Merge zizzer:/bk/newmem

into  zeep.pool:/z/saidi/work/m5.newmem

src/cpu/simple/atomic.cc:
    merge steve's changes in.

--HG--
extra : convert_revision : a17eda37cd63c9380af6fe68b0aef4b1e1974231
This commit is contained in:
Ali Saidi 2007-02-12 13:22:36 -05:00
commit b9005f3562
28 changed files with 530 additions and 314 deletions

View file

@ -544,7 +544,7 @@ def template StoreCondCompleteAcc {{
%(fp_enable_check)s;
%(op_dest_decl)s;
uint64_t write_result = pkt->req->getScResult();
uint64_t write_result = pkt->req->getExtraData();
if (fault == NoFault) {
%(postacc_code)s;

View file

@ -68,7 +68,7 @@ handleLockedWrite(XC *xc, Request *req)
if (req->isUncacheable()) {
// Funky Turbolaser mailbox access...don't update
// result register (see stq_c in decoder.isa)
req->setScResult(2);
req->setExtraData(2);
} else {
// standard store conditional
bool lock_flag = xc->readMiscReg(MISCREG_LOCKFLAG);
@ -76,7 +76,7 @@ handleLockedWrite(XC *xc, Request *req)
if (!lock_flag || (req->getPaddr() & ~0xf) != lock_addr) {
// Lock flag not set or addr mismatch in CPU;
// don't even bother sending to memory system
req->setScResult(0);
req->setExtraData(0);
xc->setMiscReg(MISCREG_LOCKFLAG, false);
// the rest of this code is not architectural;
// it's just a debugging aid to help detect

View file

@ -42,6 +42,7 @@ namespace AlphaISA
typedef uint8_t RegIndex;
typedef uint64_t IntReg;
typedef uint64_t LargestRead;
// floating point register file entry type
typedef double FloatReg;

View file

@ -1124,6 +1124,9 @@ def buildOperandTypeMap(userDict, lineno):
ctype = 'float'
elif size == 64:
ctype = 'double'
elif desc == 'twin int':
is_signed = 0
ctype = 'Twin64_t'
if ctype == '':
error(lineno, 'Unrecognized type description "%s" in userDict')
operandTypeMap[ext] = (size, ctype, is_signed)
@ -1156,7 +1159,10 @@ class Operand(object):
# template must be careful not to use it if it doesn't apply.
if self.isMem():
self.mem_acc_size = self.makeAccSize()
self.mem_acc_type = self.ctype
if self.ctype == 'Twin64_t':
self.mem_acc_type = 'Twin'
else:
self.mem_acc_type = 'uint'
# Finalize additional fields (primarily code fields). This step
# is done separately since some of these fields may depend on the
@ -1386,6 +1392,9 @@ class MemOperand(Operand):
# Note that initializations in the declarations are solely
# to avoid 'uninitialized variable' errors from the compiler.
# Declare memory data variable.
if self.ctype == 'Twin64_t':
return "%s %s; %s.a = 0; %s.b = 0;\n" % (self.ctype, self.base_name,
self.base_name, self.base_name)
c = '%s %s = 0;\n' % (self.ctype, self.base_name)
return c

View file

@ -40,6 +40,8 @@ namespace MipsISA
typedef uint8_t RegIndex;
typedef uint32_t IntReg;
typedef uint64_t LargestRead;
// floating point register file entry type
typedef uint32_t FloatReg32;

