Merge zizzer.eecs.umich.edu:/bk/newmem

into  ahchoo.blinky.homelinux.org:/home/gblack/m5/newmem

--HG--
extra : convert_revision : dcb1fc0c6252fb96a956640c6d7995679da725e5
This commit is contained in:
Gabe Black 2007-03-03 03:34:52 +00:00
commit 94133657a1
20 changed files with 854 additions and 216 deletions

View file

@ -53,9 +53,6 @@ class AlphaLinuxProcess : public AlphaLiveProcess
virtual SyscallDesc* getDesc(int callnum);
/// The target system's hostname.
static const char *hostname;
/// Array of syscall descriptors, indexed by call number.
static SyscallDesc syscallDescs[];

View file

@ -1124,9 +1124,12 @@ def buildOperandTypeMap(userDict, lineno):
ctype = 'float'
elif size == 64:
ctype = 'double'
elif desc == 'twin int':
elif desc == 'twin64 int':
is_signed = 0
ctype = 'Twin64_t'
elif desc == 'twin32 int':
is_signed = 0
ctype = 'Twin32_t'
if ctype == '':
error(lineno, 'Unrecognized type description "%s" in userDict')
operandTypeMap[ext] = (size, ctype, is_signed)
@ -1159,7 +1162,7 @@ class Operand(object):
# template must be careful not to use it if it doesn't apply.
if self.isMem():
self.mem_acc_size = self.makeAccSize()
if self.ctype == 'Twin64_t':
if self.ctype in ['Twin32_t', 'Twin64_t']:
self.mem_acc_type = 'Twin'
else:
self.mem_acc_type = 'uint'
@ -1392,7 +1395,7 @@ class MemOperand(Operand):
# Note that initializations in the declarations are solely
# to avoid 'uninitialized variable' errors from the compiler.
# Declare memory data variable.
if self.ctype == 'Twin64_t':
if self.ctype in ['Twin32_t','Twin64_t']:
return "%s %s; %s.a = 0; %s.b = 0;\n" % (self.ctype, self.base_name,
self.base_name, self.base_name)
c = '%s %s = 0;\n' % (self.ctype, self.base_name)

View file

@ -656,6 +656,26 @@ void FillNNormal::invoke(ThreadContext *tc)
tc->setNextNPC(fillStart + 2*sizeof(MachInst));
}
void TrapInstruction::invoke(ThreadContext *tc)
{
//In SE, this mechanism is how the process requests a service from the
//operating system. We'll get the process object from the thread context
//and let it service the request.
Process *p = tc->getProcessPtr();
SparcLiveProcess *lp = dynamic_cast<SparcLiveProcess *>(p);
assert(lp);
lp->handleTrap(_n, tc);
//We need to explicitly advance the pc, since that's not done for us
//on a faulting instruction
tc->setPC(tc->readNextPC());
tc->setNextPC(tc->readNextNPC());
tc->setNextNPC(tc->readNextNPC() + sizeof(MachInst));
}
void PageTableFault::invoke(ThreadContext *tc)
{
Process *p = tc->getProcessPtr();

View file

@ -246,9 +246,12 @@ class FillNOther : public EnumeratedFault<FillNOther>
class TrapInstruction : public EnumeratedFault<TrapInstruction>
{
public:
TrapInstruction(uint32_t n) : EnumeratedFault<TrapInstruction>(n) {;}
//In SE, trap instructions are requesting services from the OS.
#if !FULL_SYSTEM
void invoke(ThreadContext * tc);
#endif
};
#if !FULL_SYSTEM

