the next access
// will have to respect tRAS for this bank
bank.tRASDoneAt = actTick + tRAS; bank.tRASDoneAt = actTick + tRAS;
recordActivate(actTick, dram_pkt->rank, dram_pkt->bank);
// if we closed an open row as a result of this access, recordActivate(actTick, dram_pkt->rank, dram_pkt->bank,
// then sample the number of bytes accessed before dram_pkt->row);
// resetting it
if (bank.openRow != -1)
bytesPerActivate.sample(bank.bytesAccessed);
// update the open row
bank.openRow = dram_pkt->row;
// start counting anew, this covers both the case when we
// auto-precharged, and when this access is forced to
// precharge
bank.bytesAccessed = 0;
bank.rowAccesses = 0;
} }
// increment the bytes accessed and the accesses per row // increment the bytes accessed and the accesses per row
@ -1042,19 +1089,7 @@ DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
// if this access should use auto-precharge, then we are // if this access should use auto-precharge, then we are
// closing the row // closing the row
if (auto_precharge) { if (auto_precharge) {
bank.openRow = -1; prechargeBank(bank, std::max(bank.freeAt, bank.tRASDoneAt) + tRP);
bank.freeAt = std::max(bank.freeAt, bank.tRASDoneAt) + tRP;
--numBanksActive;
if (numBanksActive == 0) {
startTickPrechargeAll = std::max(startTickPrechargeAll,
bank.freeAt);
DPRINTF(DRAM, "All banks precharged at tick: %ld\n",
startTickPrechargeAll);
}
// sample the bytes per activate here since we are closing
// the page
bytesPerActivate.sample(bank.bytesAccessed);
DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
} }
@ -1062,16 +1097,17 @@ DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt); DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
} else if (pageMgmt == Enums::close) { } else if (pageMgmt == Enums::close) {
actTick = curTick() + addDelay + accessLat - tRCD - tCL; actTick = curTick() + addDelay + accessLat - tRCD - tCL;
recordActivate(actTick, dram_pkt->rank, dram_pkt->bank); recordActivate(actTick, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
// If the DRAM has a very quick tRAS, bank can be made free bank.freeAt = actTick + tRCD + tCL;
// after consecutive tCL,tRCD,tRP times. In general, however, bank.tRASDoneAt = actTick + tRAS;
// an additional wait is required to respect tRAS.
bank.freeAt = std::max(actTick + tRAS + tRP, // sample the relevant values when precharging
actTick + tRCD + tCL + tRP); bank.bytesAccessed = burstSize;
bank.rowAccesses = 1;
prechargeBank(bank, std::max(bank.freeAt, bank.tRASDoneAt) + tRP);
DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt); DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
bytesPerActivate.sample(burstSize);
startTickPrechargeAll = std::max(startTickPrechargeAll, bank.freeAt);
} else } else
panic("No page management policy chosen\n"); panic("No page management policy chosen\n");
@ -1187,6 +1223,22 @@ DRAMCtrl::processNextReqEvent()
busState = READ; busState = READ;
} }
if (refreshState != REF_IDLE) {
// if a refresh waiting for this event loop to finish, then hand
// over now, and do not schedule a new nextReqEvent
if (refreshState == REF_DRAIN) {
DPRINTF(DRAM, "Refresh drain done, now precharging\n");
refreshState = REF_PRE;
// hand control back to the refresh event loop
schedule(refreshEvent, curTick());
}
// let the refresh finish before issuing any further requests
return;
}
// when we get here it is either a read or a write // when we get here it is either a read or a write
if (busState == READ) { if (busState == READ) {
@ -1298,18 +1350,6 @@ DRAMCtrl::processNextReqEvent()
} }
} }
Tick
DRAMCtrl::maxBankFreeAt() const
{
Tick banksFree = 0;
for(int i = 0; i < ranksPerChannel; i++)
for(int j = 0; j < banksPerRank; j++)
banksFree = std::max(banks[i][j].freeAt, banksFree);
return banksFree;
}
uint64_t uint64_t
DRAMCtrl::minBankFreeAt(const deque<DRAMPacket*>& queue) const DRAMCtrl::minBankFreeAt(const deque<DRAMPacket*>& queue) const
{ {
@ -1345,21 +1385,97 @@ DRAMCtrl::minBankFreeAt(const deque<DRAMPacket*>& queue) const
void void
DRAMCtrl::processRefreshEvent() DRAMCtrl::processRefreshEvent()
{ {
DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick()); // when first preparing the refresh, remember when it was due
if (refreshState == REF_IDLE) {
// remember when the refresh is due
refreshDueAt = curTick();
Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC; // proceed to drain
refreshState = REF_DRAIN;
for(int i = 0; i < ranksPerChannel; i++) DPRINTF(DRAM, "Refresh due\n");
for(int j = 0; j < banksPerRank; j++) {
banks[i][j].freeAt = banksFree;
banks[i][j].openRow = -1;
} }
// updating startTickPrechargeAll, isprechargeAll // let any scheduled read or write go ahead, after which it will
numBanksActive = 0; // hand control back to this event loop
startTickPrechargeAll = banksFree; if (refreshState == REF_DRAIN) {
if (nextReqEvent.scheduled()) {
// hand control over to the request loop until it is
// evaluated next
DPRINTF(DRAM, "Refresh awaiting draining\n");