View file

@ -472,8 +472,8 @@ decode OP default Unknown::unknown()
}});
//7-14 should cause an illegal instruction exception
0x0F: decode I {
0x0: Nop::stbar({{/*stuff*/}});
0x1: Nop::membar({{/*stuff*/}});
0x0: Nop::stbar({{/*stuff*/}}, IsWriteBarrier, MemWriteOp);
0x1: Nop::membar({{/*stuff*/}}, IsMemBarrier, MemReadOp);
}
0x10: Priv::rdpcr({{Rd = Pcr;}});
0x11: PrivCheck::rdpic({{Rd = Pic;}}, {{Pcr<0:>}});
@ -1168,15 +1168,17 @@ decode OP default Unknown::unknown()
0x0A: ldsh({{Rd = (int16_t)Mem.shw;}});
0x0B: ldx({{Rd = (int64_t)Mem.sdw;}});
}
0x0D: LoadStore::ldstub(
{{uReg0 = Mem.ub;}},
{{Rd.ub = uReg0;
Mem.ub = 0xFF;}});
0x0D: Swap::ldstub({{Mem.ub = 0xFF;}},
{{
uint8_t tmp = mem_data;
Rd.ub = tmp;
}}, MEM_SWAP);
0x0E: Store::stx({{Mem.udw = Rd}});
0x0F: LoadStore::swap(
{{ uReg0 = Mem.uw}},
{{ Mem.uw = Rd.uw;
Rd.uw = uReg0;}});
0x0F: Swap::swap({{Mem.uw = Rd.uw}},
{{
uint32_t tmp = mem_data;
Rd.uw = tmp;
}}, MEM_SWAP);
format LoadAlt {
0x10: lduwa({{Rd = Mem.uw;}}, {{EXT_ASI}});
0x11: lduba({{Rd = Mem.ub;}}, {{EXT_ASI}});
@ -1184,34 +1186,60 @@ decode OP default Unknown::unknown()
0x13: decode EXT_ASI {
//ASI_LDTD_AIUP
0x22: TwinLoad::ldtx_aiup(
{{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTD_AIUS
0x23: TwinLoad::ldtx_aius(
{{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_QUAD_LDD
0x24: TwinLoad::ldtx_quad_ldd(
{{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_REAL
0x26: TwinLoad::ldtx_real(
{{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_N
0x27: TwinLoad::ldtx_n(
{{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_AIUP_L
0x2A: TwinLoad::ldtx_aiup_l(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_AIUS_L
0x2B: TwinLoad::ldtx_aius_l(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_L
0x2C: TwinLoad::ldtx_l(
{{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_REAL_L
0x2E: TwinLoad::ldtx_real_l(
{{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_N_L
0x2F: TwinLoad::ldtx_n_l(
{{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_P
0xE2: TwinLoad::ldtx_p(
{{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_S
0xE3: TwinLoad::ldtx_s(
{{RdTwin.udw = Mem.udw;}}, {{EXT_ASI}});
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_PL
0xEA: TwinLoad::ldtx_pl(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
//ASI_LDTX_SL
0xEB: TwinLoad::ldtx_sl(
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
default: ldtwa({{
uint64_t val = Mem.udw;
RdLow = val<31:0>;
@ -1231,15 +1259,18 @@ decode OP default Unknown::unknown()
0x1A: ldsha({{Rd = (int16_t)Mem.shw;}}, {{EXT_ASI}});
0x1B: ldxa({{Rd = (int64_t)Mem.sdw;}}, {{EXT_ASI}});
}
0x1D: LoadStoreAlt::ldstuba(
{{uReg0 = Mem.ub;}},
{{Rd.ub = uReg0;
Mem.ub = 0xFF;}}, {{EXT_ASI}});
0x1D: SwapAlt::ldstuba({{Mem.ub = 0xFF;}},
{{
uint8_t tmp = mem_data;
Rd.ub = tmp;
}}, {{EXT_ASI}}, MEM_SWAP);
0x1E: StoreAlt::stxa({{Mem.udw = Rd}}, {{EXT_ASI}});
0x1F: LoadStoreAlt::swapa(
{{ uReg0 = Mem.uw}},
{{ Mem.uw = Rd.uw;
Rd.uw = uReg0;}}, {{EXT_ASI}});
0x1F: SwapAlt::swapa({{Mem.uw = Rd.uw}},
{{
uint32_t tmp = mem_data;
Rd.uw = tmp;
}}, {{EXT_ASI}}, MEM_SWAP);
format Trap {
0x20: Load::ldf({{Frds.uw = Mem.uw;}});
0x21: decode RD {
@ -1438,21 +1469,17 @@ decode OP default Unknown::unknown()
{{fault = new DataAccessException;}});
}
}
0x3C: Cas::casa(
{{uReg0 = Mem.uw;}},
{{if(Rs2.uw == uReg0)
Mem.uw = Rd.uw;
else
storeCond = false;
Rd.uw = uReg0;}}, {{EXT_ASI}});
0x3C: CasAlt::casa({{
mem_data = htog(Rs2.uw);
Mem.uw = Rd.uw;}},
{{
uint32_t tmp = mem_data;
Rd.uw = tmp;
}}, {{EXT_ASI}}, MEM_SWAP_COND);
0x3D: Nop::prefetcha({{ }});
0x3E: Cas::casxa(
{{uReg0 = Mem.udw;}},
{{if(Rs2 == uReg0)
Mem.udw = Rd;
else
storeCond = false;
Rd = uReg0;}}, {{EXT_ASI}});
0x3E: CasAlt::casxa({{mem_data = gtoh(Rs2);
Mem.udw = Rd.udw; }},
{{ Rd.udw = mem_data; }}, {{EXT_ASI}}, MEM_SWAP_COND);
}
}
}

View file

@ -1,4 +1,4 @@
// Copyright (c) 2006 The Regents of The University of Michigan
// Copyright (c) 2006-2007 The Regents of The University of Michigan
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
@ -52,22 +52,20 @@ def template MemDeclare {{
}};
let {{
def doMemFormat(code, execute, faultCode, name, Name, asi, opt_flags):
def doMemFormat(code, execute, faultCode, name, Name, asi, opt_flags, postacc_code = ''):
addrCalcReg = 'EA = Rs1 + Rs2;'
addrCalcImm = 'EA = Rs1 + imm;'
iop = InstObjParams(name, Name, 'Mem',
{"code": code, "fault_check": faultCode,
"ea_code": addrCalcReg},
opt_flags)
{"code": code, "postacc_code" : postacc_code,
"fault_check": faultCode, "ea_code": addrCalcReg}, opt_flags)
iop_imm = InstObjParams(name, Name + "Imm", 'MemImm',
{"code": code, "fault_check": faultCode,
"ea_code": addrCalcImm},
opt_flags)
{"code": code, "postacc_code" : postacc_code,
"fault_check": faultCode, "ea_code": addrCalcImm}, opt_flags)
header_output = MemDeclare.subst(iop) + MemDeclare.subst(iop_imm)
decoder_output = BasicConstructor.subst(iop) + BasicConstructor.subst(iop_imm)
decode_block = ROrImmDecode.subst(iop)
exec_output = doDualSplitExecute(code, addrCalcReg, addrCalcImm,
execute, faultCode, name, name + "Imm",
exec_output = doDualSplitExecute(code, postacc_code, addrCalcReg,
addrCalcImm, execute, faultCode, name, name + "Imm",
Name, Name + "Imm", asi, opt_flags)
return (header_output, decoder_output, exec_output, decode_block)
}};
@ -103,3 +101,13 @@ def format Store(code, *opt_flags) {{
decode_block) = doMemFormat(code,
StoreFuncs, '', name, Name, 0, opt_flags)
}};
def format TwinLoad(code, asi, *opt_flags) {{
(header_output,
decoder_output,
exec_output,
decode_block) = doMemFormat(code, LoadFuncs,
AlternateASIPrivFaultCheck + TwinAlignmentFaultCheck,
name, Name, asi, opt_flags)
}};