190
src/arch/sparc/handlers.hh Normal file
View file

@ -0,0 +1,190 @@
/*
* Copyright (c) 2003-2004 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
*/
#ifndef __ARCH_SPARC_HANDLERS_HH__
#define __ARCH_SPARC_HANDLERS_HH__
#include "arch/sparc/isa_traits.hh"
#include "arch/sparc/types.hh"
#include "sim/byteswap.hh"
namespace SparcISA {
//We only use 19 instructions for the trap handlers, but there would be
//space for 32 in a real SPARC trap table.
const int numFillInsts = 32;
const int numSpillInsts = 32;
const MachInst fillHandler64[numFillInsts] =
{
htog(0x87802018), //wr %g0, ASI_AIUP, %asi
htog(0xe0dba7ff), //ldxa [%sp + BIAS + (0*8)] %asi, %l0
htog(0xe2dba807), //ldxa [%sp + BIAS + (1*8)] %asi, %l1
htog(0xe4dba80f), //ldxa [%sp + BIAS + (2*8)] %asi, %l2
htog(0xe6dba817), //ldxa [%sp + BIAS + (3*8)] %asi, %l3
htog(0xe8dba81f), //ldxa [%sp + BIAS + (4*8)] %asi, %l4
htog(0xeadba827), //ldxa [%sp + BIAS + (5*8)] %asi, %l5
htog(0xecdba82f), //ldxa [%sp + BIAS + (6*8)] %asi, %l6
htog(0xeedba837), //ldxa [%sp + BIAS + (7*8)] %asi, %l7
htog(0xf0dba83f), //ldxa [%sp + BIAS + (8*8)] %asi, %i0
htog(0xf2dba847), //ldxa [%sp + BIAS + (9*8)] %asi, %i1
htog(0xf4dba84f), //ldxa [%sp + BIAS + (10*8)] %asi, %i2
htog(0xf6dba857), //ldxa [%sp + BIAS + (11*8)] %asi, %i3
htog(0xf8dba85f), //ldxa [%sp + BIAS + (12*8)] %asi, %i4
htog(0xfadba867), //ldxa [%sp + BIAS + (13*8)] %asi, %i5
htog(0xfcdba86f), //ldxa [%sp + BIAS + (14*8)] %asi, %i6
htog(0xfedba877), //ldxa [%sp + BIAS + (15*8)] %asi, %i7
htog(0x83880000), //restored
htog(0x83F00000), //retry
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000) //illtrap
};
const MachInst fillHandler32[numFillInsts] =
{
htog(0x87802018), //wr %g0, ASI_AIUP, %asi
htog(0xe083a000), //lduwa [%sp + (0*4)] %asi, %l0
htog(0xe283a004), //lduwa [%sp + (1*4)] %asi, %l1
htog(0xe483a008), //lduwa [%sp + (2*4)] %asi, %l2
htog(0xe683a00c), //lduwa [%sp + (3*4)] %asi, %l3
htog(0xe883a010), //lduwa [%sp + (4*4)] %asi, %l4
htog(0xea83a014), //lduwa [%sp + (5*4)] %asi, %l5
htog(0xec83a018), //lduwa [%sp + (6*4)] %asi, %l6
htog(0xee83a01c), //lduwa [%sp + (7*4)] %asi, %l7
htog(0xf083a020), //lduwa [%sp + (8*4)] %asi, %i0
htog(0xf283a024), //lduwa [%sp + (9*4)] %asi, %i1
htog(0xf483a028), //lduwa [%sp + (10*4)] %asi, %i2
htog(0xf683a02c), //lduwa [%sp + (11*4)] %asi, %i3
htog(0xf883a030), //lduwa [%sp + (12*4)] %asi, %i4
htog(0xfa83a034), //lduwa [%sp + (13*4)] %asi, %i5
htog(0xfc83a038), //lduwa [%sp + (14*4)] %asi, %i6
htog(0xfe83a03c), //lduwa [%sp + (15*4)] %asi, %i7
htog(0x83880000), //restored
htog(0x83F00000), //retry
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000) //illtrap
};
const MachInst spillHandler64[numSpillInsts] =
{
htog(0x87802018), //wr %g0, ASI_AIUP, %asi
htog(0xe0f3a7ff), //stxa %l0, [%sp + BIAS + (0*8)] %asi
htog(0xe2f3a807), //stxa %l1, [%sp + BIAS + (1*8)] %asi
htog(0xe4f3a80f), //stxa %l2, [%sp + BIAS + (2*8)] %asi
htog(0xe6f3a817), //stxa %l3, [%sp + BIAS + (3*8)] %asi
htog(0xe8f3a81f), //stxa %l4, [%sp + BIAS + (4*8)] %asi
htog(0xeaf3a827), //stxa %l5, [%sp + BIAS + (5*8)] %asi
htog(0xecf3a82f), //stxa %l6, [%sp + BIAS + (6*8)] %asi
htog(0xeef3a837), //stxa %l7, [%sp + BIAS + (7*8)] %asi
htog(0xf0f3a83f), //stxa %i0, [%sp + BIAS + (8*8)] %asi
htog(0xf2f3a847), //stxa %i1, [%sp + BIAS + (9*8)] %asi
htog(0xf4f3a84f), //stxa %i2, [%sp + BIAS + (10*8)] %asi
htog(0xf6f3a857), //stxa %i3, [%sp + BIAS + (11*8)] %asi
htog(0xf8f3a85f), //stxa %i4, [%sp + BIAS + (12*8)] %asi
htog(0xfaf3a867), //stxa %i5, [%sp + BIAS + (13*8)] %asi
htog(0xfcf3a86f), //stxa %i6, [%sp + BIAS + (14*8)] %asi
htog(0xfef3a877), //stxa %i7, [%sp + BIAS + (15*8)] %asi
htog(0x81880000), //saved
htog(0x83F00000), //retry
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000) //illtrap
};
const MachInst spillHandler32[numSpillInsts] =
{
htog(0x87802018), //wr %g0, ASI_AIUP, %asi
htog(0xe0a3a000), //stwa %l0, [%sp + (0*4)] %asi
htog(0xe2a3a004), //stwa %l1, [%sp + (1*4)] %asi
htog(0xe4a3a008), //stwa %l2, [%sp + (2*4)] %asi
htog(0xe6a3a00c), //stwa %l3, [%sp + (3*4)] %asi
htog(0xe8a3a010), //stwa %l4, [%sp + (4*4)] %asi
htog(0xeaa3a014), //stwa %l5, [%sp + (5*4)] %asi
htog(0xeca3a018), //stwa %l6, [%sp + (6*4)] %asi
htog(0xeea3a01c), //stwa %l7, [%sp + (7*4)] %asi
htog(0xf0a3a020), //stwa %i0, [%sp + (8*4)] %asi
htog(0xf2a3a024), //stwa %i1, [%sp + (9*4)] %asi
htog(0xf4a3a028), //stwa %i2, [%sp + (10*4)] %asi
htog(0xf6a3a02c), //stwa %i3, [%sp + (11*4)] %asi
htog(0xf8a3a030), //stwa %i4, [%sp + (12*4)] %asi
htog(0xfaa3a034), //stwa %i5, [%sp + (13*4)] %asi
htog(0xfca3a038), //stwa %i6, [%sp + (14*4)] %asi
htog(0xfea3a03c), //stwa %i7, [%sp + (15*4)] %asi
htog(0x81880000), //saved
htog(0x83F00000), //retry
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000) //illtrap
};
} // namespace SparcISA
#endif // __ARCH_SPARC_HANDLERS_HH__

View file

@ -1009,9 +1009,10 @@ decode OP default Unknown::unknown()
0x80: Trap::shutdown({{fault = new IllegalInstruction;}});
0x81: FailUnimpl::siam();
}
#if FULL_SYSTEM
// M5 special opcodes use the reserved IMPDEP2A opcode space
0x37: decode M5FUNC {
#if FULL_SYSTEM
format BasicOperate {
// we have 7 bits of space here to play with...
0x21: m5exit({{PseudoInst::m5exit(xc->tcBase(), O0);
}}, No_OpClass, IsNonSpeculative);
@ -1023,11 +1024,10 @@ decode OP default Unknown::unknown()
0x54: m5panic({{
panic("M5 panic instruction called at pc=%#x.", xc->readPC());
}}, No_OpClass, IsNonSpeculative);
}
#else
0x37: Trap::impdep2({{fault = new IllegalInstruction;}});
#endif
default: Trap::impdep2({{fault = new IllegalInstruction;}});
}
0x38: Branch::jmpl({{
Addr target = Rs1 + Rs2_or_imm13;
if(target & 0x3)
@ -1071,27 +1071,17 @@ decode OP default Unknown::unknown()
0x0: Trap::tcci({{
if(passesCondition(Ccr<3:0>, COND2))
{
#if FULL_SYSTEM
int lTrapNum = I ? (Rs1 + SW_TRAP) : (Rs1 + Rs2);
DPRINTF(Sparc, "The trap number is %d\n", lTrapNum);
fault = new TrapInstruction(lTrapNum);
#else
DPRINTF(Sparc, "The syscall number is %d\n", R1);
xc->syscall(R1);
#endif
}
}}, IsSerializeAfter, IsNonSpeculative);
0x2: Trap::tccx({{
if(passesCondition(Ccr<7:4>, COND2))
{
#if FULL_SYSTEM
int lTrapNum = I ? (Rs1 + SW_TRAP) : (Rs1 + Rs2);
DPRINTF(Sparc, "The trap number is %d\n", lTrapNum);
fault = new TrapInstruction(lTrapNum);
#else
DPRINTF(Sparc, "The syscall number is %d\n", R1);
xc->syscall(R1);
#endif
}
}}, IsSerializeAfter, IsNonSpeculative);
}
@ -1170,9 +1160,8 @@ decode OP default Unknown::unknown()
0x01: ldub({{Rd = Mem.ub;}});
0x02: lduh({{Rd = Mem.uhw;}});
0x03: ldtw({{
uint64_t val = Mem.udw;
RdLow = val<31:0>;
RdHigh = val<63:32>;
RdLow = (Mem.tuw).a;
RdHigh = (Mem.tuw).b;
}});
}
format Store {
@ -1260,9 +1249,8 @@ decode OP default Unknown::unknown()
{{RdLow.udw = (Mem.tudw).a;
RdHigh.udw = (Mem.tudw).b;}}, {{EXT_ASI}});
default: ldtwa({{
uint64_t val = Mem.udw;
RdLow = val<31:0>;
RdHigh = val<63:32>;
RdLow = (Mem.tuw).a;
RdHigh = (Mem.tuw).b;
}}, {{EXT_ASI}});
}
}

