Bridge: Remove NACKs in the bridge and unify with packet queue

This patch removes the NACKing in the bridge, as the split
request/response busses now ensure that protocol deadlocks do not
occur, i.e. the message-dependency chain is broken by always allowing
responses to make progress without being stalled by requests. The
NACKs had limited support in the system with most components ignoring
their use (with a suitable call to panic), and as the NACKs are no
longer needed to avoid protocol deadlocks, the cleanest way is to
simply remove them.

The bridge is the starting point as this is the only place where the
NACKs are created. A follow-up patch will remove the code that deals
with NACKs in the endpoints, e.g. the X86 table walker and DMA
port. Ultimately the type of packet can be complete removed (until
someone sees a need for modelling more complex protocols, which can
now be done in parts of the system since the port and interface is
split).

As a consequence of the NACK removal, the bridge now has to send a
retry to a master if the request or response queue was full on the
first attempt. This change also makes the bridge ports very similar to
QueuedPorts, and a later patch will change the bridge to use these. A
first step in this direction is taken by aligning the name of the
member functions, as done by this patch.

A bit of tidying up has also been done as part of the simplifications.

Surprisingly, this patch has no impact on any of the
regressions. Hence, there was never any NACKs issued. In a follow-up
patch I would suggest changing the size of the bridge buffers set in
FSConfig.py to also test the situation where the bridge fills up.
This commit is contained in:
Andreas Hansson 2012-08-22 11:39:58 -04:00
parent e317d8b9ff
commit a6074016e2
7 changed files with 187 additions and 263 deletions

View file

@ -71,7 +71,7 @@ def makeLinuxAlphaSystem(mem_mode, mdesc = None):
self.membus = MemBus()
# By default the bridge responds to all addresses above the I/O
# base address (including the PCI config space)
self.bridge = Bridge(delay='50ns', nack_delay='4ns',
self.bridge = Bridge(delay='50ns',
ranges = [AddrRange(IO_address_space_base, Addr.max)])
self.physmem = SimpleMemory(range = AddrRange(mdesc.mem()))
self.bridge.master = self.iobus.slave
@ -174,7 +174,7 @@ def makeSparcSystem(mem_mode, mdesc = None):
self.readfile = mdesc.script()
self.iobus = NoncoherentBus()
self.membus = MemBus()
self.bridge = Bridge(delay='50ns', nack_delay='4ns')
self.bridge = Bridge(delay='50ns')
self.t1000 = T1000()
self.t1000.attachOnChipIO(self.membus)
self.t1000.attachIO(self.iobus)
@ -240,7 +240,7 @@ def makeArmSystem(mem_mode, machine_type, mdesc = None, bare_metal=False):
self.iobus = NoncoherentBus()
self.membus = MemBus()
self.membus.badaddr_responder.warn_access = "warn"
self.bridge = Bridge(delay='50ns', nack_delay='4ns')
self.bridge = Bridge(delay='50ns')
self.bridge.master = self.iobus.slave
self.bridge.slave = self.membus.master
@ -322,7 +322,7 @@ def makeLinuxMipsSystem(mem_mode, mdesc = None):
self.readfile = mdesc.script()
self.iobus = NoncoherentBus()
self.membus = MemBus()
self.bridge = Bridge(delay='50ns', nack_delay='4ns')
self.bridge = Bridge(delay='50ns')
self.physmem = SimpleMemory(range = AddrRange('1GB'))
self.bridge.master = self.iobus.slave
self.bridge.slave = self.membus.master
@ -368,7 +368,7 @@ def connectX86ClassicSystem(x86_sys, numCPUs):
# North Bridge
x86_sys.iobus = NoncoherentBus()
x86_sys.bridge = Bridge(delay='50ns', nack_delay='4ns')
x86_sys.bridge = Bridge(delay='50ns')
x86_sys.bridge.master = x86_sys.iobus.slave
x86_sys.bridge.slave = x86_sys.membus.master
# Allow the bridge to pass through the IO APIC (two pages),
@ -387,7 +387,7 @@ def connectX86ClassicSystem(x86_sys, numCPUs):
# Create a bridge from the IO bus to the memory bus to allow access to
# the local APIC (two pages)
x86_sys.apicbridge = Bridge(delay='50ns', nack_delay='4ns')
x86_sys.apicbridge = Bridge(delay='50ns')
x86_sys.apicbridge.slave = x86_sys.iobus.master
x86_sys.apicbridge.master = x86_sys.membus.slave
x86_sys.apicbridge.ranges = [AddrRange(interrupts_address_space_base,