View file

@ -91,65 +91,6 @@ output header {{
};
}};
output header {{
class TwinMem : public SparcMacroInst
{
protected:
// Constructor
// We make the assumption that all block memory operations
// Will take 8 instructions to execute
TwinMem(const char *mnem, ExtMachInst _machInst) :
SparcMacroInst(mnem, _machInst, No_OpClass, 2)
{}
};
class TwinMemImm : public BlockMem
{
protected:
// Constructor
TwinMemImm(const char *mnem, ExtMachInst _machInst) :
BlockMem(mnem, _machInst)
{}
};
class TwinMemMicro : public SparcMicroInst
{
protected:
// Constructor
TwinMemMicro(const char *mnem, ExtMachInst _machInst,
OpClass __opClass, int8_t _offset) :
SparcMicroInst(mnem, _machInst, __opClass),
offset(_offset)
{}
std::string generateDisassembly(Addr pc,
const SymbolTable *symtab) const;
const int8_t offset;
};
class TwinMemImmMicro : public BlockMemMicro
{
protected:
// Constructor
TwinMemImmMicro(const char *mnem, ExtMachInst _machInst,
OpClass __opClass, int8_t _offset) :
BlockMemMicro(mnem, _machInst, __opClass, _offset),
imm(sext<13>(SIMM13))
{}
std::string generateDisassembly(Addr pc,
const SymbolTable *symtab) const;
const int32_t imm;
};
}};
output decoder {{
std::string BlockMemMicro::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
@ -208,64 +149,6 @@ output decoder {{
}};
output decoder {{
std::string TwinMemMicro::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream response;
bool load = flags[IsLoad];
bool save = flags[IsStore];
printMnemonic(response, mnemonic);
if(save)
{
printReg(response, _srcRegIdx[0]);
ccprintf(response, ", ");
}
ccprintf(response, "[ ");
printReg(response, _srcRegIdx[!save ? 0 : 1]);
ccprintf(response, " + ");
printReg(response, _srcRegIdx[!save ? 1 : 2]);
ccprintf(response, " ]");
if(load)
{
ccprintf(response, ", ");
printReg(response, _destRegIdx[0]);
}
return response.str();
}
std::string TwinMemImmMicro::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream response;
bool load = flags[IsLoad];
bool save = flags[IsStore];
printMnemonic(response, mnemonic);
if(save)
{
printReg(response, _srcRegIdx[1]);
ccprintf(response, ", ");
}
ccprintf(response, "[ ");
printReg(response, _srcRegIdx[0]);
if(imm >= 0)
ccprintf(response, " + 0x%x ]", imm);
else
ccprintf(response, " + -0x%x ]", -imm);
if(load)
{
ccprintf(response, ", ");
printReg(response, _destRegIdx[0]);
}
return response.str();
}
}};
def template BlockMemDeclare {{
/**
* Static instruction class for a block memory operation
@ -359,39 +242,6 @@ def template BlockMemDeclare {{
};
}};
def template TwinMemDeclare {{
/**
* Static instruction class for a block memory operation
*/
class %(class_name)s : public %(base_class)s
{
public:
//Constructor
%(class_name)s(ExtMachInst machInst);
protected:
class %(class_name)s_0 : public %(base_class)sMicro
{
public:
//Constructor
%(class_name)s_0(ExtMachInst machInst);
%(BasicExecDeclare)s
%(InitiateAccDeclare)s
%(CompleteAccDeclare)s
};
class %(class_name)s_1 : public %(base_class)sMicro
{
public:
//Constructor
%(class_name)s_1(ExtMachInst machInst);
%(BasicExecDeclare)s
%(InitiateAccDeclare)s
%(CompleteAccDeclare)s
};
};
}};
// Basic instruction class constructor template.
def template BlockMemConstructor {{
inline %(class_name)s::%(class_name)s(ExtMachInst machInst)
@ -409,17 +259,6 @@ def template BlockMemConstructor {{
}
}};
// Basic instruction class constructor template.
def template TwinMemConstructor {{
inline %(class_name)s::%(class_name)s(ExtMachInst machInst)
: %(base_class)s("%(mnemonic)s", machInst)
{
%(constructor)s;
microOps[0] = new %(class_name)s_0(machInst);
microOps[1] = new %(class_name)s_1(machInst);
}
}};
def template BlockMemMicroConstructor {{
inline %(class_name)s::
%(class_name)s_%(micro_pc)s::
@ -467,7 +306,7 @@ let {{
decoder_output += BlockMemMicroConstructor.subst(iop)
decoder_output += BlockMemMicroConstructor.subst(iop_imm)
exec_output += doDualSplitExecute(
pcedCode, addrCalcReg, addrCalcImm, execute, faultCode,
pcedCode, '', addrCalcReg, addrCalcImm, execute, faultCode,
makeMicroName(name, microPc),
makeMicroName(name + "Imm", microPc),
makeMicroName(Name, microPc),
@ -475,47 +314,6 @@ let {{
asi, opt_flags);
faultCode = ''
return (header_output, decoder_output, exec_output, decode_block)
def doTwinLoadFormat(code, faultCode, name, Name, asi, opt_flags):
addrCalcReg = 'EA = Rs1 + Rs2 + offset;'
addrCalcImm = 'EA = Rs1 + imm + offset;'
iop = InstObjParams(name, Name, 'TwinMem', code, opt_flags)
iop_imm = InstObjParams(name, Name + 'Imm', 'TwinMemImm', code, opt_flags)
header_output = TwinMemDeclare.subst(iop) + TwinMemDeclare.subst(iop_imm)
decoder_output = TwinMemConstructor.subst(iop) + TwinMemConstructor.subst(iop_imm)
decode_block = ROrImmDecode.subst(iop)
matcher = re.compile(r'RdTwin')
exec_output = ''
for microPc in range(2):
flag_code = ''
pcedCode = ''
if (microPc == 1):
flag_code = "flags[IsLastMicroOp] = true;"
pcedCode = "RdLow = uReg0;\n"
pcedCode += matcher.sub("RdHigh", code)
else:
flag_code = "flags[IsDelayedCommit] = true; flags[IsFirstMicroOp] = true;"
pcedCode = matcher.sub("uReg0", code)
iop = InstObjParams(name, Name, 'TwinMem',
{"code": pcedCode, "ea_code": addrCalcReg,
"fault_check": faultCode, "micro_pc": microPc,
"set_flags": flag_code}, opt_flags)
iop_imm = InstObjParams(name, Name + 'Imm', 'TwinMemImm',
{"code": pcedCode, "ea_code": addrCalcImm,
"fault_check": faultCode, "micro_pc": microPc,
"set_flags": flag_code}, opt_flags)
decoder_output += BlockMemMicroConstructor.subst(iop)
decoder_output += BlockMemMicroConstructor.subst(iop_imm)
exec_output += doDualSplitExecute(
pcedCode, addrCalcReg, addrCalcImm, LoadFuncs, faultCode,
makeMicroName(name, microPc),
makeMicroName(name + "Imm", microPc),
makeMicroName(Name, microPc),
makeMicroName(Name + "Imm", microPc),
asi, opt_flags);
faultCode = ''
return (header_output, decoder_output, exec_output, decode_block)
}};
def format BlockLoad(code, asi, *opt_flags) {{
@ -541,11 +339,3 @@ def format BlockStore(code, asi, *opt_flags) {{
decode_block) = doBlockMemFormat(code, faultCode,
StoreFuncs, name, Name, asi, opt_flags)
}};
def format TwinLoad(code, asi, *opt_flags) {{
faultCode = AlternateASIPrivFaultCheck + TwinAlignmentFaultCheck
(header_output,
decoder_output,
exec_output,
decode_block) = doTwinLoadFormat(code, faultCode, name, Name, asi, opt_flags)
}};