View file

@ -37,7 +37,8 @@ def operand_types {{
'uw' : ('unsigned int', 32),
'sdw' : ('signed int', 64),
'udw' : ('unsigned int', 64),
'tudw' : ('twin int', 64),
'tudw' : ('twin64 int', 64),
'tuw' : ('twin32 int', 32),
'sf' : ('float', 32),
'df' : ('float', 64),
'qf' : ('float', 128)

View file

@ -54,7 +54,7 @@ unameFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
strcpy(name->sysname, "Linux");
strcpy(name->nodename, "m5.eecs.umich.edu");
strcpy(name->release, "2.4.20");
strcpy(name->release, "2.6.12");
strcpy(name->version, "#1 Mon Aug 18 11:32:15 EDT 2003");
strcpy(name->machine, "sparc");
@ -141,7 +141,7 @@ SyscallDesc SparcLinuxProcess::syscallDescs[] = {
/* 41 */ SyscallDesc("dup", unimplementedFunc),
/* 42 */ SyscallDesc("pipe", pipePseudoFunc),
/* 43 */ SyscallDesc("times", unimplementedFunc),
/* 44 */ SyscallDesc("getuid32", unimplementedFunc),
/* 44 */ SyscallDesc("getuid32", getuidFunc),
/* 45 */ SyscallDesc("umount2", unimplementedFunc),
/* 46 */ SyscallDesc("setgid", unimplementedFunc),
/* 47 */ SyscallDesc("getgid", getgidFunc),
@ -150,7 +150,7 @@ SyscallDesc SparcLinuxProcess::syscallDescs[] = {
/* 50 */ SyscallDesc("getegid", getegidFunc),
/* 51 */ SyscallDesc("acct", unimplementedFunc),
/* 52 */ SyscallDesc("memory_ordering", unimplementedFunc),
/* 53 */ SyscallDesc("getgid32", unimplementedFunc),
/* 53 */ SyscallDesc("getgid32", getgidFunc),
/* 54 */ SyscallDesc("ioctl", unimplementedFunc),
/* 55 */ SyscallDesc("reboot", unimplementedFunc),
/* 56 */ SyscallDesc("mmap2", unimplementedFunc),
@ -160,14 +160,14 @@ SyscallDesc SparcLinuxProcess::syscallDescs[] = {
/* 60 */ SyscallDesc("umask", unimplementedFunc),
/* 61 */ SyscallDesc("chroot", unimplementedFunc),
/* 62 */ SyscallDesc("fstat", fstatFunc<SparcLinux>),
/* 63 */ SyscallDesc("fstat64", unimplementedFunc),
/* 63 */ SyscallDesc("fstat64", fstatFunc<SparcLinux>),
/* 64 */ SyscallDesc("getpagesize", unimplementedFunc),
/* 65 */ SyscallDesc("msync", unimplementedFunc),
/* 66 */ SyscallDesc("vfork", unimplementedFunc),
/* 67 */ SyscallDesc("pread64", unimplementedFunc),
/* 68 */ SyscallDesc("pwrite64", unimplementedFunc),
/* 69 */ SyscallDesc("geteuid32", unimplementedFunc),
/* 70 */ SyscallDesc("getdgid32", unimplementedFunc),
/* 69 */ SyscallDesc("geteuid32", geteuidFunc),
/* 70 */ SyscallDesc("getegid32", getegidFunc),
/* 71 */ SyscallDesc("mmap", mmapFunc<SparcLinux>),
/* 72 */ SyscallDesc("setreuid32", unimplementedFunc),
/* 73 */ SyscallDesc("munmap", munmapFunc),
@ -184,7 +184,7 @@ SyscallDesc SparcLinuxProcess::syscallDescs[] = {
/* 84 */ SyscallDesc("ftruncate64", unimplementedFunc),
/* 85 */ SyscallDesc("swapon", unimplementedFunc),
/* 86 */ SyscallDesc("getitimer", unimplementedFunc),
/* 87 */ SyscallDesc("setuid32", unimplementedFunc),
/* 87 */ SyscallDesc("setuid32", setuidFunc),
/* 88 */ SyscallDesc("sethostname", unimplementedFunc),
/* 89 */ SyscallDesc("setgid32", unimplementedFunc),
/* 90 */ SyscallDesc("dup2", unimplementedFunc),
@ -383,7 +383,25 @@ SyscallDesc SparcLinuxProcess::syscallDescs[] = {
/* 283 */ SyscallDesc("keyctl", unimplementedFunc)
};
SparcLinuxProcess::SparcLinuxProcess(const std::string &name,
SyscallDesc*
SparcLinuxProcess::getDesc(int callnum)
{
if (callnum < 0 || callnum > Num_Syscall_Descs)
return NULL;
return &syscallDescs[callnum];
}
SparcLinuxProcess::SparcLinuxProcess() :
Num_Syscall_Descs(sizeof(syscallDescs) / sizeof(SyscallDesc))
{
// The sparc syscall table must be <= 284 entries because that is all there
// is space for.
assert(Num_Syscall_Descs <= 284);
}
Sparc32LinuxProcess::Sparc32LinuxProcess(const std::string &name,
ObjectFile *objFile,
System * system,
int stdin_fd,
@ -395,22 +413,49 @@ SparcLinuxProcess::SparcLinuxProcess(const std::string &name,
uint64_t _uid, uint64_t _euid,
uint64_t _gid, uint64_t _egid,
uint64_t _pid, uint64_t _ppid)
: SparcLiveProcess(name, objFile, system,
: Sparc32LiveProcess(name, objFile, system,
stdin_fd, stdout_fd, stderr_fd, argv, envp, cwd,
_uid, _euid, _gid, _egid, _pid, _ppid),
Num_Syscall_Descs(sizeof(syscallDescs) / sizeof(SyscallDesc))
_uid, _euid, _gid, _egid, _pid, _ppid)
{}
void Sparc32LinuxProcess::handleTrap(int trapNum, ThreadContext *tc)
{
// The sparc syscall table must be <= 284 entries because that is all there
// is space for.
assert(Num_Syscall_Descs <= 284);
switch(trapNum)
{
case 0x10: //Linux 32 bit syscall trap
tc->syscall(tc->readIntReg(1));
break;
default:
SparcLiveProcess::handleTrap(trapNum, tc);
}
}
Sparc64LinuxProcess::Sparc64LinuxProcess(const std::string &name,
ObjectFile *objFile,
System * system,
int stdin_fd,
int stdout_fd,
int stderr_fd,
std::vector<std::string> &argv,
std::vector<std::string> &envp,
const std::string &cwd,
uint64_t _uid, uint64_t _euid,
uint64_t _gid, uint64_t _egid,
uint64_t _pid, uint64_t _ppid)
: Sparc64LiveProcess(name, objFile, system,
stdin_fd, stdout_fd, stderr_fd, argv, envp, cwd,
_uid, _euid, _gid, _egid, _pid, _ppid)
{}
SyscallDesc*
SparcLinuxProcess::getDesc(int callnum)
void Sparc64LinuxProcess::handleTrap(int trapNum, ThreadContext *tc)
{
if (callnum < 0 || callnum > Num_Syscall_Descs)
return NULL;
return &syscallDescs[callnum];
switch(trapNum)
{
case 0x10: //Linux 32 bit syscall trap
case 0x6d: //Linux 64 bit syscall trap
tc->syscall(tc->readIntReg(1));
break;
default:
SparcLiveProcess::handleTrap(trapNum, tc);
}
}