View file

@ -126,8 +126,7 @@ if options.caches or options.l2cache:
test_sys.iocache.cpu_side = test_sys.iobus.master
test_sys.iocache.mem_side = test_sys.membus.slave
else:
test_sys.iobridge = Bridge(delay='50ns', nack_delay='4ns',
ranges = [test_sys.physmem.range])
test_sys.iobridge = Bridge(delay='50ns', ranges = [test_sys.physmem.range])
test_sys.iobridge.slave = test_sys.iobus.master
test_sys.iobridge.master = test_sys.membus.slave
@ -162,7 +161,7 @@ if len(bm) == 2:
drive_sys.cpu.fastmem = True
if options.kernel is not None:
drive_sys.kernel = binary(options.kernel)
drive_sys.iobridge = Bridge(delay='50ns', nack_delay='4ns',
drive_sys.iobridge = Bridge(delay='50ns',
ranges = [drive_sys.physmem.range])
drive_sys.iobridge.slave = drive_sys.iobus.master
drive_sys.iobridge.master = drive_sys.membus.slave

View file

@ -1,3 +1,15 @@
# Copyright (c) 2012 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2006-2007 The Regents of The University of Michigan
# All rights reserved.
#
@ -25,6 +37,7 @@
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Ali Saidi
# Andreas Hansson
from m5.params import *
from MemObject import MemObject
@ -34,9 +47,7 @@ class Bridge(MemObject):
slave = SlavePort('Slave port')
master = MasterPort('Master port')
req_size = Param.Int(16, "The number of requests to buffer")
resp_size = Param.Int(16, "The number of requests to buffer")
resp_size = Param.Int(16, "The number of responses to buffer")
delay = Param.Latency('0ns', "The latency of this bridge")
nack_delay = Param.Latency('0ns', "The latency of this bridge")
write_ack = Param.Bool(False, "Should this bridge ack writes")
ranges = VectorParam.AddrRange([AllMemory],
"Address ranges to pass through the bridge")

View file

@ -65,7 +65,7 @@ DebugFlag('NoncoherentBus')
CompoundFlag('Bus', ['BaseBus', 'BusAddrRanges', 'CoherentBus',
'NoncoherentBus'])
DebugFlag('BusBridge')
DebugFlag('Bridge')
DebugFlag('CommMonitor')
DebugFlag('LLSC')
DebugFlag('MMU')

