Reorganize bridge as pair of cooperating ports.

Store original source & senderState for timing packets
that get a response, so we can properly route the
response packet back to the original sender.

--HG--
extra : convert_revision : 03dbcc8dc06d93de243bfcdc3cbaa012773c6782
This commit is contained in:
Steve Reinhardt 2006-05-26 14:29:29 -04:00
parent cdad113afb
commit acb05ebcf6
2 changed files with 233 additions and 263 deletions

View file

@ -31,209 +31,209 @@
* @file Definition of a simple bus bridge without buffering.
*/
#include <algorithm>
#include "base/trace.hh"
#include "mem/bridge.hh"
#include "sim/builder.hh"
Bridge::BridgePort::BridgePort(const std::string &_name,
Bridge *_bridge, BridgePort *_otherPort,
int _delay, int _queueLimit)
: Port(_name), bridge(_bridge), otherPort(_otherPort),
delay(_delay), outstandingResponses(0),
queueLimit(_queueLimit), sendEvent(this)
{
}
Bridge::Bridge(const std::string &n, int qsa, int qsb,
Tick _delay, int write_ack)
: MemObject(n),
portA(n + "-portA", this, &portB, _delay, qsa),
portB(n + "-portB", this, &portA, _delay, qsa),
ackWrites(write_ack)
{
}
Port *
Bridge::getPort(const std::string &if_name)
{
BridgePort *port;
if (if_name == "side_a")
port = &portA;
else if (if_name == "side_b")
port = &portB;
else
return NULL;
if (port->getPeer() != NULL)
panic("bridge side %s already connected to.", if_name);
return port;
}
void
Bridge::init()
{
// Make sure that both sides are connected to.
if (sideA == NULL || sideB == NULL)
if (portA.getPeer() == NULL || portB.getPeer() == NULL)
panic("Both ports of bus bridge are not connected to a bus.\n");
}
/** Function called by the port when the bus is recieving a Timing
/** Function called by the port when the bus is receiving a Timing
* transaction.*/
bool
Bridge::recvTiming(Packet *pkt, Side id)
Bridge::BridgePort::recvTiming(Packet *pkt)
{
if (blockedA && id == SideA)
return false;
if (blockedB && id == SideB)
DPRINTF(BusBridge, "recvTiming: src %d dest %d addr 0x%x\n",
pkt->getSrc(), pkt->getDest(), pkt->getAddr());
if (pkt->isResponse()) {
// This is a response for a request we forwarded earlier. The
// corresponding PacketBuffer should be stored in the packet's
// senderState field.
PacketBuffer *buf = dynamic_cast<PacketBuffer*>(pkt->senderState);
assert(buf != NULL);
// set up new packet dest & senderState based on values saved
// from original request
buf->fixResponse(pkt);
DPRINTF(BusBridge, " is response, new dest %d\n", pkt->getDest());
delete buf;
}
return otherPort->queueForSendTiming(pkt);
}
bool
Bridge::BridgePort::queueForSendTiming(Packet *pkt)
{
if (queueFull())
return false;
if (delay) {
if (!sendEvent.scheduled())
sendEvent.schedule(curTick + delay);
if (id == SideA) {
inboundA.push_back(std::make_pair<Packet*, Tick>(pkt, curTick));
blockCheck(SideA);
} else {
inboundB.push_back(std::make_pair<Packet*, Tick>(pkt, curTick));
blockCheck(SideB);
}
} else {
if (id == SideB) {
sideA->sendPkt(pkt);
blockCheck(SideB);
} else {
sideB->sendPkt(pkt);
blockCheck(SideA);
}
Tick readyTime = curTick + delay;
PacketBuffer *buf = new PacketBuffer(pkt, readyTime);
// If we're about to put this packet at the head of the queue, we
// need to schedule an event to do the transmit. Otherwise there
// should already be an event scheduled for sending the head
// packet.
if (sendQueue.empty()) {
sendEvent.schedule(readyTime);
}
sendQueue.push_back(buf);
// Did we just become blocked? If yes, let other side know.
if (queueFull())
otherPort->sendStatusChange(Port::Blocked);
return true;
}
void
Bridge::blockCheck(Side id)
Bridge::BridgePort::finishSend(PacketBuffer *buf)
{
/* Check that we still have buffer space available. */
if (id == SideB) {
if (sideA->numQueued() + inboundB.size() >= queueSizeA && !blockedB) {
sideB->sendStatusChange(Port::Blocked);
blockedB = true;
} else if (sideA->numQueued() + inboundB.size() < queueSizeA && blockedB) {
sideB->sendStatusChange(Port::Unblocked);
blockedB = false;
}
if (buf->expectResponse) {
// Must wait for response. We just need to count outstanding
// responses (in case we want to cap them); PacketBuffer
// pointer will be recovered on response.