View file

@ -1,4 +1,4 @@
// Copyright (c) 2006 The Regents of The University of Michigan
// Copyright (c) 2006-2007 The Regents of The University of Michigan
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
@ -42,4 +42,4 @@
##include "blockmem.isa"
//Include the load/store and cas memory format
##include "loadstore.isa"
##include "swap.isa"

View file

@ -0,0 +1,183 @@
// Copyright (c) 2007 The Regents of The University of Michigan
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black
// Ali Saidi
//This template provides the execute functions for a swap
def template SwapExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
//This is to support the conditional store in cas instructions.
//It should be optomized out in all the others
bool storeCond = true;
Addr EA;
%(fp_enable_check)s;
%(op_decl)s;
uint64_t mem_data;
%(op_rd)s;
%(ea_code)s;
DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
%(fault_check)s;
if(fault == NoFault)
{
%(code)s;
}
if(storeCond && fault == NoFault)
{
fault = xc->write((uint%(mem_acc_size)s_t)Mem,
EA, %(asi_val)s, &mem_data);
}
if(fault == NoFault)
{
//Handle the swapping
%(postacc_code)s;
}
if(fault == NoFault)
{
//Write the resulting state to the execution context
%(op_wb)s;
}
return fault;
}
}};
def template SwapInitiateAcc {{
Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
Trace::InstRecord * traceData) const
{
Fault fault = NoFault;
Addr EA;
%(fp_enable_check)s;
uint64_t mem_data = 0;
%(op_decl)s;
%(op_rd)s;
%(ea_code)s;
DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
%(fault_check)s;
if(fault == NoFault)
{
%(code)s;
}
if(fault == NoFault)
{
fault = xc->write((uint%(mem_acc_size)s_t)Mem,
EA, %(asi_val)s, &mem_data);
}
return fault;
}
}};
def template SwapCompleteAcc {{
Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc,
Trace::InstRecord * traceData) const
{
Fault fault = NoFault;
%(op_decl)s;
uint64_t mem_data = pkt->get<uint%(mem_acc_size)s_t>();
if(fault == NoFault)
{
//Handle the swapping
%(postacc_code)s;
}
if(fault == NoFault)
{
//Write the resulting state to the execution context
%(op_wb)s;
}
return fault;
}
}};
let {{
SwapFuncs = [SwapExecute, SwapInitiateAcc, SwapCompleteAcc]
}};
def format Swap(code, postacc_code, mem_flags, *opt_flags) {{
mem_flags = makeList(mem_flags)
flags = string.join(mem_flags, '|')
(header_output,
decoder_output,
exec_output,
decode_block) = doMemFormat(code, SwapFuncs, '', name, Name, flags,
opt_flags, postacc_code)
}};
def format SwapAlt(code, postacc_code, asi, mem_flags, *opt_flags) {{
mem_flags = makeList(mem_flags)
mem_flags.append(asi)
flags = string.join(mem_flags, '|')
(header_output,
decoder_output,
exec_output,
decode_block) = doMemFormat(code, SwapFuncs, AlternateASIPrivFaultCheck,
name, Name, flags, opt_flags, postacc_code)
}};
let {{
def doCasFormat(code, execute, faultCode, name, Name, asi, opt_flags, postacc_code = ''):
addrCalcReg = 'EA = Rs1;'
iop = InstObjParams(name, Name, 'Mem',
{"code": code, "postacc_code" : postacc_code,
"fault_check": faultCode, "ea_code": addrCalcReg}, opt_flags)
header_output = MemDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
microParams = {"code": code, "postacc_code" : postacc_code,
"ea_code" : addrCalcReg, "fault_check" : faultCode}
exec_output = doSplitExecute(execute, name, Name, asi, opt_flags,
microParams);
return (header_output, decoder_output, exec_output, decode_block)
}};
def format CasAlt(code, postacc_code, asi, mem_flags, *opt_flags) {{
mem_flags = makeList(mem_flags)
mem_flags.append(asi)
flags = string.join(mem_flags, '|')
(header_output,
decoder_output,
exec_output,
decode_block) = doCasFormat(code, SwapFuncs, AlternateASIPrivFaultCheck,
name, Name, flags, opt_flags, postacc_code)
}};

