Split Checker up properly into templated and non-templated definitions.

--HG--
extra : convert_revision : 3ead18e42f4a536f2f868da07cb81a8940a7fa2f
This commit is contained in:
Kevin Lim 2006-06-22 18:05:12 -04:00
parent 0fc3055e96
commit 9ca5427c03
3 changed files with 409 additions and 362 deletions

View file

@ -184,6 +184,7 @@ if 'OzoneCPU' in env['CPU_MODELS']:
sources += Split('ozone/checker_builder.cc')
if env['USE_CHECKER']:
sources += Split('checker/cpu.cc')
checker_supports = False
for i in CheckerSupportedCPUList:
if i in env['CPU_MODELS']:

408
src/cpu/checker/cpu.cc Normal file
View file

@ -0,0 +1,408 @@
/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#include <list>
#include <string>
#include "cpu/base.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/simple_thread.hh"
#include "cpu/thread_context.hh"
#include "cpu/static_inst.hh"
#include "mem/packet_impl.hh"
#include "sim/byteswap.hh"
#if FULL_SYSTEM
#include "arch/vtophys.hh"
#include "kern/kernel_stats.hh"
#endif // FULL_SYSTEM
using namespace std;
//The CheckerCPU does alpha only
using namespace AlphaISA;
void
CheckerCPU::init()
{
}
CheckerCPU::CheckerCPU(Params *p)
: BaseCPU(p), thread(NULL), tc(NULL)
{
memReq = NULL;
numInst = 0;
startNumInst = 0;
numLoad = 0;
startNumLoad = 0;
youngestSN = 0;
changedPC = willChangePC = changedNextPC = false;
exitOnError = p->exitOnError;
warnOnlyOnLoadError = p->warnOnlyOnLoadError;
#if FULL_SYSTEM
itb = p->itb;
dtb = p->dtb;
systemPtr = NULL;
#else
process = p->process;
#endif
result.integer = 0;
}
CheckerCPU::~CheckerCPU()
{
}
void
CheckerCPU::setMemory(MemObject *mem)
{
#if !FULL_SYSTEM
memPtr = mem;
thread = new SimpleThread(this, /* thread_num */ 0, process,
/* asid */ 0, mem);
thread->setStatus(ThreadContext::Suspended);
tc = thread->getTC();
threadContexts.push_back(tc);
#endif
}
void
CheckerCPU::setSystem(System *system)
{
#if FULL_SYSTEM
systemPtr = system;
thread = new SimpleThread(this, 0, systemPtr, itb, dtb, false);
thread->setStatus(ThreadContext::Suspended);
tc = thread->getTC();
threadContexts.push_back(tc);
delete thread->kernelStats;
thread->kernelStats = NULL;
#endif
}
void
CheckerCPU::setIcachePort(Port *icache_port)
{
icachePort = icache_port;
}
void
CheckerCPU::setDcachePort(Port *dcache_port)
{
dcachePort = dcache_port;
}
void
CheckerCPU::serialize(ostream &os)
{
/*
BaseCPU::serialize(os);
SERIALIZE_SCALAR(inst);
nameOut(os, csprintf("%s.xc", name()));
thread->serialize(os);
cacheCompletionEvent.serialize(os);
*/
}
void
CheckerCPU::unserialize(Checkpoint *cp, const string &section)
{
/*
BaseCPU::unserialize(cp, section);
UNSERIALIZE_SCALAR(inst);
thread->unserialize(cp, csprintf("%s.xc", section));
*/
}
Fault
CheckerCPU::copySrcTranslate(Addr src)
{
panic("Unimplemented!");
}
Fault
CheckerCPU::copy(Addr dest)
{
panic("Unimplemented!");
}
template <class T>
Fault
CheckerCPU::read(Addr addr, T &data, unsigned flags)
{
// need to fill in CPU & thread IDs here
memReq = new Request();
memReq->setVirt(0, addr, sizeof(T), flags, thread->readPC());
// translate to physical address
translateDataReadReq(memReq);
Packet *pkt = new Packet(memReq, Packet::ReadReq, Packet::Broadcast);
pkt->dataStatic(&data);
if (!(memReq->getFlags() & UNCACHEABLE)) {
// Access memory to see if we have the same data
dcachePort->sendFunctional(pkt);
} else {
// Assume the data is correct if it's an uncached access
memcpy(&data, &unverifiedResult.integer, sizeof(T));
}
delete pkt;
return NoFault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
CheckerCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
CheckerCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
CheckerCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
CheckerCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
CheckerCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
// need to fill in CPU & thread IDs here
memReq = new Request();
memReq->setVirt(0, addr, sizeof(T), flags, thread->readPC());
// translate to physical address
thread->translateDataWriteReq(memReq);
// Can compare the write data and result only if it's cacheable,
// not a store conditional, or is a store conditional that
// succeeded.
// @todo: Verify that actual memory matches up with these values.
// Right now it only verifies that the instruction data is the
// same as what was in the request that got sent to memory; there
// is no verification that it is the same as what is in memory.
// This is because the LSQ would have to be snooped in the CPU to
// verify this data.
if (unverifiedReq &&
!(unverifiedReq->getFlags() & UNCACHEABLE) &&
(!(unverifiedReq->getFlags() & LOCKED) ||
((unverifiedReq->getFlags() & LOCKED) &&
unverifiedReq->getScResult() == 1))) {
T inst_data;
/*
// This code would work if the LSQ allowed for snooping.
Packet *pkt = new Packet(memReq, Packet::ReadReq, Packet::Broadcast);
pkt.dataStatic(&inst_data);
dcachePort->sendFunctional(pkt);
delete pkt;
*/
memcpy(&inst_data, unverifiedMemData, sizeof(T));
if (data != inst_data) {
warn("%lli: Store value does not match value in memory! "
"Instruction: %#x, memory: %#x",
curTick, inst_data, data);
handleError();
}
}
// Assume the result was the same as the one passed in. This checker
// doesn't check if the SC should succeed or fail, it just checks the
// value.
if (res && unverifiedReq->scResultValid())
*res = unverifiedReq->getScResult();
return NoFault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
CheckerCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
CheckerCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
CheckerCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
CheckerCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
#if FULL_SYSTEM
Addr
CheckerCPU::dbg_vtophys(Addr addr)
{
return vtophys(tc, addr);
}
#endif // FULL_SYSTEM
bool
CheckerCPU::translateInstReq(Request *req)
{
#if FULL_SYSTEM
return (thread->translateInstReq(req) == NoFault);
#else
thread->translateInstReq(req);
return true;
#endif
}
void
CheckerCPU::translateDataReadReq(Request *req)
{
thread->translateDataReadReq(req);
if (req->getVaddr() != unverifiedReq->getVaddr()) {
warn("%lli: Request virtual addresses do not match! Inst: %#x, "
"checker: %#x",
curTick, unverifiedReq->getVaddr(), req->getVaddr());
handleError();
}
req->setPaddr(unverifiedReq->getPaddr());
if (checkFlags(req)) {
warn("%lli: Request flags do not match! Inst: %#x, checker: %#x",
curTick, unverifiedReq->getFlags(), req->getFlags());
handleError();
}
}
void
CheckerCPU::translateDataWriteReq(Request *req)
{
thread->translateDataWriteReq(req);
if (req->getVaddr() != unverifiedReq->getVaddr()) {
warn("%lli: Request virtual addresses do not match! Inst: %#x, "
"checker: %#x",
curTick, unverifiedReq->getVaddr(), req->getVaddr());
handleError();
}
req->setPaddr(unverifiedReq->getPaddr());
if (checkFlags(req)) {
warn("%lli: Request flags do not match! Inst: %#x, checker: %#x",
curTick, unverifiedReq->getFlags(), req->getFlags());
handleError();
}
}
bool
CheckerCPU::checkFlags(Request *req)
{
// Remove any dynamic flags that don't have to do with the request itself.
unsigned flags = unverifiedReq->getFlags();
unsigned mask = LOCKED | PHYSICAL | VPTE | ALTMODE | UNCACHEABLE | NO_FAULT;
flags = flags & (mask);
if (flags == req->getFlags()) {
return false;
} else {
return true;
}
}
void
CheckerCPU::dumpAndExit()
{
warn("%lli: Checker PC:%#x, next PC:%#x",
curTick, thread->readPC(), thread->readNextPC());
panic("Checker found an error!");
}