View file

@ -38,12 +38,28 @@
namespace SparcISA {
//This contains all of the common elements of a SPARC Linux process which
//are not shared by other operating systems. The rest come from the common
//SPARC process class.
class SparcLinuxProcess
{
public:
SparcLinuxProcess();
/// Array of syscall descriptors, indexed by call number.
static SyscallDesc syscallDescs[];
SyscallDesc* getDesc(int callnum);
const int Num_Syscall_Descs;
};
/// A process with emulated SPARC/Linux syscalls.
class SparcLinuxProcess : public SparcLiveProcess
class Sparc32LinuxProcess : public SparcLinuxProcess, public Sparc32LiveProcess
{
public:
/// Constructor.
SparcLinuxProcess(const std::string &name,
Sparc32LinuxProcess(const std::string &name,
ObjectFile *objFile,
System * system,
int stdin_fd, int stdout_fd, int stderr_fd,
@ -54,19 +70,40 @@ class SparcLinuxProcess : public SparcLiveProcess
uint64_t _gid, uint64_t _egid,
uint64_t _pid, uint64_t _ppid);
virtual SyscallDesc* getDesc(int callnum);
SyscallDesc* getDesc(int callnum)
{
return SparcLinuxProcess::getDesc(callnum);
}
/// The target system's hostname.
static const char *hostname;
void handleTrap(int trapNum, ThreadContext *tc);
};
/// Array of syscall descriptors, indexed by call number.
static SyscallDesc syscallDescs[];
/// A process with emulated 32 bit SPARC/Linux syscalls.
class Sparc64LinuxProcess : public SparcLinuxProcess, public Sparc64LiveProcess
{
public:
/// Constructor.
Sparc64LinuxProcess(const std::string &name,
ObjectFile *objFile,
System * system,
int stdin_fd, int stdout_fd, int stderr_fd,
std::vector<std::string> &argv,
std::vector<std::string> &envp,
const std::string &cwd,
uint64_t _uid, uint64_t _euid,
uint64_t _gid, uint64_t _egid,
uint64_t _pid, uint64_t _ppid);
const int Num_Syscall_Descs;
SyscallDesc* getDesc(int callnum)
{
return SparcLinuxProcess::getDesc(callnum);
}
void handleTrap(int trapNum, ThreadContext *tc);
};
SyscallReturn getresuidFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
} // namespace SparcISA
#endif // __ALPHA_LINUX_PROCESS_HH__
#endif // __SPARC_LINUX_PROCESS_HH__

