Redo the FloatRegFile using unsigned integers

Edit the convert_and_round function which access FloatRegFile

arch/isa_parser.py:
    recognize when we are writing a 'uint64_t' FloatReg and set the width appropriately
arch/mips/isa/decoder.isa:
    Send a 'float' to the convert function instead of a unsigned word. Do this so we dont have to worry about the
    bit manipulation ourselves. We can just concern ourselves with values.

    Use unsigned double to get movd...
arch/mips/isa/formats/fp.isa:
    float debug statement
arch/mips/isa_traits.cc:
    add different versions of convert_and_round functions
arch/mips/isa_traits.hh:
    Use an array of uint32_t unsigned integers to represent the Floating Point Regfile
configs/test/hello_mips:
    basic FP program
cpu/simple/cpu.hh:
    spacing

--HG--
extra : convert_revision : a6fca91ad6365c83025f1131d71fa1b8ee76d7bc
This commit is contained in:
Korey Sewell 2006-05-02 20:05:16 -04:00
parent 2d077df1a0
commit 97429d8eee
7 changed files with 124 additions and 55 deletions

View file

@ -1251,6 +1251,9 @@ class FloatRegOperand(Operand):
elif (self.ctype == 'double'): elif (self.ctype == 'double'):
width = 64 width = 64
func = 'setFloatReg' func = 'setFloatReg'
elif (self.ctype == 'uint64_t'):
func = 'setFloatRegBits'
width = 64
else: else:
func = 'setFloatRegBits' func = 'setFloatRegBits'
final_ctype = 'uint%d_t' % self.dflt_size final_ctype = 'uint%d_t' % self.dflt_size

View file

@ -397,7 +397,7 @@ decode OPCODE_HI default Unknown::unknown() {
format FloatOp { format FloatOp {
0x0: mfc1 ({{ Rt.uw = Fs.uw<31:0>; }}); 0x0: mfc1 ({{ Rt.uw = Fs.uw<31:0>; }});
0x3: mfhc1({{ Rt.uw = Fs.ud<63:32>;}}); 0x3: mfhc1({{ Rt.uw = Fs.ud<63:32>;}});
0x4: mtc1 ({{ Fs.uw = Rt.uw; }}); 0x4: mtc1 ({{ Fs.uw = Rt.uw; }});
0x7: mthc1({{ 0x7: mthc1({{
uint64_t fs_hi = Rt.ud << 32; uint64_t fs_hi = Rt.ud << 32;
uint64_t fs_lo = Fs.ud & 0x0000FFFF; uint64_t fs_lo = Fs.ud & 0x0000FFFF;
@ -572,7 +572,7 @@ decode OPCODE_HI default Unknown::unknown() {
format FloatOp { format FloatOp {
0x1: cvt_d_s({{ 0x1: cvt_d_s({{
int rnd_mode = xc->readMiscReg(FCSR) & 0x03; int rnd_mode = xc->readMiscReg(FCSR) & 0x03;
Fd.ud = convert_and_round(Fs.uw, SINGLE_TO_DOUBLE, rnd_mode); Fd.ud = convert_and_round(Fs.sf, SINGLE_TO_DOUBLE, rnd_mode);
}}); }});
0x4: cvt_w_s({{ 0x4: cvt_w_s({{
@ -605,7 +605,7 @@ decode OPCODE_HI default Unknown::unknown() {
0x3: divd({{ Fd.df = Fs.df / Ft.df;}}); 0x3: divd({{ Fd.df = Fs.df / Ft.df;}});
0x4: sqrtd({{ Fd.df = sqrt(Fs.df);}}); 0x4: sqrtd({{ Fd.df = sqrt(Fs.df);}});
0x5: absd({{ Fd.df = fabs(Fs.df);}}); 0x5: absd({{ Fd.df = fabs(Fs.df);}});
0x6: movd({{ Fd.df = Fs.df;}}); 0x6: movd({{ Fd.ud = Fs.ud;}});
0x7: negd({{ Fd.df = -1 * Fs.df;}}); 0x7: negd({{ Fd.df = -1 * Fs.df;}});
} }
} }