++outstandingResponses;
DPRINTF(BusBridge, " successful: awaiting response (%d)\n",
outstandingResponses);
} else {
if (sideB->numQueued() + inboundA.size() >= queueSizeB && !blockedA) {
sideA->sendStatusChange(Port::Blocked);
blockedA = true;
} else if (sideB->numQueued() + inboundA.size() < queueSizeB && blockedA) {
sideA->sendStatusChange(Port::Unblocked);
blockedA = false;
}
// no response expected... deallocate packet buffer now.
DPRINTF(BusBridge, " successful: no response expected\n");
delete buf;
}
// If there are more packets to send, schedule event to try again.
if (!sendQueue.empty()) {
buf = sendQueue.front();
sendEvent.schedule(std::max(buf->ready, curTick + 1));
}
}
void Bridge::timerEvent()
{
Tick t = 0;
assert(inboundA.size() || inboundB.size());
if (inboundA.size()) {
while (inboundA.front().second <= curTick + delay){
sideB->sendPkt(inboundA.front());
inboundA.pop_front();
}
if (inboundA.size())
t = inboundA.front().second + delay;
}
if (inboundB.size()) {
while (inboundB.front().second <= curTick + delay){
sideB->sendPkt(inboundA.front());
inboundB.pop_front();
}
if (inboundB.size())
if (t == 0)
t = inboundB.front().second + delay;
else
t = std::min(t,inboundB.front().second + delay);
void
Bridge::BridgePort::trySend()
{
assert(!sendQueue.empty());
PacketBuffer *buf = sendQueue.front();
assert(buf->ready <= curTick);
Packet *pkt = buf->pkt;
DPRINTF(BusBridge, "trySend: origSrc %d dest %d addr 0x%x\n",
buf->origSrc, pkt->getDest(), pkt->getAddr());
if (sendTiming(pkt)) {
// send successful
sendQueue.pop_front();
buf->pkt = NULL; // we no longer own packet, so it's not safe to look at it
finishSend(buf);
} else {
panic("timerEvent() called but nothing to do?");
DPRINTF(BusBridge, " unsuccessful\n");
}
if (t != 0)
sendEvent.schedule(t);
}
void
Bridge::BridgePort::sendPkt(Packet *pkt)
{
if (!sendTiming(pkt))
outbound.push_back(std::make_pair<Packet*,Tick>(pkt, curTick));
}
void
Bridge::BridgePort::sendPkt(std::pair<Packet*, Tick> p)
{
if (!sendTiming(p.first))
outbound.push_back(p);
}
Packet *
Bridge::BridgePort::recvRetry()
{
Packet *pkt;
assert(outbound.size() > 0);
assert(outbound.front().second >= curTick + bridge->delay);
pkt = outbound.front().first;
outbound.pop_front();
bridge->blockCheck(side);
PacketBuffer *buf = sendQueue.front();
Packet *pkt = buf->pkt;
finishSend(buf);
return pkt;
}
/** Function called by the port when the bus is recieving a Atomic
/** Function called by the port when the bus is receiving a Atomic
* transaction.*/
Tick
Bridge::recvAtomic(Packet *pkt, Side id)
Bridge::BridgePort::recvAtomic(Packet *pkt)
{
pkt->time += delay;
if (id == SideA)
return sideB->sendAtomic(pkt);
else
return sideA->sendAtomic(pkt);
return otherPort->sendAtomic(pkt) + delay;
}
/** Function called by the port when the bus is recieving a Functional
/** Function called by the port when the bus is receiving a Functional
* transaction.*/
void
Bridge::recvFunctional(Packet *pkt, Side id)
Bridge::BridgePort::recvFunctional(Packet *pkt)
{
pkt->time += delay;
std::list<std::pair<Packet*, Tick> >::iterator i;
std::list<PacketBuffer*>::iterator i;
bool pktContinue = true;
for(i = inboundA.begin(); i != inboundA.end(); ++i) {
if (pkt->intersect(i->first)) {
pktContinue &= fixPacket(pkt, i->first);
}
}
for(i = inboundB.begin(); i != inboundB.end(); ++i) {
if (pkt->intersect(i->first)) {
pktContinue &= fixPacket(pkt, i->first);
}
}
for(i = sideA->outbound.begin(); i != sideA->outbound.end(); ++i) {
if (pkt->intersect(i->first)) {
pktContinue &= fixPacket(pkt, i->first);
}
}
for(i = sideB->outbound.begin(); i != sideB->outbound.end(); ++i) {
if (pkt->intersect(i->first)) {
pktContinue &= fixPacket(pkt, i->first);