View file

@ -149,7 +149,7 @@ def template LoadExecute {{
%(fault_check)s;
if(fault == NoFault)
{
fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
fault = xc->read(EA, (%(mem_acc_type)s%(mem_acc_size)s_t&)Mem, %(asi_val)s);
}
if(fault == NoFault)
{
@ -179,7 +179,7 @@ def template LoadInitiateAcc {{
%(fault_check)s;
if(fault == NoFault)
{
fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
fault = xc->read(EA, (%(mem_acc_type)s%(mem_acc_size)s_t&)Mem, %(asi_val)s);
}
return fault;
}
@ -246,6 +246,7 @@ def template StoreInitiateAcc {{
Addr EA;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(ea_code)s;
DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
@ -290,6 +291,7 @@ def template CompleteAccDeclare {{
let {{
LoadFuncs = [LoadExecute, LoadInitiateAcc, LoadCompleteAcc]
StoreFuncs = [StoreExecute, StoreInitiateAcc, StoreCompleteAcc]
# The LSB can be zero, since it's really the MSB in doubles and quads
# and we're dealing with doubles
BlockAlignmentFaultCheck = '''
@ -337,14 +339,14 @@ let {{
return execf.subst(iop) + initf.subst(iop) + compf.subst(iop)
def doDualSplitExecute(code, eaRegCode, eaImmCode, execute,
def doDualSplitExecute(code, postacc_code, eaRegCode, eaImmCode, execute,
faultCode, nameReg, nameImm, NameReg, NameImm, asi, opt_flags):
executeCode = ''
for (eaCode, name, Name) in (
(eaRegCode, nameReg, NameReg),
(eaImmCode, nameImm, NameImm)):
microParams = {"code": code, "ea_code": eaCode,
"fault_check": faultCode}
microParams = {"code": code, "postacc_code" : postacc_code,
"ea_code": eaCode, "fault_check": faultCode}
executeCode += doSplitExecute(execute, name, Name,
asi, opt_flags, microParams)
return executeCode

View file

@ -74,6 +74,7 @@ output exec {{
#include <cmath>
#include "arch/sparc/asi.hh"
#include "base/bigint.hh"
#include "cpu/base.hh"
#include "cpu/exetrace.hh"
#include "sim/sim_exit.hh"

View file

@ -37,6 +37,7 @@ def operand_types {{
'uw' : ('unsigned int', 32),
'sdw' : ('signed int', 64),
'udw' : ('unsigned int', 64),
'tudw' : ('twin int', 64),
'sf' : ('float', 32),
'df' : ('float', 64),
'qf' : ('float', 128)

View file

@ -32,6 +32,7 @@
#define __ARCH_SPARC_TYPES_HH__
#include <inttypes.h>
#include "base/bigint.hh"
namespace SparcISA
{
@ -39,6 +40,7 @@ namespace SparcISA
typedef uint64_t ExtMachInst;
typedef uint64_t IntReg;
typedef Twin64_t LargestRead;
typedef uint64_t MiscReg;
typedef double FloatReg;
typedef uint64_t FloatRegBits;

51
src/base/bigint.hh Normal file
View file

@ -0,0 +1,51 @@
/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
*/
#ifndef __BASE_BIGINT_HH__
#define __BASE_BIGINT_HH__
// Create a couple of large int types for atomic reads
struct m5_twin64_t {
uint64_t a;
uint64_t b;
inline m5_twin64_t& operator=(const uint64_t x)
{
a = x;
b = x;
return *this;
}
};
// This is for twin loads (two 64 bit values), not 1 128 bit value (as far as
// endian conversion is concerned!
typedef m5_twin64_t Twin64_t;
#endif // __BASE_BIGINT_HH__

View file

@ -868,7 +868,7 @@ BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
if (res) {
// always return some result to keep misspeculated paths
// (which will ignore faults) deterministic
*res = (fault == NoFault) ? req->getScResult() : 0;
*res = (fault == NoFault) ? req->getExtraData() : 0;
}
return fault;