View file

@ -49,43 +49,37 @@
*/
#include "base/trace.hh"
#include "debug/BusBridge.hh"
#include "debug/Bridge.hh"
#include "mem/bridge.hh"
#include "params/Bridge.hh"
Bridge::BridgeSlavePort::BridgeSlavePort(const std::string& _name,
Bridge* _bridge,
Bridge& _bridge,
BridgeMasterPort& _masterPort,
int _delay, int _nack_delay,
int _resp_limit,
int _delay, int _resp_limit,
std::vector<Range<Addr> > _ranges)
: SlavePort(_name, _bridge), bridge(_bridge), masterPort(_masterPort),
delay(_delay), nackDelay(_nack_delay),
ranges(_ranges.begin(), _ranges.end()),
outstandingResponses(0), inRetry(false),
: SlavePort(_name, &_bridge), bridge(_bridge), masterPort(_masterPort),
delay(_delay), ranges(_ranges.begin(), _ranges.end()),
outstandingResponses(0), retryReq(false),
respQueueLimit(_resp_limit), sendEvent(*this)
{
}
Bridge::BridgeMasterPort::BridgeMasterPort(const std::string& _name,
Bridge* _bridge,
Bridge& _bridge,
BridgeSlavePort& _slavePort,
int _delay, int _req_limit)
: MasterPort(_name, _bridge), bridge(_bridge), slavePort(_slavePort),
delay(_delay), inRetry(false), reqQueueLimit(_req_limit),
sendEvent(*this)
: MasterPort(_name, &_bridge), bridge(_bridge), slavePort(_slavePort),
delay(_delay), reqQueueLimit(_req_limit), sendEvent(*this)
{
}
Bridge::Bridge(Params *p)
: MemObject(p),
slavePort(p->name + ".slave", this, masterPort, p->delay,
p->nack_delay, p->resp_size, p->ranges),
masterPort(p->name + ".master", this, slavePort, p->delay, p->req_size),
ackWrites(p->write_ack), _params(p)
slavePort(p->name + ".slave", *this, masterPort, p->delay, p->resp_size,
p->ranges),
masterPort(p->name + ".master", *this, slavePort, p->delay, p->req_size)
{
if (ackWrites)
panic("No support for acknowledging writes\n");
}
MasterPort&
@ -133,7 +127,7 @@ Bridge::BridgeSlavePort::respQueueFull()
bool
Bridge::BridgeMasterPort::reqQueueFull()
{
return requestQueue.size() == reqQueueLimit;
return transmitList.size() == reqQueueLimit;
}
bool
@ -141,12 +135,12 @@ Bridge::BridgeMasterPort::recvTimingResp(PacketPtr pkt)
{
// all checks are done when the request is accepted on the slave
// side, so we are guaranteed to have space for the response
DPRINTF(BusBridge, "recvTiming: response %s addr 0x%x\n",
DPRINTF(Bridge, "recvTimingResp: %s addr 0x%x\n",
pkt->cmdString(), pkt->getAddr());
DPRINTF(BusBridge, "Request queue size: %d\n", requestQueue.size());
DPRINTF(Bridge, "Request queue size: %d\n", transmitList.size());
slavePort.queueForSendTiming(pkt);
slavePort.schedTimingResp(pkt, curTick() + delay);
return true;
}
@ -154,95 +148,52 @@ Bridge::BridgeMasterPort::recvTimingResp(PacketPtr pkt)
bool
Bridge::BridgeSlavePort::recvTimingReq(PacketPtr pkt)
{
DPRINTF(BusBridge, "recvTiming: request %s addr 0x%x\n",
DPRINTF(Bridge, "recvTimingReq: %s addr 0x%x\n",
pkt->cmdString(), pkt->getAddr());
DPRINTF(BusBridge, "Response queue size: %d outresp: %d\n",
responseQueue.size(), outstandingResponses);
// ensure we do not have something waiting to retry
if(retryReq)
return false;
DPRINTF(Bridge, "Response queue size: %d outresp: %d\n",
transmitList.size(), outstandingResponses);
if (masterPort.reqQueueFull()) {