for (i = sendQueue.begin(); i != sendQueue.end(); ++i) {
if (pkt->intersect((*i)->pkt)) {
pktContinue &= fixPacket(pkt, (*i)->pkt);
}
}
if (pktContinue) {
if (id == SideA)
sideB->sendFunctional(pkt);
else
sideA->sendFunctional(pkt);
otherPort->sendFunctional(pkt);
}
}
/** Function called by the port when the bus is recieving a status change.*/
/** Function called by the port when the bus is receiving a status change.*/
void
Bridge::recvStatusChange(Port::Status status, Side id)
Bridge::BridgePort::recvStatusChange(Port::Status status)
{
if (status == Port::Blocked || status == Port::Unblocked)
return ;
return;
if (id == SideA)
sideB->sendStatusChange(status);
else
sideA->sendStatusChange(status);
otherPort->sendStatusChange(status);
}
void
Bridge::addressRanges(AddrRangeList &resp, AddrRangeList &snoop, Side id)
Bridge::BridgePort::getDeviceAddressRanges(AddrRangeList &resp,
AddrRangeList &snoop)
{
if (id == SideA)
sideB->getPeerAddressRanges(resp, snoop);
else
sideA->getPeerAddressRanges(resp, snoop);
otherPort->getPeerAddressRanges(resp, snoop);
}
BEGIN_DECLARE_SIM_OBJECT_PARAMS(Bridge)

View file

@ -46,132 +46,127 @@
class Bridge : public MemObject
{
public:
enum Side
{
SideA,
SideB
};
protected:
/** Function called by the port when the bus is recieving a Timing
transaction.*/
bool recvTiming(Packet *pkt, Side id);
/** Function called by the port when the bus is recieving a Atomic
transaction.*/
Tick recvAtomic(Packet *pkt, Side id);
/** Function called by the port when the bus is recieving a Functional
transaction.*/
void recvFunctional(Packet *pkt, Side id);
/** Function called by the port when the bus is recieving a status change.*/
void recvStatusChange(Port::Status status, Side id);
/** Process address range request.
* @param resp addresses that we can respond to
* @param snoop addresses that we would like to snoop
* @param id ide of the busport that made the request.
*/
void addressRanges(AddrRangeList &resp, AddrRangeList &snoop, Side id);
/** Event that the SendEvent calls when it fires. This code must reschedule
* the send event as required. */
void timerEvent();
/** Decleration of the buses port type, one will be instantiated for each
of the interfaces connecting to the bus. */
class BridgePort : public Port
{
/** A pointer to the bus to which this port belongs. */
/** A pointer to the bridge to which this port belongs. */
Bridge *bridge;
/** A id to keep track of the intercafe ID this port is connected to. */
Bridge::Side side;
/**
* Pointer to the port on the other side of the bridge
* (connected to the other bus).
*/
BridgePort *otherPort;
/** Minimum delay though this bridge. */
Tick delay;
class PacketBuffer : public Packet::SenderState {
public:
Tick ready;
Packet *pkt;
Packet::SenderState *origSenderState;
short origSrc;
bool expectResponse;
PacketBuffer(Packet *_pkt, Tick t)
: ready(t), pkt(_pkt),
origSenderState(_pkt->senderState), origSrc(_pkt->getSrc()),
expectResponse(_pkt->needsResponse())
{
pkt->senderState = this;
}
void fixResponse(Packet *pkt)
{
assert(pkt->senderState == this);
pkt->setDest(origSrc);
pkt->senderState = origSenderState;
}
};
/**
* Outbound packet queue. Packets are held in this queue for a
* specified delay to model the processing delay of the
* bridge.
*/
std::list<PacketBuffer*> sendQueue;
int outstandingResponses;
/** Max queue size for outbound packets */
int queueLimit;
/**
* Is this side blocked from accepting outbound packets?
*/
bool queueFull() { return (sendQueue.size() == queueLimit); }
bool queueForSendTiming(Packet *pkt);
void finishSend(PacketBuffer *buf);
/**
* Handle send event, scheduled when the packet at the head of
* the outbound queue is ready to transmit (for timing
* accesses only).