View file

@ -31,6 +31,7 @@
#include "arch/locked_mem.hh"
#include "arch/mmaped_ipr.hh"
#include "arch/utility.hh"
#include "base/bigint.hh"
#include "cpu/exetrace.hh"
#include "cpu/simple/atomic.hh"
#include "mem/packet.hh"
@ -151,6 +152,8 @@ AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
data_write_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
data_write_pkt = new Packet(data_write_req, MemCmd::WriteReq,
Packet::Broadcast);
data_swap_pkt = new Packet(data_write_req, MemCmd::SwapReq,
Packet::Broadcast);
}
@ -316,6 +319,10 @@ AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
@ -363,10 +370,15 @@ AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
// use the CPU's statically allocated write request and packet objects
Request *req = data_write_req;
PacketPtr pkt = data_write_pkt;
PacketPtr pkt;
req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
if (req->isSwap())
pkt = data_swap_pkt;
else
pkt = data_write_pkt;
if (traceData) {
traceData->setAddr(addr);
}
@ -381,6 +393,11 @@ AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
if (req->isLocked()) {
do_access = TheISA::handleLockedWrite(thread, req);
}
if (req->isCondSwap()) {
assert(res);
req->setExtraData(*res);
}
if (do_access) {
pkt->reinitFromRequest();
@ -401,7 +418,10 @@ AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
#endif
}
if (res) {
if (req->isSwap()) {
assert(res);
*res = pkt->get<T>();
} else if (res) {
*res = req->getScResult();
}
}

View file

@ -118,6 +118,7 @@ class AtomicSimpleCPU : public BaseSimpleCPU
PacketPtr data_read_pkt;
Request *data_write_req;
PacketPtr data_write_pkt;
PacketPtr data_swap_pkt;
bool dcache_access;
Tick dcache_latency;

View file

@ -125,7 +125,7 @@ class BaseSimpleCPU : public BaseCPU
MachInst inst;
// Static data storage
TheISA::IntReg dataReg;
TheISA::LargestRead dataReg;
StaticInstPtr curStaticInst;
StaticInstPtr curMacroStaticInst;

View file

@ -30,6 +30,7 @@
#include "arch/locked_mem.hh"
#include "arch/utility.hh"
#include "base/bigint.hh"
#include "cpu/exetrace.hh"
#include "cpu/simple/timing.hh"
#include "mem/packet.hh"
@ -310,6 +311,10 @@ TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
@ -359,12 +364,19 @@ TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
cpu_id, /* thread ID */ 0);
if (traceData) {
traceData->setAddr(req->getVaddr());
}
// translate to physical address
Fault fault = thread->translateDataWriteReq(req);
// Now do the access.
if (fault == NoFault) {
assert(dcache_pkt == NULL);
if (req->isSwap())
dcache_pkt = new Packet(req, MemCmd::SwapReq, Packet::Broadcast);
else
dcache_pkt = new Packet(req, MemCmd::WriteReq, Packet::Broadcast);
dcache_pkt->allocate();
dcache_pkt->set(data);
@ -374,6 +386,10 @@ TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
if (req->isLocked()) {
do_access = TheISA::handleLockedWrite(thread, req);
}
if (req->isCondSwap()) {
assert(res);
req->setExtraData(*res);
}
if (do_access) {
if (!dcachePort.sendTiming(dcache_pkt)) {

View file

@ -249,7 +249,7 @@ class CacheBlk
}
}
req->setScResult(success ? 1 : 0);
req->setExtraData(success ? 1 : 0);
clearLoadLocks();
return success;
} else {

View file

@ -206,7 +206,7 @@ Cache<TagStore,Coherence>::handleAccess(PacketPtr &pkt, int & lat,
// complete miss (no matching block)
if (pkt->req->isLocked() && pkt->isWrite()) {
// miss on store conditional... just give up now
pkt->req->setScResult(0);
pkt->req->setExtraData(0);
pkt->flags |= SATISFIED;
}
}
@ -1147,7 +1147,7 @@ Cache<TagStore,Coherence>::CpuSidePort::recvTiming(PacketPtr pkt)
}
if (pkt->isWrite() && (pkt->req->isLocked())) {
pkt->req->setScResult(1);
pkt->req->setExtraData(1);
}
myCache()->access(pkt);
return true;

View file

@ -94,7 +94,13 @@ MemCmd::commandInfo[] =
ReadExResp, "ReadExReq" },
/* ReadExResp */
{ SET4(IsRead, IsInvalidate, IsResponse, HasData),
InvalidCmd, "ReadExResp" }
InvalidCmd, "ReadExResp" },
/* SwapReq -- for Swap ldstub type operations */
{ SET4(IsReadWrite, IsRequest, HasData, NeedsResponse),
SwapResp, "SwapReq" },
/* SwapResp -- for Swap ldstub type operations */
{ SET3(IsReadWrite, IsResponse, HasData),
InvalidCmd, "SwapResp" }
};
@ -238,9 +244,11 @@ operator<<(std::ostream &o, const Packet &p)
if (p.isRead())
o << "Read ";
if (p.isWrite())
o << "Read ";
o << "Write ";
if (p.isReadWrite())
o << "Read/Write ";
if (p.isInvalidate())
o << "Read ";
o << "Invalidate ";
if (p.isRequest())
o << "Request ";
if (p.isResponse())