DPRINTF(BusBridge, "Request queue full, nacking\n");
nackRequest(pkt);
return true;
}
if (pkt->needsResponse()) {
DPRINTF(Bridge, "Request queue full\n");
retryReq = true;
} else if (pkt->needsResponse()) {
if (respQueueFull()) {
DPRINTF(BusBridge,
"Response queue full, no space for response, nacking\n");
DPRINTF(BusBridge,
"queue size: %d outstanding resp: %d\n",
responseQueue.size(), outstandingResponses);
nackRequest(pkt);
return true;
DPRINTF(Bridge, "Response queue full\n");
retryReq = true;
} else {
DPRINTF(BusBridge, "Request Needs response, reserving space\n");
DPRINTF(Bridge, "Reserving space for response\n");
assert(outstandingResponses != respQueueLimit);
++outstandingResponses;
retryReq = false;
masterPort.schedTimingReq(pkt, curTick() + delay);
}
}
masterPort.queueForSendTiming(pkt);
return true;
// remember that we are now stalling a packet and that we have to
// tell the sending master to retry once space becomes available,
// we make no distinction whether the stalling is due to the
// request queue or response queue being full
return !retryReq;
}
void
Bridge::BridgeSlavePort::nackRequest(PacketPtr pkt)
Bridge::BridgeSlavePort::retryStalledReq()
{
// Nack the packet
pkt->makeTimingResponse();
pkt->setNacked();
// The Nack packets are stored in the response queue just like any
// other response, but they do not occupy any space as this is
// tracked by the outstandingResponses, this guarantees space for
// the Nack packets, but implicitly means we have an (unrealistic)
// unbounded Nack queue.
// put it on the list to send
Tick readyTime = curTick() + nackDelay;
DeferredResponse resp(pkt, readyTime, true);
// nothing on the list, add it and we're done
if (responseQueue.empty()) {
assert(!sendEvent.scheduled());
bridge->schedule(sendEvent, readyTime);
responseQueue.push_back(resp);
return;
if (retryReq) {
DPRINTF(Bridge, "Request waiting for retry, now retrying\n");
retryReq = false;
sendRetry();
}
assert(sendEvent.scheduled() || inRetry);
// does it go at the end?
if (readyTime >= responseQueue.back().ready) {
responseQueue.push_back(resp);
return;
}
// ok, somewhere in the middle, fun
std::list<DeferredResponse>::iterator i = responseQueue.begin();
std::list<DeferredResponse>::iterator end = responseQueue.end();
std::list<DeferredResponse>::iterator begin = responseQueue.begin();
bool done = false;
while (i != end && !done) {
if (readyTime < (*i).ready) {
if (i == begin)
bridge->reschedule(sendEvent, readyTime);
responseQueue.insert(i, resp);
done = true;
}
i++;
}
assert(done);
}
void
Bridge::BridgeMasterPort::queueForSendTiming(PacketPtr pkt)
Bridge::BridgeMasterPort::schedTimingReq(PacketPtr pkt, Tick when)
{
Tick readyTime = curTick() + delay;
// If we expect to see a response, we need to restore the source
// and destination field that is potentially changed by a second
// bus
@ -257,18 +208,18 @@ Bridge::BridgeMasterPort::queueForSendTiming(PacketPtr pkt)
// need to schedule an event to do the transmit. Otherwise there
// should already be an event scheduled for sending the head
// packet.
if (requestQueue.empty()) {
bridge->schedule(sendEvent, readyTime);
if (transmitList.empty()) {