View file

@ -32,7 +32,6 @@
#include <string>
#include "base/refcnt.hh"
#include "cpu/base.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/simple_thread.hh"
@ -44,374 +43,13 @@
#include "sim/stats.hh"
#if FULL_SYSTEM
#include "sim/system.hh"
#include "arch/vtophys.hh"
#include "kern/kernel_stats.hh"
#endif // FULL_SYSTEM
using namespace std;
//The CheckerCPU does alpha only
using namespace AlphaISA;
void
CheckerCPU::init()
{
}
CheckerCPU::CheckerCPU(Params *p)
: BaseCPU(p), thread(NULL), tc(NULL)
{
memReq = NULL;
numInst = 0;
startNumInst = 0;
numLoad = 0;
startNumLoad = 0;
youngestSN = 0;
changedPC = willChangePC = changedNextPC = false;
exitOnError = p->exitOnError;
warnOnlyOnLoadError = p->warnOnlyOnLoadError;
#if FULL_SYSTEM
itb = p->itb;
dtb = p->dtb;
systemPtr = NULL;
#else
process = p->process;
#endif
result.integer = 0;
}
CheckerCPU::~CheckerCPU()
{
}
void
CheckerCPU::setMemory(MemObject *mem)
{
#if !FULL_SYSTEM
memPtr = mem;
thread = new SimpleThread(this, /* thread_num */ 0, process,
/* asid */ 0, mem);
thread->setStatus(ThreadContext::Suspended);
tc = thread->getTC();
threadContexts.push_back(tc);
#endif
}
void
CheckerCPU::setSystem(System *system)
{
#if FULL_SYSTEM
systemPtr = system;
thread = new SimpleThread(this, 0, systemPtr, itb, dtb, false);
thread->setStatus(ThreadContext::Suspended);
tc = thread->getTC();
threadContexts.push_back(tc);
delete thread->kernelStats;
thread->kernelStats = NULL;
#endif
}
void
CheckerCPU::setIcachePort(Port *icache_port)
{
icachePort = icache_port;
}
void
CheckerCPU::setDcachePort(Port *dcache_port)
{
dcachePort = dcache_port;
}
void
CheckerCPU::serialize(ostream &os)
{
/*
BaseCPU::serialize(os);
SERIALIZE_SCALAR(inst);
nameOut(os, csprintf("%s.xc", name()));
thread->serialize(os);
cacheCompletionEvent.serialize(os);
*/
}
void
CheckerCPU::unserialize(Checkpoint *cp, const string &section)
{
/*
BaseCPU::unserialize(cp, section);
UNSERIALIZE_SCALAR(inst);
thread->unserialize(cp, csprintf("%s.xc", section));
*/
}
Fault
CheckerCPU::copySrcTranslate(Addr src)
{
panic("Unimplemented!");
}
Fault
CheckerCPU::copy(Addr dest)
{
panic("Unimplemented!");
}
template <class T>
Fault
CheckerCPU::read(Addr addr, T &data, unsigned flags)
{
// need to fill in CPU & thread IDs here
memReq = new Request();
memReq->setVirt(0, addr, sizeof(T), flags, thread->readPC());
// translate to physical address
translateDataReadReq(memReq);
Packet *pkt = new Packet(memReq, Packet::ReadReq, Packet::Broadcast);
pkt->dataStatic(&data);
if (!(memReq->getFlags() & UNCACHEABLE)) {
// Access memory to see if we have the same data
dcachePort->sendFunctional(pkt);
} else {
// Assume the data is correct if it's an uncached access
memcpy(&data, &unverifiedResult.integer, sizeof(T));
}
delete pkt;
return NoFault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
CheckerCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
CheckerCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
CheckerCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
CheckerCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
CheckerCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
// need to fill in CPU & thread IDs here
memReq = new Request();
memReq->setVirt(0, addr, sizeof(T), flags, thread->readPC());
// translate to physical address
thread->translateDataWriteReq(memReq);
// Can compare the write data and result only if it's cacheable,