View file

@ -88,6 +88,8 @@ class MemCmd
UpgradeReq,
ReadExReq,
ReadExResp,
SwapReq,
SwapResp,
NUM_MEM_CMDS
};
@ -106,6 +108,7 @@ class MemCmd
IsHWPrefetch,
IsUpgrade,
HasData,
IsReadWrite,
NUM_COMMAND_ATTRIBUTES
};
@ -141,6 +144,7 @@ class MemCmd
bool needsResponse() const { return testCmdAttrib(NeedsResponse); }
bool isInvalidate() const { return testCmdAttrib(IsInvalidate); }
bool hasData() const { return testCmdAttrib(HasData); }
bool isReadWrite() const { return testCmdAttrib(IsReadWrite); }
const Command responseCommand() const {
return commandInfo[cmd].response;
@ -300,6 +304,7 @@ class Packet
bool needsResponse() const { return cmd.needsResponse(); }
bool isInvalidate() const { return cmd.isInvalidate(); }
bool hasData() const { return cmd.hasData(); }
bool isReadWrite() const { return cmd.isReadWrite(); }
bool isCacheFill() const { return (flags & CACHE_LINE_FILL) != 0; }
bool isNoAllocate() const { return (flags & NO_ALLOCATE) != 0; }

View file

@ -30,6 +30,7 @@
*/
#include "arch/isa_traits.hh"
#include "base/bigint.hh"
#include "mem/packet.hh"
#include "sim/byteswap.hh"
@ -40,6 +41,19 @@
// these functions and make the users do their own byte swapping since
// the memory system does not in fact have an endianness.
template<>
inline Twin64_t
Packet::get()
{
Twin64_t d;
assert(staticData || dynamicData);
assert(sizeof(Twin64_t) <= size);
d.a = TheISA::gtoh(*(uint64_t*)data);
d.b = TheISA::gtoh(*((uint64_t*)data + 1));
return d;
}
/** return the value of what is pointed to in the packet. */
template <typename T>
inline T

View file

@ -92,7 +92,7 @@ Addr
PhysicalMemory::new_page()
{
Addr return_addr = pagePtr << LogVMPageSize;
return_addr += params()->addrRange.start;
return_addr += start();
++pagePtr;
return return_addr;
@ -187,7 +187,7 @@ PhysicalMemory::checkLockedAddrList(Request *req)
}
if (isLocked) {
req->setScResult(success ? 1 : 0);
req->setExtraData(success ? 1 : 0);
}
return success;
@ -196,16 +196,14 @@ PhysicalMemory::checkLockedAddrList(Request *req)
void
PhysicalMemory::doFunctionalAccess(PacketPtr pkt)
{
assert(pkt->getAddr() >= params()->addrRange.start &&
pkt->getAddr() + pkt->getSize() <= params()->addrRange.start +
params()->addrRange.size());
assert(pkt->getAddr() >= start() &&
pkt->getAddr() + pkt->getSize() <= start() + size());
if (pkt->isRead()) {
if (pkt->req->isLocked()) {
trackLoadLocked(pkt->req);
}
memcpy(pkt->getPtr<uint8_t>(),
pmemAddr + pkt->getAddr() - params()->addrRange.start,
memcpy(pkt->getPtr<uint8_t>(), pmemAddr + pkt->getAddr() - start(),
pkt->getSize());
#if TRACING_ON
switch (pkt->getSize()) {
@ -233,8 +231,8 @@ PhysicalMemory::doFunctionalAccess(PacketPtr pkt)
}
else if (pkt->isWrite()) {
if (writeOK(pkt->req)) {
memcpy(pmemAddr + pkt->getAddr() - params()->addrRange.start,
pkt->getPtr<uint8_t>(), pkt->getSize());
memcpy(pmemAddr + pkt->getAddr() - start(), pkt->getPtr<uint8_t>(),
pkt->getSize());
#if TRACING_ON
switch (pkt->getSize()) {
case sizeof(uint64_t):
@ -259,12 +257,77 @@ PhysicalMemory::doFunctionalAccess(PacketPtr pkt)
}
#endif
}
}
else if (pkt->isInvalidate()) {
} else if (pkt->isInvalidate()) {
//upgrade or invalidate
pkt->flags |= SATISFIED;
} else if (pkt->isReadWrite()) {
IntReg overwrite_val;
bool overwrite_mem;
uint64_t condition_val64;
uint32_t condition_val32;
uint64_t test_val64;
uint32_t test_val32;
assert(sizeof(IntReg) >= pkt->getSize());
overwrite_mem = true;
// keep a copy of our possible write value, and copy what is at the
// memory address into the packet
memcpy(&overwrite_val, pkt->getPtr<uint8_t>(), pkt->getSize());
memcpy(pkt->getPtr<uint8_t>(), pmemAddr + pkt->getAddr() - start(),
pkt->getSize());
if (pkt->req->isCondSwap()) {
if (pkt->getSize() == sizeof(uint64_t)) {
condition_val64 = htog(pkt->req->getExtraData());
memcpy(&test_val64, pmemAddr + pkt->getAddr() - start(), sizeof(uint64_t));
overwrite_mem = test_val64 == condition_val64;
} else if (pkt->getSize() == sizeof(uint32_t)) {
condition_val32 = htog((uint32_t)pkt->req->getExtraData());
memcpy(&test_val32, pmemAddr + pkt->getAddr() - start(), sizeof(uint32_t));
overwrite_mem = test_val32 == condition_val32;
} else
panic("Invalid size for conditional read/write\n");
}
else {
if (overwrite_mem)
memcpy(pmemAddr + pkt->getAddr() - start(),
&overwrite_val, pkt->getSize());
#if TRACING_ON
switch (pkt->getSize()) {
case sizeof(uint64_t):
DPRINTF(MemoryAccess, "Read/Write of size %i on address 0x%x old data 0x%x\n",
pkt->getSize(), pkt->getAddr(),pkt->get<uint64_t>());
DPRINTF(MemoryAccess, "New Data 0x%x %s conditional (0x%x) and %s \n",
overwrite_mem, pkt->req->isCondSwap() ? "was" : "wasn't",
condition_val64, overwrite_mem ? "happened" : "didn't happen");
break;
case sizeof(uint32_t):
DPRINTF(MemoryAccess, "Read/Write of size %i on address 0x%x old data 0x%x\n",
pkt->getSize(), pkt->getAddr(),pkt->get<uint32_t>());
DPRINTF(MemoryAccess, "New Data 0x%x %s conditional (0x%x) and %s \n",
overwrite_mem, pkt->req->isCondSwap() ? "was" : "wasn't",
condition_val32, overwrite_mem ? "happened" : "didn't happen");
break;
case sizeof(uint16_t):
DPRINTF(MemoryAccess, "Read/Write of size %i on address 0x%x old data 0x%x\n",
pkt->getSize(), pkt->getAddr(),pkt->get<uint16_t>());
DPRINTF(MemoryAccess, "New Data 0x%x wasn't conditional and happned\n",
overwrite_mem);
break;
case sizeof(uint8_t):
DPRINTF(MemoryAccess, "Read/Write of size %i on address 0x%x old data 0x%x\n",
pkt->getSize(), pkt->getAddr(),pkt->get<uint8_t>());
DPRINTF(MemoryAccess, "New Data 0x%x wasn't conditional and happned\n",
overwrite_mem);
break;
default:
DPRINTF(MemoryAccess, "Read/Write of size %i on address 0x%x\n",
pkt->getSize(), pkt->getAddr());
}
#endif
} else {
panic("unimplemented");
}
@ -315,7 +378,7 @@ PhysicalMemory::getAddressRanges(AddrRangeList &resp, AddrRangeList &snoop)
{
snoop.clear();
resp.clear();
resp.push_back(RangeSize(params()->addrRange.start,
resp.push_back(RangeSize(start(),
params()->addrRange.size()));
}