bridge.schedule(sendEvent, when);
}
assert(requestQueue.size() != reqQueueLimit);
assert(transmitList.size() != reqQueueLimit);
requestQueue.push_back(DeferredRequest(pkt, readyTime));
transmitList.push_back(DeferredPacket(pkt, when));
}
void
Bridge::BridgeSlavePort::queueForSendTiming(PacketPtr pkt)
Bridge::BridgeSlavePort::schedTimingResp(PacketPtr pkt, Tick when)
{
// This is a response for a request we forwarded earlier. The
// corresponding request state should be stored in the packet's
@ -278,119 +229,124 @@ Bridge::BridgeSlavePort::queueForSendTiming(PacketPtr pkt)
// set up new packet dest & senderState based on values saved
// from original request
req_state->fixResponse(pkt);
delete req_state;
// the bridge assumes that at least one bus has set the
// destination field of the packet
assert(pkt->isDestValid());
DPRINTF(BusBridge, "response, new dest %d\n", pkt->getDest());
delete req_state;
Tick readyTime = curTick() + delay;
DPRINTF(Bridge, "response, new dest %d\n", pkt->getDest());
// If we're about to put this packet at the head of the queue, we
// need to schedule an event to do the transmit. Otherwise there
// should already be an event scheduled for sending the head
// packet.
if (responseQueue.empty()) {
bridge->schedule(sendEvent, readyTime);
if (transmitList.empty()) {
bridge.schedule(sendEvent, when);
}
responseQueue.push_back(DeferredResponse(pkt, readyTime));
transmitList.push_back(DeferredPacket(pkt, when));
}
void
Bridge::BridgeMasterPort::trySend()
Bridge::BridgeMasterPort::trySendTiming()
{
assert(!requestQueue.empty());
assert(!transmitList.empty());
DeferredRequest req = requestQueue.front();
DeferredPacket req = transmitList.front();
assert(req.ready <= curTick());
assert(req.tick <= curTick());
PacketPtr pkt = req.pkt;
DPRINTF(BusBridge, "trySend request: addr 0x%x\n", pkt->getAddr());
DPRINTF(Bridge, "trySend request addr 0x%x, queue size %d\n",
pkt->getAddr(), transmitList.size());
if (sendTimingReq(pkt)) {
// send successful
requestQueue.pop_front();
transmitList.pop_front();
DPRINTF(Bridge, "trySend request successful\n");
// If there are more packets to send, schedule event to try again.
if (!requestQueue.empty()) {
req = requestQueue.front();
DPRINTF(BusBridge, "Scheduling next send\n");
bridge->schedule(sendEvent,
std::max(req.ready, curTick() + 1));
}
} else {
inRetry = true;
if (!transmitList.empty()) {
req = transmitList.front();
DPRINTF(Bridge, "Scheduling next send\n");
bridge.schedule(sendEvent, std::max(req.tick,
bridge.nextCycle()));
}
DPRINTF(BusBridge, "trySend: request queue size: %d\n",
requestQueue.size());
// if we have stalled a request due to a full request queue,
// then send a retry at this point, also note that if the
// request we stalled was waiting for the response queue
// rather than the request queue we might stall it again
slavePort.retryStalledReq();
}
// if the send failed, then we try again once we receive a retry,
// and therefore there is no need to take any action
}
void
Bridge::BridgeSlavePort::trySend()
Bridge::BridgeSlavePort::trySendTiming()
{
assert(!responseQueue.empty());
assert(!transmitList.empty());