View file

@ -30,6 +30,7 @@
*/
#include "arch/sparc/asi.hh"
#include "arch/sparc/handlers.hh"
#include "arch/sparc/isa_traits.hh"
#include "arch/sparc/process.hh"
#include "arch/sparc/types.hh"
@ -59,14 +60,6 @@ SparcLiveProcess::SparcLiveProcess(const std::string &nm, ObjectFile *objFile,
brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
brk_point = roundUp(brk_point, VMPageSize);
// Set up stack. On SPARC Linux, stack goes from the top of memory
// downward, less the hole for the kernel address space.
stack_base = (Addr)0x80000000000ULL;
// Set up region for mmaps. Tru64 seems to start just above 0 and
// grow up from there.
mmap_start = mmap_end = 0xfffff80000000000ULL;
// Set pointer for next thread stack. Reserve 8M for main stack.
next_thread_stack_base = stack_base - (8 * 1024 * 1024);
@ -75,8 +68,62 @@ SparcLiveProcess::SparcLiveProcess(const std::string &nm, ObjectFile *objFile,
spillStart = 0;
}
void SparcLiveProcess::handleTrap(int trapNum, ThreadContext *tc)
{
switch(trapNum)
{
case 0x03: //Flush window trap
warn("Ignoring request to flush register windows.\n");
break;
default:
panic("Unimplemented trap to operating system: trap number %#x.\n", trapNum);
}
}
void
SparcLiveProcess::startup()
Sparc32LiveProcess::startup()
{
argsInit(32 / 8, VMPageSize);
//From the SPARC ABI
//The process runs in user mode
threadContexts[0]->setMiscRegWithEffect(MISCREG_PSTATE, 0x02);
//Setup default FP state
threadContexts[0]->setMiscReg(MISCREG_FSR, 0);
threadContexts[0]->setMiscReg(MISCREG_TICK, 0);
//
/*
* Register window management registers
*/
//No windows contain info from other programs
//threadContexts[0]->setMiscReg(MISCREG_OTHERWIN, 0);
threadContexts[0]->setIntReg(NumIntArchRegs + 6, 0);
//There are no windows to pop
//threadContexts[0]->setMiscReg(MISCREG_CANRESTORE, 0);
threadContexts[0]->setIntReg(NumIntArchRegs + 4, 0);
//All windows are available to save into
//threadContexts[0]->setMiscReg(MISCREG_CANSAVE, NWindows - 2);
threadContexts[0]->setIntReg(NumIntArchRegs + 3, NWindows - 2);
//All windows are "clean"
//threadContexts[0]->setMiscReg(MISCREG_CLEANWIN, NWindows);
threadContexts[0]->setIntReg(NumIntArchRegs + 5, NWindows);
//Start with register window 0
threadContexts[0]->setMiscReg(MISCREG_CWP, 0);
//Always use spill and fill traps 0
//threadContexts[0]->setMiscReg(MISCREG_WSTATE, 0);
threadContexts[0]->setIntReg(NumIntArchRegs + 7, 0);
//Set the trap level to 0
threadContexts[0]->setMiscReg(MISCREG_TL, 0);
//Set the ASI register to something fixed
threadContexts[0]->setMiscReg(MISCREG_ASI, ASI_PRIMARY);
}
void
Sparc64LiveProcess::startup()
{
argsInit(sizeof(IntReg), VMPageSize);
@ -117,94 +164,22 @@ SparcLiveProcess::startup()
threadContexts[0]->setMiscReg(MISCREG_ASI, ASI_PRIMARY);
}
m5_auxv_t buildAuxVect(int64_t type, int64_t val)
M5_32_auxv_t::M5_32_auxv_t(int32_t type, int32_t val)
{
m5_auxv_t result;
result.a_type = TheISA::htog(type);
result.a_val = TheISA::htog(val);
return result;
a_type = TheISA::htog(type);
a_val = TheISA::htog(val);
}
//We only use 19 instructions for the trap handlers, but there would be
//space for 32 in a real SPARC trap table.
const int numFillInsts = 32;
const int numSpillInsts = 32;
MachInst fillHandler[numFillInsts] =
M5_64_auxv_t::M5_64_auxv_t(int64_t type, int64_t val)
{
htog(0x87802018), //wr %g0, ASI_AIUP, %asi
htog(0xe0dba7ff), //ldxa [%sp + BIAS + (0*8)] %asi, %l0
htog(0xe2dba807), //ldxa [%sp + BIAS + (1*8)] %asi, %l1
htog(0xe4dba80f), //ldxa [%sp + BIAS + (2*8)] %asi, %l2
htog(0xe6dba817), //ldxa [%sp + BIAS + (3*8)] %asi, %l3
htog(0xe8dba81f), //ldxa [%sp + BIAS + (4*8)] %asi, %l4
htog(0xeadba827), //ldxa [%sp + BIAS + (5*8)] %asi, %l5
htog(0xecdba82f), //ldxa [%sp + BIAS + (6*8)] %asi, %l6
htog(0xeedba837), //ldxa [%sp + BIAS + (7*8)] %asi, %l7
htog(0xf0dba83f), //ldxa [%sp + BIAS + (8*8)] %asi, %i0
htog(0xf2dba847), //ldxa [%sp + BIAS + (9*8)] %asi, %i1
htog(0xf4dba84f), //ldxa [%sp + BIAS + (10*8)] %asi, %i2
htog(0xf6dba857), //ldxa [%sp + BIAS + (11*8)] %asi, %i3
htog(0xf8dba85f), //ldxa [%sp + BIAS + (12*8)] %asi, %i4
htog(0xfadba867), //ldxa [%sp + BIAS + (13*8)] %asi, %i5
htog(0xfcdba86f), //ldxa [%sp + BIAS + (14*8)] %asi, %i6
htog(0xfedba877), //ldxa [%sp + BIAS + (15*8)] %asi, %i7
htog(0x83880000), //restored
htog(0x83F00000), //retry
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000) //illtrap
};
MachInst spillHandler[numSpillInsts] =
{
htog(0x87802018), //wr %g0, ASI_AIUP, %asi
htog(0xe0f3a7ff), //stxa %l0, [%sp + BIAS + (0*8)] %asi
htog(0xe2f3a807), //stxa %l1, [%sp + BIAS + (1*8)] %asi
htog(0xe4f3a80f), //stxa %l2, [%sp + BIAS + (2*8)] %asi
htog(0xe6f3a817), //stxa %l3, [%sp + BIAS + (3*8)] %asi
htog(0xe8f3a81f), //stxa %l4, [%sp + BIAS + (4*8)] %asi
htog(0xeaf3a827), //stxa %l5, [%sp + BIAS + (5*8)] %asi
htog(0xecf3a82f), //stxa %l6, [%sp + BIAS + (6*8)] %asi
htog(0xeef3a837), //stxa %l7, [%sp + BIAS + (7*8)] %asi
htog(0xf0f3a83f), //stxa %i0, [%sp + BIAS + (8*8)] %asi
htog(0xf2f3a847), //stxa %i1, [%sp + BIAS + (9*8)] %asi
htog(0xf4f3a84f), //stxa %i2, [%sp + BIAS + (10*8)] %asi
htog(0xf6f3a857), //stxa %i3, [%sp + BIAS + (11*8)] %asi
htog(0xf8f3a85f), //stxa %i4, [%sp + BIAS + (12*8)] %asi
htog(0xfaf3a867), //stxa %i5, [%sp + BIAS + (13*8)] %asi
htog(0xfcf3a86f), //stxa %i6, [%sp + BIAS + (14*8)] %asi
htog(0xfef3a877), //stxa %i7, [%sp + BIAS + (15*8)] %asi
htog(0x81880000), //saved
htog(0x83F00000), //retry
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000), //illtrap