schedule(refreshEvent, curTick() + tREFI); return;
} else {
refreshState = REF_PRE;
}
}
// at this point, ensure that all banks are precharged
if (refreshState == REF_PRE) {
DPRINTF(DRAM, "Precharging all\n");
// precharge any active bank
for (int i = 0; i < ranksPerChannel; i++) {
for (int j = 0; j < banksPerRank; j++) {
if (banks[i][j].openRow != Bank::NO_ROW) {
// respect both causality and any existing bank
// constraints
Tick free_at = std::max(std::max(banks[i][j].freeAt,
banks[i][j].tRASDoneAt),
curTick()) + tRP;
prechargeBank(banks[i][j], free_at);
}
}
}
if (numBanksActive != 0)
panic("Refresh scheduled with %d active banks\n", numBanksActive);
// advance the state
refreshState = REF_RUN;
// call ourselves in the future
schedule(refreshEvent, std::max(curTick(), idleStartTick));
return;
}
// last but not least we perform the actual refresh
if (refreshState == REF_RUN) {
// should never get here with any banks active
assert(numBanksActive == 0);
Tick banksFree = curTick() + tRFC;
for (int i = 0; i < ranksPerChannel; i++) {
for (int j = 0; j < banksPerRank; j++) {
banks[i][j].freeAt = banksFree;
}
}
// make sure we did not wait so long that we cannot make up
// for it
if (refreshDueAt + tREFI < banksFree) {
fatal("Refresh was delayed so long we cannot catch up\n");
}
// compensate for the delay in actually performing the refresh
// when scheduling the next one
schedule(refreshEvent, refreshDueAt + tREFI - tRP);
// back to business as usual
refreshState = REF_IDLE;
// we are now refreshing until tRFC is done
idleStartTick = banksFree;
// kick the normal request processing loop into action again
// as early as possible, i.e. when the request is done, the
// scheduling of this event also prevents any new requests
// from going ahead before the scheduled point in time
nextReqTime = banksFree;
schedule(nextReqEvent, nextReqTime);
}
} }
void void

View file

@ -153,7 +153,7 @@ class DRAMCtrl : public AbstractMemory
public: public:
static const uint32_t INVALID_ROW = -1; static const uint32_t NO_ROW = -1;
uint32_t openRow; uint32_t openRow;
@ -165,7 +165,7 @@ class DRAMCtrl : public AbstractMemory
uint32_t bytesAccessed; uint32_t bytesAccessed;
Bank() : Bank() :
openRow(INVALID_ROW), freeAt(0), tRASDoneAt(0), actAllowedAt(0), openRow(NO_ROW), freeAt(0), tRASDoneAt(0), actAllowedAt(0),
rowAccesses(0), bytesAccessed(0) rowAccesses(0), bytesAccessed(0)
{ } { }
}; };
@ -388,14 +388,6 @@ class DRAMCtrl : public AbstractMemory
*/ */
void reorderQueue(std::deque<DRAMPacket*>& queue); void reorderQueue(std::deque<DRAMPacket*>& queue);
/**
* Looking at all banks, determine the moment in time when they
* are all free.
*
* @return The tick when all banks are free
*/
Tick maxBankFreeAt() const;
/** /**
* Find which are the earliest available banks for the enqueued * Find which are the earliest available banks for the enqueued
* requests. Assumes maximum of 64 banks per DIMM * requests. Assumes maximum of 64 banks per DIMM
@ -411,7 +403,18 @@ class DRAMCtrl : public AbstractMemory
* method updates the time that the banks become available based * method updates the time that the banks become available based
* on the current limits. * on the current limits.
*/ */
void recordActivate(Tick act_tick, uint8_t rank, uint8_t bank); void recordActivate(Tick act_tick, uint8_t rank, uint8_t bank,
uint16_t row);
/**
* Precharge a given bank and also update when the precharge is
* done. This will also deal with any stats related to the
* accesses to the open page.
*
* @param bank The bank to precharge
* @param free_at Time when the precharge is done
*/
void prechargeBank(Bank& bank, Tick free_at);
void printParams() const; void printParams() const;
@ -523,6 +526,29 @@ class DRAMCtrl : public AbstractMemory
*/ */
Tick busBusyUntil; Tick busBusyUntil;
/**
* Keep track of when a refresh is due.
*/
Tick refreshDueAt;
/**
* The refresh state is used to control the progress of the
* refresh scheduling. When normal operation is in progress the
* refresh state is idle. From there, it progresses to the refresh
* drain state once tREFI has passed. The refresh drain state
* captures the DRAM row active state, as it will stay there until
* all ongoing accesses complete. Thereafter all banks are
* precharged, and lastly, the DRAM is refreshed.
*/
enum RefreshState {
REF_IDLE = 0,
REF_DRAIN,
REF_PRE,
REF_RUN
};
RefreshState refreshState;
Tick prevArrival; Tick prevArrival;
/** /**
@ -597,8 +623,10 @@ class DRAMCtrl : public AbstractMemory
Stats::Formula prechargeAllPercent; Stats::Formula prechargeAllPercent;
Stats::Scalar prechargeAllTime; Stats::Scalar prechargeAllTime;
// To track number of cycles all the banks are precharged // To track number of cycles the DRAM is idle, i.e. all the banks
Tick startTickPrechargeAll; // are precharged
Tick idleStartTick;
// To track number of banks which are currently active // To track number of banks which are currently active
unsigned int numBanksActive; unsigned int numBanksActive;