DeferredResponse resp = responseQueue.front();
DeferredPacket resp = transmitList.front();
assert(resp.ready <= curTick());
assert(resp.tick <= curTick());
PacketPtr pkt = resp.pkt;
DPRINTF(BusBridge, "trySend response: dest %d addr 0x%x\n",
pkt->getDest(), pkt->getAddr());
bool was_nacked_here = resp.nackedHere;
DPRINTF(Bridge, "trySend response addr 0x%x, outstanding %d\n",
pkt->getAddr(), outstandingResponses);
if (sendTimingResp(pkt)) {
DPRINTF(BusBridge, " successful\n");
// send successful
responseQueue.pop_front();
transmitList.pop_front();
DPRINTF(Bridge, "trySend response successful\n");
if (!was_nacked_here) {
assert(outstandingResponses != 0);
--outstandingResponses;
}
// If there are more packets to send, schedule event to try again.
if (!responseQueue.empty()) {
resp = responseQueue.front();
DPRINTF(BusBridge, "Scheduling next send\n");
bridge->schedule(sendEvent,
std::max(resp.ready, curTick() + 1));
}
} else {
DPRINTF(BusBridge, " unsuccessful\n");
inRetry = true;
if (!transmitList.empty()) {
resp = transmitList.front();
DPRINTF(Bridge, "Scheduling next send\n");
bridge.schedule(sendEvent, std::max(resp.tick,
bridge.nextCycle()));
}
DPRINTF(BusBridge, "trySend: queue size: %d outstanding resp: %d\n",
responseQueue.size(), outstandingResponses);
// if there is space in the request queue and we were stalling
// a request, it will definitely be possible to accept it now
// since there is guaranteed space in the response queue
if (!masterPort.reqQueueFull() && retryReq) {
DPRINTF(Bridge, "Request waiting for retry, now retrying\n");
retryReq = false;
sendRetry();
}
}
// if the send failed, then we try again once we receive a retry,
// and therefore there is no need to take any action
}
void
Bridge::BridgeMasterPort::recvRetry()
{
inRetry = false;
Tick nextReady = requestQueue.front().ready;
Tick nextReady = transmitList.front().tick;
if (nextReady <= curTick())
trySend();
trySendTiming();
else
bridge->schedule(sendEvent, nextReady);
bridge.schedule(sendEvent, nextReady);
}
void
Bridge::BridgeSlavePort::recvRetry()
{
inRetry = false;
Tick nextReady = responseQueue.front().ready;
Tick nextReady = transmitList.front().tick;
if (nextReady <= curTick())
trySend();
trySendTiming();
else
bridge->schedule(sendEvent, nextReady);
bridge.schedule(sendEvent, nextReady);
}
Tick
@ -402,12 +358,12 @@ Bridge::BridgeSlavePort::recvAtomic(PacketPtr pkt)
void
Bridge::BridgeSlavePort::recvFunctional(PacketPtr pkt)
{
std::list<DeferredResponse>::iterator i;
std::list<DeferredPacket>::iterator i;
pkt->pushLabel(name());
// check the response queue
for (i = responseQueue.begin(); i != responseQueue.end(); ++i) {
for (i = transmitList.begin(); i != transmitList.end(); ++i) {
if (pkt->checkFunctional((*i).pkt)) {
pkt->makeResponse();
return;
@ -429,9 +385,9 @@ bool
Bridge::BridgeMasterPort::checkFunctional(PacketPtr pkt)
{
bool found = false;
std::list<DeferredRequest>::iterator i = requestQueue.begin();
std::list<DeferredPacket>::iterator i = transmitList.begin();
while(i != requestQueue.end() && !found) {
while(i != transmitList.end() && !found) {
if (pkt->checkFunctional((*i).pkt)) {
pkt->makeResponse();
found = true;