*/
void trySend();
class SendEvent : public Event
{
BridgePort *port;
public:
SendEvent(BridgePort *p)
: Event(&mainEventQueue), port(p) {}
virtual void process() { port->trySend(); }
virtual const char *description() { return "bridge send event"; }
};
SendEvent sendEvent;
public:
/** Constructor for the BusPort.*/
BridgePort(Bridge *_bridge, Side _side)
: Port(""), bridge(_bridge), side(_side)
{ }
int numQueued() { return outbound.size(); }
BridgePort(const std::string &_name,
Bridge *_bridge, BridgePort *_otherPort,
int _delay, int _queueLimit);
protected:
/** Data this is waiting to be transmitted. */
std::list<std::pair<Packet*, Tick> > outbound;
void sendPkt(Packet *pkt);
void sendPkt(std::pair<Packet*, Tick> p);
/** When reciving a timing request from the peer port,
/** When receiving a timing request from the peer port,
pass it to the bridge. */
virtual bool recvTiming(Packet *pkt)
{ return bridge->recvTiming(pkt, side); }
virtual bool recvTiming(Packet *pkt);
/** When reciving a retry request from the peer port,
/** When receiving a retry request from the peer port,
pass it to the bridge. */
virtual Packet* recvRetry();
/** When reciving a Atomic requestfrom the peer port,
/** When receiving a Atomic requestfrom the peer port,
pass it to the bridge. */
virtual Tick recvAtomic(Packet *pkt)
{ return bridge->recvAtomic(pkt, side); }
virtual Tick recvAtomic(Packet *pkt);
/** When reciving a Functional request from the peer port,
/** When receiving a Functional request from the peer port,
pass it to the bridge. */
virtual void recvFunctional(Packet *pkt)
{ bridge->recvFunctional(pkt, side); }
virtual void recvFunctional(Packet *pkt);
/** When reciving a status changefrom the peer port,
/** When receiving a status changefrom the peer port,
pass it to the bridge. */
virtual void recvStatusChange(Status status)
{ bridge->recvStatusChange(status, side); }
virtual void recvStatusChange(Status status);
/** When reciving a address range request the peer port,
/** When receiving a address range request the peer port,
pass it to the bridge. */
virtual void getDeviceAddressRanges(AddrRangeList &resp, AddrRangeList &snoop)
{ bridge->addressRanges(resp, snoop, side); }
friend class Bridge;
virtual void getDeviceAddressRanges(AddrRangeList &resp,
AddrRangeList &snoop);
};
class SendEvent : public Event
{
Bridge *bridge;
SendEvent(Bridge *b)
: Event(&mainEventQueue), bridge(b) {}
virtual void process() { bridge->timerEvent(); }
virtual const char *description() { return "bridge delay event"; }
friend class Bridge;
};
SendEvent sendEvent;
/** Sides of the bus bridges. */
BridgePort* sideA;
BridgePort* sideB;
/** inbound queues on both sides. */
std::list<std::pair<Packet*, Tick> > inboundA;
std::list<std::pair<Packet*, Tick> > inboundB;
/** The size of the queue for data coming into side a */
int queueSizeA;
int queueSizeB;
/* if the side is blocked or not. */
bool blockedA;
bool blockedB;
/** Miminum delay though this bridge. */
Tick delay;
BridgePort portA, portB;
/** If this bridge should acknowledge writes. */
bool ackWrites;
@ -179,36 +174,11 @@ class Bridge : public MemObject
public:
/** A function used to return the port associated with this bus object. */
virtual Port *getPort(const std::string &if_name)
{
if (if_name == "side_a") {
if (sideA != NULL)
panic("bridge side a already connected to.");
sideA = new BridgePort(this, SideA);
return sideA;
} else if (if_name == "side_b") {
if (sideB != NULL)
panic("bridge side b already connected to.");
sideB = new BridgePort(this, SideB);
return sideB;
} else
return NULL;
}
virtual Port *getPort(const std::string &if_name);
virtual void init();
Bridge(const std::string &n, int qsa, int qsb, Tick _delay, int write_ack)
: MemObject(n), sendEvent(this), sideA(NULL), sideB(NULL),
queueSizeA(qsa), queueSizeB(qsb), blockedA(false), blockedB(false),
delay(_delay), ackWrites(write_ack)
{}
/** Check if the port should block/unblock after recieving/sending a packet.
* */
void blockCheck(Side id);
friend class Bridge::SendEvent;
Bridge(const std::string &n, int qsa, int qsb, Tick _delay, int write_ack);
};
#endif //__MEM_BUS_HH__