View file

@ -32,6 +32,7 @@ output decoder {{
// Primary format for float operate instructions: // Primary format for float operate instructions:
def format FloatOp(code, *flags) {{ def format FloatOp(code, *flags) {{
code = 'std::cout << "Floating Point Op" << std::endl;\n' + code
iop = InstObjParams(name, Name, 'MipsStaticInst', CodeBlock(code), flags) iop = InstObjParams(name, Name, 'MipsStaticInst', CodeBlock(code), flags)
header_output = BasicDeclare.subst(iop) header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop) decoder_output = BasicConstructor.subst(iop)
@ -41,6 +42,7 @@ def format FloatOp(code, *flags) {{
// Primary format for float64 operate instructions: // Primary format for float64 operate instructions:
def format Float64Op(code, *flags) {{ def format Float64Op(code, *flags) {{
code = 'std::cout << "Floating Point 64" << std::endl;\n' + code
iop = InstObjParams(name, Name, 'MipsStaticInst', CodeBlock(code), flags) iop = InstObjParams(name, Name, 'MipsStaticInst', CodeBlock(code), flags)
header_output = BasicDeclare.subst(iop) header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop) decoder_output = BasicConstructor.subst(iop)

View file

@ -30,25 +30,95 @@
#include "config/full_system.hh" #include "config/full_system.hh"
#include "cpu/static_inst.hh" #include "cpu/static_inst.hh"
#include "sim/serialize.hh" #include "sim/serialize.hh"
#include "base/bitfield.hh"
using namespace MipsISA; using namespace MipsISA;
using namespace std;
uint64_t uint64_t
MipsISA::convert_and_round(uint64_t fp_val, ConvertType cvt_type, int rnd_mode) MipsISA::convert_and_round(uint32_t fp_val, ConvertType cvt_type, int rnd_mode)
{ {
uint64_t ret_val = 0; uint64_t ret_val = 0;
switch (cvt_type) switch (cvt_type)
{ {
case SINGLE_TO_DOUBLE: case SINGLE_TO_DOUBLE:
uint64_t single_sign = fp_val & 0x80000000;
break; uint64_t single_exp = (fp_val & 0x7F800000) >> 22;
single_exp -= 127;
uint64_t single_mantissa = fp_val & 0x007FFFFF;
uint64_t double_exp = single_exp + 1023;
double_exp = double_exp << 51;
uint64_t double_val = single_sign << 63 | double_exp | single_mantissa;
return double_val;
default: default:
panic("Invalid Floating Point Conversion Type (%d) being used.\n",cvt_type); panic("Invalid Floating Point Conversion Type (%d) being used.\n",cvt_type);
return ret_val;
} }
}
return ret_val; uint64_t
MipsISA::convert_and_round(uint64_t fp_val, ConvertType cvt_type, int rnd_mode)
{
uint64_t ret_val = 0;
switch (cvt_type)
{
case SINGLE_TO_DOUBLE:
uint64_t single_sign = fp_val & 0x80000000;
uint64_t single_exp = (fp_val & 0x7F800000) >> 22;
single_exp -= 127;
uint64_t single_mantissa = fp_val & 0x007FFFFF;
uint64_t double_exp = single_exp + 1023;
double_exp = double_exp << 51;
uint64_t double_val = single_sign << 63 | double_exp | single_mantissa;
return double_val;
default:
panic("Invalid Floating Point Conversion Type (%d) being used.\n",cvt_type);
return ret_val;
}
}
uint64_t
MipsISA::convert_and_round(float fp_val, ConvertType cvt_type, int rnd_mode)
{
void * ptr = &fp_val;
uint32_t fp_bits = * (uint32_t *) ptr;
cout << "Converting " << fp_val << " (" << hex << fp_bits << ") " << endl;
uint64_t ret_val = 0;
switch (cvt_type)
{
case SINGLE_TO_DOUBLE:
double double_val = fp_val;
void *double_ptr = &double_val;
uint64_t dp_bits = *(uint64_t *) double_ptr ;
cout << "To " << double_val << " (" << hex << dp_bits << ") " << endl;
double_ptr = &dp_bits;
cout << "Testing: " << *(double *) double_ptr << endl;
return dp_bits;
default:
panic("Invalid Floating Point Conversion Type (%d) being used.\n",cvt_type);
return ret_val;
}
} }
void void