View file

@ -52,15 +52,10 @@
#define __MEM_BRIDGE_HH__
#include <list>
#include <queue>
#include <string>
#include "base/types.hh"
#include "mem/mem_object.hh"
#include "mem/packet.hh"
#include "mem/port.hh"
#include "params/Bridge.hh"
#include "sim/eventq.hh"
/**
* A bridge is used to interface two different busses (or in general a
@ -71,9 +66,9 @@
* The bridge comprises a slave port and a master port, that buffer
* outgoing responses and requests respectively. Buffer space is
* reserved when a request arrives, also reserving response space
* before forwarding the request. An incoming request is always
* accepted (recvTiming returns true), but is potentially NACKed if
* there is no request space or response space.
* before forwarding the request. If there is no space present, then
* the bridge will delay accepting the packet until space becomes
* available.
*/
class Bridge : public MemObject
{
@ -106,40 +101,18 @@ class Bridge : public MemObject
};
/**
* A deferred request stores a packet along with its scheduled
* transmission time, and whether we can expect to see a response
* or not.
* A deferred packet stores a packet along with its scheduled
* transmission time
*/
class DeferredRequest
class DeferredPacket
{
public:
Tick ready;
Tick tick;
PacketPtr pkt;
bool expectResponse;
DeferredRequest(PacketPtr _pkt, Tick t)
: ready(t), pkt(_pkt), expectResponse(_pkt->needsResponse())
{ }
};
/**
* A deferred response stores a packet along with its scheduled
* transmission time. It also contains information of whether the
* bridge NACKed the packet to be able to correctly maintain
* counters of outstanding responses.
*/
class DeferredResponse {
public:
Tick ready;
PacketPtr pkt;
bool nackedHere;
DeferredResponse(PacketPtr _pkt, Tick t, bool nack = false)
: ready(t), pkt(_pkt), nackedHere(nack)
DeferredPacket(PacketPtr _pkt, Tick _tick) : tick(_tick), pkt(_pkt)
{ }
};
@ -157,21 +130,18 @@ class Bridge : public MemObject
private:
/** A pointer to the bridge to which this port belongs. */
Bridge *bridge;
/** The bridge to which this port belongs. */
Bridge& bridge;
/**
* Master port on the other side of the bridge
* (connected to the other bus).
* Master port on the other side of the bridge (connected to
* the other bus).
*/
BridgeMasterPort& masterPort;
/** Minimum request delay though this bridge. */
Tick delay;
/** Min delay to respond with a nack. */
Tick nackDelay;
/** Address ranges to pass through the bridge */
AddrRangeList ranges;
@ -180,13 +150,13 @@ class Bridge : public MemObject
* queue for a specified delay to model the processing delay
* of the bridge.
*/
std::list<DeferredResponse> responseQueue;
std::list<DeferredPacket> transmitList;
/** Counter to track the outstanding responses. */
unsigned int outstandingResponses;
/** If we're waiting for a retry to happen. */
bool inRetry;
/** If we should send a retry when space becomes available. */
bool retryReq;
/** Max queue size for reserved responses. */
unsigned int respQueueLimit;
@ -198,23 +168,16 @@ class Bridge : public MemObject
*/
bool respQueueFull();
/**
* Turn the request packet into a NACK response and put it in
* the response queue and schedule its transmission.
*
* @param pkt the request packet to NACK
*/
void nackRequest(PacketPtr pkt);
/**
* Handle send event, scheduled when the packet at the head of
* the response queue is ready to transmit (for timing
* accesses only).
*/
void trySend();
void trySendTiming();
/** Send event for the response queue. */
EventWrapper<BridgeSlavePort, &BridgeSlavePort::trySend> sendEvent;
EventWrapper<BridgeSlavePort,
&BridgeSlavePort::trySendTiming> sendEvent;
public:
@ -225,44 +188,50 @@ class Bridge : public MemObject
* @param _bridge the structural owner
* @param _masterPort the master port on the other side of the bridge
* @param _delay the delay from seeing a response to sending it
* @param _nack_delay the delay from a NACK to sending the response
* @param _resp_limit the size of the response queue
* @param _ranges a number of address ranges to forward
*/
BridgeSlavePort(const std::string &_name, Bridge *_bridge,
BridgeSlavePort(const std::string& _name, Bridge& _bridge,
BridgeMasterPort& _masterPort, int _delay,
int _nack_delay, int _resp_limit,
std::vector<Range<Addr> > _ranges);
int _resp_limit, std::vector<Range<Addr> > _ranges);
/**
* Queue a response packet to be sent out later and also schedule
* a send if necessary.
*
* @param pkt a response to send out after a delay
* @param when tick when response packet should be sent
*/
void queueForSendTiming(PacketPtr pkt);
void schedTimingResp(PacketPtr pkt, Tick when);