View file

@ -131,7 +131,7 @@ class PhysicalMemory : public MemObject
// no locked addrs: nothing to check, store_conditional fails
bool isLocked = req->isLocked();
if (isLocked) {
req->setScResult(0);
req->setExtraData(0);
}
return !isLocked; // only do write if not an sc
} else {
@ -148,6 +148,7 @@ class PhysicalMemory : public MemObject
public:
Addr new_page();
uint64_t size() { return params()->addrRange.size(); }
uint64_t start() { return params()->addrRange.start; }
struct Params
{

View file

@ -71,6 +71,10 @@ const uint32_t EVICT_NEXT = 0x20000;
const uint32_t NO_ALIGN_FAULT = 0x40000;
/** The request was an instruction read. */
const uint32_t INST_READ = 0x80000;
/** This request is for a memory swap. */
const uint32_t MEM_SWAP = 0x100000;
const uint32_t MEM_SWAP_COND = 0x200000;
class Request
{
@ -104,8 +108,9 @@ class Request
/** The virtual address of the request. */
Addr vaddr;
/** The return value of store conditional. */
uint64_t scResult;
/** Extra data for the request, such as the return value of
* store conditional or the compare value for a CAS. */
uint64_t extraData;
/** The cpu number (for statistics, typically). */
int cpuNum;
@ -120,7 +125,7 @@ class Request
/** Whether or not the asid & vaddr are valid. */
bool validAsidVaddr;
/** Whether or not the sc result is valid. */
bool validScResult;
bool validExData;
/** Whether or not the cpu number & thread ID are valid. */
bool validCpuAndThreadNums;
/** Whether or not the pc is valid. */
@ -130,7 +135,7 @@ class Request
/** Minimal constructor. No fields are initialized. */
Request()
: validPaddr(false), validAsidVaddr(false),
validScResult(false), validCpuAndThreadNums(false), validPC(false)
validExData(false), validCpuAndThreadNums(false), validPC(false)
{}
/**
@ -169,7 +174,7 @@ class Request
validPaddr = true;
validAsidVaddr = false;
validPC = false;
validScResult = false;
validExData = false;
mmapedIpr = false;
}
@ -187,7 +192,7 @@ class Request
validPaddr = false;
validAsidVaddr = true;
validPC = true;
validScResult = false;
validExData = false;
mmapedIpr = false;
}
@ -237,12 +242,12 @@ class Request
void setMmapedIpr(bool r) { assert(validAsidVaddr); mmapedIpr = r; }
/** Accessor function to check if sc result is valid. */
bool scResultValid() { return validScResult; }
bool extraDataValid() { return validExData; }
/** Accessor function for store conditional return value.*/
uint64_t getScResult() { assert(validScResult); return scResult; }
uint64_t getExtraData() { assert(validExData); return extraData; }
/** Accessor function for store conditional return value.*/
void setScResult(uint64_t _scResult)
{ scResult = _scResult; validScResult = true; }
void setExtraData(uint64_t _extraData)
{ extraData = _extraData; validExData = true; }
/** Accessor function for cpu number.*/
int getCpuNum() { assert(validCpuAndThreadNums); return cpuNum; }
@ -259,6 +264,12 @@ class Request
bool isLocked() { return (getFlags() & LOCKED) != 0; }
bool isSwap() { return (getFlags() & MEM_SWAP ||
getFlags() & MEM_SWAP_COND); }
bool isCondSwap() { return (getFlags() & MEM_SWAP_COND) != 0; }
friend class Packet;
};