View file

@ -189,21 +189,24 @@ namespace MipsISA
}; };
typedef double FloatReg; typedef float FloatReg;
typedef uint32_t FloatReg32;
typedef uint64_t FloatReg64;
typedef uint64_t FloatRegBits; typedef uint64_t FloatRegBits;
// const uint64_t hi_mask64 = 0xFFFFFFFF00000000;
//const uint64_t lo_mask64 = 0x00000000FFFFFFFF;
const int SingleWidth = 32; const int SingleWidth = 32;
const int SingleBytes = SingleWidth / 4; const int SingleBytes = 4;
const int DoubleWidth = 64; const int DoubleWidth = 64;
const int DoubleBytes = DoubleWidth / 4; const int DoubleBytes = 8;
const int QuadWidth = 128; const int QuadWidth = 128;
const int QuadBytes = QuadWidth / 4; const int QuadBytes = QuadWidth / 4;
const int FloatRegSize = SingleWidth / SingleBytes;
const int DoubleRegSize = FloatRegSize * 2;
class FloatRegFile class FloatRegFile
{ {
protected: protected:
@ -211,31 +214,27 @@ namespace MipsISA
//Since the floating point registers overlap each other, //Since the floating point registers overlap each other,
//A generic storage space is used. The float to be returned is //A generic storage space is used. The float to be returned is
//pulled from the appropriate section of this region. //pulled from the appropriate section of this region.
char regSpace[FloatRegSize * NumFloatRegs]; //char regSpace[SingleBytes * NumFloatRegs];
FloatReg32 regs[NumFloatRegs];
public: public:
void clear() void clear()
{ {
bzero(regSpace, sizeof(regSpace)); bzero(regs, sizeof(regs));
} }
FloatReg readReg(int floatReg, int width) double readReg(int floatReg, int width)
{ {
//In each of these cases, we have to copy the value into a temporary
//variable. This is because we may otherwise try to access an
//unaligned portion of memory.
switch(width) switch(width)
{ {
case SingleWidth: case SingleWidth:
float result32; void *float_ptr = &regs[floatReg];
memcpy(&result32, regSpace + 4 * floatReg, FloatRegSize); return *(float *) float_ptr;
return htog(result32);
case DoubleWidth: case DoubleWidth:
double result64; void *double_ptr = &regs[floatReg];
memcpy(&result64, regSpace + 4 * floatReg, DoubleRegSize); return *(double *) double_ptr;
return htog(result64);
default: default:
panic("Attempted to read a %d bit floating point register!", width); panic("Attempted to read a %d bit floating point register!", width);
@ -244,20 +243,17 @@ namespace MipsISA
FloatRegBits readRegBits(int floatReg, int width) FloatRegBits readRegBits(int floatReg, int width)
{ {
//In each of these cases, we have to copy the value into a temporary using namespace std;
//variable. This is because we may otherwise try to access an
//unaligned portion of memory.
switch(width) switch(width)
{ {
case SingleWidth: case SingleWidth:
uint32_t result32; return regs[floatReg];
memcpy(&result32, regSpace + 4 * floatReg, FloatRegSize);
return htog(result32);
case DoubleWidth: case DoubleWidth:
uint64_t result64; cout << hex << "Combining " << regs[floatReg + 1] << " & " << regs[floatReg + 1] << endl;
memcpy(&result64, regSpace + 4 * floatReg, DoubleRegSize); cout << hex << "Returning " << ((FloatReg64)regs[floatReg] << 32 | regs[floatReg + 1]) << endl;
return htog(result64); return (FloatReg64)regs[floatReg] << 32 | regs[floatReg + 1];
default: default:
panic("Attempted to read a %d bit floating point register!", width); panic("Attempted to read a %d bit floating point register!", width);