htog(0x00000000) //illtrap
};
a_type = TheISA::htog(type);
a_val = TheISA::htog(val);
}
void
SparcLiveProcess::argsInit(int intSize, int pageSize)
Sparc64LiveProcess::argsInit(int intSize, int pageSize)
{
typedef M5_64_auxv_t auxv_t;
Process::startup();
string filename;
@ -265,34 +240,34 @@ SparcLiveProcess::argsInit(int intSize, int pageSize)
if(elfObject)
{
//Bits which describe the system hardware capabilities
auxv.push_back(buildAuxVect(SPARC_AT_HWCAP, hwcap));
auxv.push_back(auxv_t(SPARC_AT_HWCAP, hwcap));
//The system page size
auxv.push_back(buildAuxVect(SPARC_AT_PAGESZ, SparcISA::VMPageSize));
auxv.push_back(auxv_t(SPARC_AT_PAGESZ, SparcISA::VMPageSize));
//Defined to be 100 in the kernel source.
//Frequency at which times() increments
auxv.push_back(buildAuxVect(SPARC_AT_CLKTCK, 100));
auxv.push_back(auxv_t(SPARC_AT_CLKTCK, 100));
// For statically linked executables, this is the virtual address of the
// program header tables if they appear in the executable image
auxv.push_back(buildAuxVect(SPARC_AT_PHDR, elfObject->programHeaderTable()));
auxv.push_back(auxv_t(SPARC_AT_PHDR, elfObject->programHeaderTable()));
// This is the size of a program header entry from the elf file.
auxv.push_back(buildAuxVect(SPARC_AT_PHENT, elfObject->programHeaderSize()));
auxv.push_back(auxv_t(SPARC_AT_PHENT, elfObject->programHeaderSize()));
// This is the number of program headers from the original elf file.
auxv.push_back(buildAuxVect(SPARC_AT_PHNUM, elfObject->programHeaderCount()));
auxv.push_back(auxv_t(SPARC_AT_PHNUM, elfObject->programHeaderCount()));
//This is the address of the elf "interpreter", It should be set
//to 0 for regular executables. It should be something else
//(not sure what) for dynamic libraries.
auxv.push_back(buildAuxVect(SPARC_AT_BASE, 0));
auxv.push_back(auxv_t(SPARC_AT_BASE, 0));
//This is hardwired to 0 in the elf loading code in the kernel
auxv.push_back(buildAuxVect(SPARC_AT_FLAGS, 0));
auxv.push_back(auxv_t(SPARC_AT_FLAGS, 0));
//The entry point to the program
auxv.push_back(buildAuxVect(SPARC_AT_ENTRY, objFile->entryPoint()));
auxv.push_back(auxv_t(SPARC_AT_ENTRY, objFile->entryPoint()));
//Different user and group IDs
auxv.push_back(buildAuxVect(SPARC_AT_UID, uid()));
auxv.push_back(buildAuxVect(SPARC_AT_EUID, euid()));
auxv.push_back(buildAuxVect(SPARC_AT_GID, gid()));
auxv.push_back(buildAuxVect(SPARC_AT_EGID, egid()));
auxv.push_back(auxv_t(SPARC_AT_UID, uid()));
auxv.push_back(auxv_t(SPARC_AT_EUID, euid()));
auxv.push_back(auxv_t(SPARC_AT_GID, gid()));
auxv.push_back(auxv_t(SPARC_AT_EGID, egid()));
//Whether to enable "secure mode" in the executable
auxv.push_back(buildAuxVect(SPARC_AT_SECURE, 0));
auxv.push_back(auxv_t(SPARC_AT_SECURE, 0));
}
//Figure out how big the initial stack needs to be
@ -419,8 +394,8 @@ SparcLiveProcess::argsInit(int intSize, int pageSize)
int spillSize = sizeof(MachInst) * numSpillInsts;
fillStart = stack_base;
spillStart = fillStart + fillSize;
initVirtMem->writeBlob(fillStart, (uint8_t*)fillHandler, fillSize);
initVirtMem->writeBlob(spillStart, (uint8_t*)spillHandler, spillSize);
initVirtMem->writeBlob(fillStart, (uint8_t*)fillHandler64, fillSize);
initVirtMem->writeBlob(spillStart, (uint8_t*)spillHandler64, spillSize);
//Set up the thread context to start running the process
threadContexts[0]->setIntReg(ArgumentReg0, argc);
@ -437,3 +412,240 @@ SparcLiveProcess::argsInit(int intSize, int pageSize)
// num_processes++;
}
void
Sparc32LiveProcess::argsInit(int intSize, int pageSize)
{
typedef M5_32_auxv_t auxv_t;
Process::startup();
string filename;
if(argv.size() < 1)
filename = "";
else
filename = argv[0];
Addr alignmentMask = ~(intSize - 1);
// load object file into target memory
objFile->loadSections(initVirtMem);
//These are the auxilliary vector types
enum auxTypes
{
SPARC_AT_HWCAP = 16,
SPARC_AT_PAGESZ = 6,
SPARC_AT_CLKTCK = 17,
SPARC_AT_PHDR = 3,
SPARC_AT_PHENT = 4,
SPARC_AT_PHNUM = 5,
SPARC_AT_BASE = 7,
SPARC_AT_FLAGS = 8,
SPARC_AT_ENTRY = 9,
SPARC_AT_UID = 11,
SPARC_AT_EUID = 12,
SPARC_AT_GID = 13,
SPARC_AT_EGID = 14,
SPARC_AT_SECURE = 23
};
enum hardwareCaps
{
M5_HWCAP_SPARC_FLUSH = 1,
M5_HWCAP_SPARC_STBAR = 2,
M5_HWCAP_SPARC_SWAP = 4,
M5_HWCAP_SPARC_MULDIV = 8,
M5_HWCAP_SPARC_V9 = 16,
//This one should technically only be set
//if there is a cheetah or cheetah_plus tlb,
//but we'll use it all the time
M5_HWCAP_SPARC_ULTRA3 = 32
};
const int64_t hwcap =
M5_HWCAP_SPARC_FLUSH |
M5_HWCAP_SPARC_STBAR |
M5_HWCAP_SPARC_SWAP |
M5_HWCAP_SPARC_MULDIV |
M5_HWCAP_SPARC_V9 |
M5_HWCAP_SPARC_ULTRA3;
//Setup the auxilliary vectors. These will already have endian conversion.
//Auxilliary vectors are loaded only for elf formatted executables.
ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
if(elfObject)
{
//Bits which describe the system hardware capabilities
auxv.push_back(auxv_t(SPARC_AT_HWCAP, hwcap));
//The system page size
auxv.push_back(auxv_t(SPARC_AT_PAGESZ, SparcISA::VMPageSize));
//Defined to be 100 in the kernel source.
//Frequency at which times() increments
auxv.push_back(auxv_t(SPARC_AT_CLKTCK, 100));
// For statically linked executables, this is the virtual address of the
// program header tables if they appear in the executable image
auxv.push_back(auxv_t(SPARC_AT_PHDR, elfObject->programHeaderTable()));
// This is the size of a program header entry from the elf file.
auxv.push_back(auxv_t(SPARC_AT_PHENT, elfObject->programHeaderSize()));
// This is the number of program headers from the original elf file.