/**
* Retry any stalled request that we have failed to accept at
* an earlier point in time. This call will do nothing if no
* request is waiting.
*/
void retryStalledReq();
protected:
/** When receiving a timing request from the peer port,
pass it to the bridge. */
virtual bool recvTimingReq(PacketPtr pkt);
bool recvTimingReq(PacketPtr pkt);
/** When receiving a retry request from the peer port,
pass it to the bridge. */
virtual void recvRetry();
void recvRetry();
/** When receiving a Atomic requestfrom the peer port,
pass it to the bridge. */
virtual Tick recvAtomic(PacketPtr pkt);
Tick recvAtomic(PacketPtr pkt);
/** When receiving a Functional request from the peer port,
pass it to the bridge. */
virtual void recvFunctional(PacketPtr pkt);
void recvFunctional(PacketPtr pkt);
/** When receiving a address range request the peer port,
pass it to the bridge. */
virtual AddrRangeList getAddrRanges() const;
AddrRangeList getAddrRanges() const;
};
@ -276,12 +245,12 @@ class Bridge : public MemObject
private:
/** A pointer to the bridge to which this port belongs. */
Bridge* bridge;
/** The bridge to which this port belongs. */
Bridge& bridge;
/**
* Pointer to the slave port on the other side of the bridge
* (connected to the other bus).
* The slave port on the other side of the bridge (connected
* to the other bus).
*/
BridgeSlavePort& slavePort;
@ -293,10 +262,7 @@ class Bridge : public MemObject
* queue for a specified delay to model the processing delay
* of the bridge.
*/
std::list<DeferredRequest> requestQueue;
/** If we're waiting for a retry to happen. */
bool inRetry;
std::list<DeferredPacket> transmitList;
/** Max queue size for request packets */
unsigned int reqQueueLimit;
@ -306,10 +272,11 @@ class Bridge : public MemObject
* the outbound queue is ready to transmit (for timing
* accesses only).
*/
void trySend();
void trySendTiming();
/** Send event for the request queue. */
EventWrapper<BridgeMasterPort, &BridgeMasterPort::trySend> sendEvent;
EventWrapper<BridgeMasterPort,
&BridgeMasterPort::trySendTiming> sendEvent;
public:
@ -322,7 +289,7 @@ class Bridge : public MemObject
* @param _delay the delay from seeing a request to sending it
* @param _req_limit the size of the request queue
*/
BridgeMasterPort(const std::string &_name, Bridge *_bridge,
BridgeMasterPort(const std::string& _name, Bridge& _bridge,
BridgeSlavePort& _slavePort, int _delay,
int _req_limit);
@ -338,8 +305,9 @@ class Bridge : public MemObject
* a send if necessary.
*
* @param pkt a request to send out after a delay
* @param when tick when response packet should be sent
*/
void queueForSendTiming(PacketPtr pkt);
void schedTimingReq(PacketPtr pkt, Tick when);
/**
* Check a functional request against the packets in our
@ -355,11 +323,11 @@ class Bridge : public MemObject
/** When receiving a timing request from the peer port,
pass it to the bridge. */
virtual bool recvTimingResp(PacketPtr pkt);
bool recvTimingResp(PacketPtr pkt);
/** When receiving a retry request from the peer port,
pass it to the bridge. */
virtual void recvRetry();
void recvRetry();
};
/** Slave port of the bridge. */
@ -368,17 +336,7 @@ class Bridge : public MemObject
/** Master port of the bridge. */
BridgeMasterPort masterPort;
/** If this bridge should acknowledge writes. */
bool ackWrites;
public:
typedef BridgeParams Params;
protected:
Params *_params;
public:
const Params *params() const { return _params; }
virtual MasterPort& getMasterPort(const std::string& if_name,
int idx = -1);
@ -386,6 +344,8 @@ class Bridge : public MemObject
virtual void init();
typedef BridgeParams Params;
Bridge(Params *p);
};

View file

@ -41,8 +41,7 @@ test_sys.cpu.connectAllPorts(test_sys.membus)
# In contrast to the other (one-system) Tsunami configurations we do
# not have an IO cache but instead rely on an IO bridge for accesses
# from masters on the IO bus to the memory bus
test_sys.iobridge = Bridge(delay='50ns', nack_delay='4ns',
ranges = [AddrRange(0, '8GB')])
test_sys.iobridge = Bridge(delay='50ns', ranges = [AddrRange(0, '8GB')])
test_sys.iobridge.slave = test_sys.iobus.master
test_sys.iobridge.master = test_sys.membus.slave
@ -52,8 +51,7 @@ drive_sys.cpu = AtomicSimpleCPU(cpu_id=0)
# create the interrupt controller
drive_sys.cpu.createInterruptController()
drive_sys.cpu.connectAllPorts(drive_sys.membus)
drive_sys.iobridge = Bridge(delay='50ns', nack_delay='4ns',
ranges = [AddrRange(0, '8GB')])
drive_sys.iobridge = Bridge(delay='50ns', ranges = [AddrRange(0, '8GB')])
drive_sys.iobridge.slave = drive_sys.iobus.master
drive_sys.iobridge.master = drive_sys.membus.slave