@ -266,47 +262,45 @@ namespace MipsISA
Fault setReg(int floatReg, const FloatReg &val, int width) Fault setReg(int floatReg, const FloatReg &val, int width)
{ {
//In each of these cases, we have to copy the value into a temporary
//variable. This is because we may otherwise try to access an
//unaligned portion of memory.
switch(width) switch(width)
{ {
case SingleWidth: case SingleWidth:
uint32_t result32; float temp = val;
result32 = gtoh((uint32_t)val); void *float_ptr = &temp;
memcpy(regSpace + 4 * floatReg, &result32, FloatRegSize); regs[floatReg] = *(FloatReg32 *) float_ptr;
break; break;
case DoubleWidth: case DoubleWidth:
uint64_t result64; const void *double_ptr = &val;
result64 = gtoh((uint64_t)val); FloatReg64 temp_double = *(FloatReg64 *) double_ptr;
memcpy(regSpace + 4 * floatReg, &result64, DoubleRegSize); regs[floatReg] = temp_double >> 32;
regs[floatReg + 1] = temp_double;
break; break;
default: default:
panic("Attempted to read a %d bit floating point register!", width); panic("Attempted to read a %d bit floating point register!", width);
} }
return NoFault; return NoFault;
} }
Fault setRegBits(int floatReg, const FloatRegBits &val, int width) Fault setRegBits(int floatReg, const FloatRegBits &val, int width)
{ {
//In each of these cases, we have to copy the value into a temporary using namespace std;
//variable. This is because we may otherwise try to access an
//unaligned portion of memory.
switch(width) switch(width)
{ {
case SingleWidth: case SingleWidth:
uint32_t result32; regs[floatReg] = val;
result32 = gtoh((uint32_t)val);
memcpy(regSpace + 4 * floatReg, &result32, FloatRegSize);
break; break;
case DoubleWidth: case DoubleWidth:
uint64_t result64; cout << hex << "Setting val: " << val << endl;
result64 = gtoh((uint64_t)val); regs[floatReg] = val >> 32;
memcpy(regSpace + 4 * floatReg, &result64, DoubleRegSize); regs[floatReg + 1] = val;
cout << dec << "f" << floatReg << ": " << hex<< readRegBits(floatReg,32) << endl;
cout << dec << "f" << floatReg + 1 << ": " << hex << readRegBits(floatReg+1,32) << endl;
break; break;
default: default:
@ -348,8 +342,9 @@ namespace MipsISA
RND_NEAREST RND_NEAREST
}; };
uint64_t convert_and_round(uint32_t fp_val,ConvertType cvt_type, int rnd_mode = 0);
uint64_t convert_and_round(uint64_t fp_val,ConvertType cvt_type, int rnd_mode = 0); uint64_t convert_and_round(uint64_t fp_val,ConvertType cvt_type, int rnd_mode = 0);
uint64_t convert_and_round(float fp_val,ConvertType cvt_type, int rnd_mode = 0);
void copyRegs(ExecContext *src, ExecContext *dest); void copyRegs(ExecContext *src, ExecContext *dest);
@ -637,7 +632,6 @@ extern const Addr PageOffset;
return miscRegFile.setRegWithEffect(miscReg, val, xc); return miscRegFile.setRegWithEffect(miscReg, val, xc);
} }
FloatReg readFloatReg(int floatReg) FloatReg readFloatReg(int floatReg)
{ {
return floatRegFile.readReg(floatReg,SingleWidth); return floatRegFile.readReg(floatReg,SingleWidth);

Binary file not shown.

View file

@ -369,7 +369,7 @@ class SimpleCPU : public BaseCPU
} }
void setFloatRegBits(const StaticInst *si, int idx, void setFloatRegBits(const StaticInst *si, int idx,
FloatRegBits val, int width) FloatRegBits val, int width)
{ {
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag; int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
cpuXC->setFloatRegBits(reg_idx, val, width); cpuXC->setFloatRegBits(reg_idx, val, width);