auxv.push_back(auxv_t(SPARC_AT_PHNUM, elfObject->programHeaderCount()));
//This is the address of the elf "interpreter", It should be set
//to 0 for regular executables. It should be something else
//(not sure what) for dynamic libraries.
auxv.push_back(auxv_t(SPARC_AT_BASE, 0));
//This is hardwired to 0 in the elf loading code in the kernel
auxv.push_back(auxv_t(SPARC_AT_FLAGS, 0));
//The entry point to the program
auxv.push_back(auxv_t(SPARC_AT_ENTRY, objFile->entryPoint()));
//Different user and group IDs
auxv.push_back(auxv_t(SPARC_AT_UID, uid()));
auxv.push_back(auxv_t(SPARC_AT_EUID, euid()));
auxv.push_back(auxv_t(SPARC_AT_GID, gid()));
auxv.push_back(auxv_t(SPARC_AT_EGID, egid()));
//Whether to enable "secure mode" in the executable
auxv.push_back(auxv_t(SPARC_AT_SECURE, 0));
}
//Figure out how big the initial stack needs to be
// The unaccounted for 0 at the top of the stack
int mysterious_size = intSize;
//This is the name of the file which is present on the initial stack
//It's purpose is to let the user space linker examine the original file.
int file_name_size = filename.size() + 1;
int env_data_size = 0;
for (int i = 0; i < envp.size(); ++i) {
env_data_size += envp[i].size() + 1;
}
int arg_data_size = 0;
for (int i = 0; i < argv.size(); ++i) {
arg_data_size += argv[i].size() + 1;
}
//The info_block needs to be padded so it's size is a multiple of the
//alignment mask. Also, it appears that there needs to be at least some
//padding, so if the size is already a multiple, we need to increase it
//anyway.
int info_block_size =
(file_name_size +
env_data_size +
arg_data_size +
intSize) & alignmentMask;
int info_block_padding =
info_block_size -
file_name_size -
env_data_size -
arg_data_size;
//Each auxilliary vector is two 8 byte words
int aux_array_size = intSize * 2 * (auxv.size() + 1);
int envp_array_size = intSize * (envp.size() + 1);
int argv_array_size = intSize * (argv.size() + 1);
int argc_size = intSize;
int window_save_size = intSize * 16;
int space_needed =
mysterious_size +
info_block_size +
aux_array_size +
envp_array_size +
argv_array_size +
argc_size +
window_save_size;
stack_min = stack_base - space_needed;
stack_min &= alignmentMask;
stack_size = stack_base - stack_min;
// map memory
pTable->allocate(roundDown(stack_min, pageSize),
roundUp(stack_size, pageSize));
// map out initial stack contents
Addr mysterious_base = stack_base - mysterious_size;
Addr file_name_base = mysterious_base - file_name_size;
Addr env_data_base = file_name_base - env_data_size;
Addr arg_data_base = env_data_base - arg_data_size;
Addr auxv_array_base = arg_data_base - aux_array_size - info_block_padding;
Addr envp_array_base = auxv_array_base - envp_array_size;
Addr argv_array_base = envp_array_base - argv_array_size;
Addr argc_base = argv_array_base - argc_size;
#ifndef NDEBUG
// only used in DPRINTF
Addr window_save_base = argc_base - window_save_size;
#endif
DPRINTF(Sparc, "The addresses of items on the initial stack:\n");
DPRINTF(Sparc, "0x%x - file name\n", file_name_base);
DPRINTF(Sparc, "0x%x - env data\n", env_data_base);
DPRINTF(Sparc, "0x%x - arg data\n", arg_data_base);
DPRINTF(Sparc, "0x%x - auxv array\n", auxv_array_base);
DPRINTF(Sparc, "0x%x - envp array\n", envp_array_base);
DPRINTF(Sparc, "0x%x - argv array\n", argv_array_base);
DPRINTF(Sparc, "0x%x - argc \n", argc_base);
DPRINTF(Sparc, "0x%x - window save\n", window_save_base);
DPRINTF(Sparc, "0x%x - stack min\n", stack_min);
// write contents to stack
// figure out argc
uint32_t argc = argv.size();
uint32_t guestArgc = TheISA::htog(argc);
//Write out the mysterious 0
uint64_t mysterious_zero = 0;
initVirtMem->writeBlob(mysterious_base,
(uint8_t*)&mysterious_zero, mysterious_size);
//Write the file name
initVirtMem->writeString(file_name_base, filename.c_str());
//Copy the aux stuff
for(int x = 0; x < auxv.size(); x++)
{
initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize,
(uint8_t*)&(auxv[x].a_type), intSize);
initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
(uint8_t*)&(auxv[x].a_val), intSize);
}
//Write out the terminating zeroed auxilliary vector
const uint64_t zero = 0;
initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
(uint8_t*)&zero, 2 * intSize);
copyStringArray(envp, envp_array_base, env_data_base, initVirtMem, intSize);
copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem, intSize);
initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
//Stuff the trap handlers into the processes address space.
//Since the stack grows down and is the highest area in the processes
//address space, we can put stuff above it and stay out of the way.
int fillSize = sizeof(MachInst) * numFillInsts;
int spillSize = sizeof(MachInst) * numSpillInsts;
fillStart = stack_base;
spillStart = fillStart + fillSize;
initVirtMem->writeBlob(fillStart, (uint8_t*)fillHandler32, fillSize);
initVirtMem->writeBlob(spillStart, (uint8_t*)spillHandler32, spillSize);
//Set up the thread context to start running the process
threadContexts[0]->setIntReg(ArgumentReg0, argc);
threadContexts[0]->setIntReg(ArgumentReg1, argv_array_base);
threadContexts[0]->setIntReg(StackPointerReg, stack_min);
Addr prog_entry = objFile->entryPoint();
threadContexts[0]->setPC(prog_entry);
threadContexts[0]->setNextPC(prog_entry + sizeof(MachInst));
threadContexts[0]->setNextNPC(prog_entry + (2 * sizeof(MachInst)));
//Align the "stack_min" to a page boundary.
stack_min = roundDown(stack_min, pageSize);
// num_processes++;
}