// not a store conditional, or is a store conditional that
// succeeded.
// @todo: Verify that actual memory matches up with these values.
// Right now it only verifies that the instruction data is the
// same as what was in the request that got sent to memory; there
// is no verification that it is the same as what is in memory.
// This is because the LSQ would have to be snooped in the CPU to
// verify this data.
if (unverifiedReq &&
!(unverifiedReq->getFlags() & UNCACHEABLE) &&
(!(unverifiedReq->getFlags() & LOCKED) ||
((unverifiedReq->getFlags() & LOCKED) &&
unverifiedReq->getScResult() == 1))) {
T inst_data;
/*
// This code would work if the LSQ allowed for snooping.
Packet *pkt = new Packet(memReq, Packet::ReadReq, Packet::Broadcast);
pkt.dataStatic(&inst_data);
dcachePort->sendFunctional(pkt);
delete pkt;
*/
memcpy(&inst_data, unverifiedMemData, sizeof(T));
if (data != inst_data) {
warn("%lli: Store value does not match value in memory! "
"Instruction: %#x, memory: %#x",
curTick, inst_data, data);
handleError();
}
}
// Assume the result was the same as the one passed in. This checker
// doesn't check if the SC should succeed or fail, it just checks the
// value.
if (res && unverifiedReq->scResultValid())
*res = unverifiedReq->getScResult();
return NoFault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
CheckerCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
CheckerCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
CheckerCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
CheckerCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
#if FULL_SYSTEM
Addr
CheckerCPU::dbg_vtophys(Addr addr)
{
return vtophys(tc, addr);
}
#endif // FULL_SYSTEM
bool
CheckerCPU::translateInstReq(Request *req)
{
#if FULL_SYSTEM
return (thread->translateInstReq(req) == NoFault);
#else
thread->translateInstReq(req);
return true;
#endif
}
void
CheckerCPU::translateDataReadReq(Request *req)
{
thread->translateDataReadReq(req);
if (req->getVaddr() != unverifiedReq->getVaddr()) {
warn("%lli: Request virtual addresses do not match! Inst: %#x, "
"checker: %#x",
curTick, unverifiedReq->getVaddr(), req->getVaddr());
handleError();
}
req->setPaddr(unverifiedReq->getPaddr());
if (checkFlags(req)) {
warn("%lli: Request flags do not match! Inst: %#x, checker: %#x",
curTick, unverifiedReq->getFlags(), req->getFlags());
handleError();
}
}
void
CheckerCPU::translateDataWriteReq(Request *req)
{
thread->translateDataWriteReq(req);
if (req->getVaddr() != unverifiedReq->getVaddr()) {
warn("%lli: Request virtual addresses do not match! Inst: %#x, "
"checker: %#x",
curTick, unverifiedReq->getVaddr(), req->getVaddr());
handleError();
}
req->setPaddr(unverifiedReq->getPaddr());
if (checkFlags(req)) {
warn("%lli: Request flags do not match! Inst: %#x, checker: %#x",
curTick, unverifiedReq->getFlags(), req->getFlags());
handleError();
}
}
bool
CheckerCPU::checkFlags(Request *req)
{
// Remove any dynamic flags that don't have to do with the request itself.
unsigned flags = unverifiedReq->getFlags();
unsigned mask = LOCKED | PHYSICAL | VPTE | ALTMODE | UNCACHEABLE | NO_FAULT;
flags = flags & (mask);
if (flags == req->getFlags()) {
return false;
} else {
return true;
}
}
void
CheckerCPU::dumpAndExit()
{
warn("%lli: Checker PC:%#x, next PC:%#x",
curTick, thread->readPC(), thread->readNextPC());
panic("Checker found an error!");
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::verify(DynInstPtr &completed_inst)