View file

@ -39,27 +39,13 @@
class ObjectFile;
class System;
typedef struct
{
int64_t a_type;
union {
int64_t a_val;
Addr a_ptr;
Addr a_fcn;
};
} m5_auxv_t;
class SparcLiveProcess : public LiveProcess
{
protected:
static const Addr StackBias = 2047;
//The locations of the fill and spill handlers
Addr fillStart, spillStart;
std::vector<m5_auxv_t> auxv;
SparcLiveProcess(const std::string &nm, ObjectFile *objFile,
System *_system, int stdin_fd, int stdout_fd, int stderr_fd,
std::vector<std::string> &argv,
@ -69,11 +55,10 @@ class SparcLiveProcess : public LiveProcess
uint64_t _gid, uint64_t _egid,
uint64_t _pid, uint64_t _ppid);
void startup();
public:
void argsInit(int intSize, int pageSize);
//Handles traps which request services from the operating system
virtual void handleTrap(int trapNum, ThreadContext *tc);
Addr readFillStart()
{ return fillStart; }
@ -83,4 +68,107 @@ class SparcLiveProcess : public LiveProcess
};
struct M5_32_auxv_t
{
int32_t a_type;
union {
int32_t a_val;
int32_t a_ptr;
int32_t a_fcn;
};
M5_32_auxv_t()
{}
M5_32_auxv_t(int32_t type, int32_t val);
};
class Sparc32LiveProcess : public SparcLiveProcess
{
protected:
std::vector<M5_32_auxv_t> auxv;
Sparc32LiveProcess(const std::string &nm, ObjectFile *objFile,
System *_system, int stdin_fd, int stdout_fd, int stderr_fd,
std::vector<std::string> &argv,
std::vector<std::string> &envp,
const std::string &cwd,
uint64_t _uid, uint64_t _euid,
uint64_t _gid, uint64_t _egid,
uint64_t _pid, uint64_t _ppid) :
SparcLiveProcess(nm, objFile, _system,
stdin_fd, stdout_fd, stderr_fd,
argv, envp, cwd,
_uid, _euid, _gid, _egid, _pid, _ppid)
{
// Set up stack. On SPARC Linux, stack goes from the top of memory
// downward, less the hole for the kernel address space.
stack_base = (Addr)0xf0000000ULL;
// Set up region for mmaps.
mmap_start = mmap_end = 0x70000000;
}
void startup();
public:
void argsInit(int intSize, int pageSize);
};
struct M5_64_auxv_t
{
int64_t a_type;
union {
int64_t a_val;
int64_t a_ptr;
int64_t a_fcn;
};
M5_64_auxv_t()
{}
M5_64_auxv_t(int64_t type, int64_t val);
};
class Sparc64LiveProcess : public SparcLiveProcess
{
protected:
static const Addr StackBias = 2047;
std::vector<M5_64_auxv_t> auxv;
Sparc64LiveProcess(const std::string &nm, ObjectFile *objFile,
System *_system, int stdin_fd, int stdout_fd, int stderr_fd,
std::vector<std::string> &argv,
std::vector<std::string> &envp,
const std::string &cwd,
uint64_t _uid, uint64_t _euid,
uint64_t _gid, uint64_t _egid,
uint64_t _pid, uint64_t _ppid) :
SparcLiveProcess(nm, objFile, _system,
stdin_fd, stdout_fd, stderr_fd,
argv, envp, cwd,
_uid, _euid, _gid, _egid, _pid, _ppid)
{
// Set up stack. On SPARC Linux, stack goes from the top of memory
// downward, less the hole for the kernel address space.
stack_base = (Addr)0x80000000000ULL;
// Set up region for mmaps. Tru64 seems to start just above 0 and
// grow up from there.
mmap_start = mmap_end = 0xfffff80000000000ULL;
}
void startup();
public:
void argsInit(int intSize, int pageSize);
};
#endif // __SPARC_PROCESS_HH__

View file

@ -42,9 +42,22 @@ struct m5_twin64_t {
}
};
struct m5_twin32_t {
uint32_t a;
uint32_t b;
inline m5_twin32_t& operator=(const uint32_t x)
{
a = x;
b = x;
return *this;
}
};
// This is for twin loads (two 64 bit values), not 1 128 bit value (as far as
// endian conversion is concerned!
typedef m5_twin64_t Twin64_t;
typedef m5_twin32_t Twin32_t;
#endif // __BASE_BIGINT_HH__

View file

@ -78,9 +78,14 @@ ElfObject::tryFile(const string &fname, int fd, size_t len, uint8_t *data)
//just assume if it wasn't something else and it's 64 bit, that's
//what it must be.
if (ehdr.e_machine == EM_SPARC64 ||
ehdr.e_machine == EM_SPARC ||
(ehdr.e_machine == EM_SPARC &&
ehdr.e_ident[EI_CLASS] == ELFCLASS64)||
ehdr.e_machine == EM_SPARCV9) {
arch = ObjectFile::SPARC;
arch = ObjectFile::SPARC64;
} else if (ehdr.e_machine == EM_SPARC32PLUS ||
(ehdr.e_machine == EM_SPARC &&
ehdr.e_ident[EI_CLASS] == ELFCLASS32)) {
arch = ObjectFile::SPARC32;
} else if (ehdr.e_machine == EM_MIPS
&& ehdr.e_ident[EI_CLASS] == ELFCLASS32) {
arch = ObjectFile::Mips;

View file

@ -47,7 +47,8 @@ class ObjectFile
enum Arch {
UnknownArch,
Alpha,
SPARC,
SPARC64,
SPARC32,
Mips
};

View file

@ -319,6 +319,10 @@ AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);

View file

@ -315,6 +315,10 @@ template
Fault
TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);

View file

@ -254,6 +254,8 @@ class ThreadContext
// Same with st cond failures.
virtual Counter readFuncExeInst() = 0;
virtual void syscall(int64_t callnum) = 0;
// This function exits the thread context in the CPU and returns
// 1 if the CPU has no more active threads (meaning it's OK to exit);
// Used in syscall-emulation mode when a thread calls the exit syscall.
@ -441,6 +443,9 @@ class ProxyThreadContext : public ThreadContext
void setSyscallReturn(SyscallReturn return_value)
{ actualTC->setSyscallReturn(return_value); }
void syscall(int64_t callnum)
{ actualTC->syscall(callnum); }
Counter readFuncExeInst() { return actualTC->readFuncExeInst(); }
#endif

View file

@ -53,6 +53,18 @@ Packet::get()
return d;
}
template<>
inline Twin32_t
Packet::get()
{
Twin32_t d;
assert(staticData || dynamicData);
assert(sizeof(Twin32_t) <= size);
d.a = TheISA::gtoh(*(uint32_t*)data);
d.b = TheISA::gtoh(*((uint32_t*)data + 1));
return d;
}
/** return the value of what is pointed to in the packet. */
template <typename T>

View file

@ -302,20 +302,20 @@ DEFINE_SIM_OBJECT_CLASS_NAME("Process", Process)
void
copyStringArray(vector<string> &strings, Addr array_ptr, Addr data_ptr,
TranslatingPort* memPort)
TranslatingPort* memPort, int ptr_size)
{
Addr data_ptr_swap;
for (int i = 0; i < strings.size(); ++i) {
data_ptr_swap = htog(data_ptr);
memPort->writeBlob(array_ptr, (uint8_t*)&data_ptr_swap, sizeof(Addr));
memPort->writeBlob(array_ptr, (uint8_t*)&data_ptr_swap, ptr_size);
memPort->writeString(data_ptr, strings[i].c_str());
array_ptr += sizeof(Addr);
array_ptr += ptr_size;
data_ptr += strings[i].size() + 1;
}
// add NULL terminator
data_ptr = 0;
memPort->writeBlob(array_ptr, (uint8_t*)&data_ptr, sizeof(Addr));
memPort->writeBlob(array_ptr, (uint8_t*)&data_ptr, ptr_size);
}
LiveProcess::LiveProcess(const string &nm, ObjectFile *_objFile,
@ -475,14 +475,23 @@ LiveProcess::create(const std::string &nm, System *system, int stdin_fd,
fatal("Unknown/unsupported operating system.");
}
#elif THE_ISA == SPARC_ISA
if (objFile->getArch() != ObjectFile::SPARC)
if (objFile->getArch() != ObjectFile::SPARC64 && objFile->getArch() != ObjectFile::SPARC32)
fatal("Object file architecture does not match compiled ISA (SPARC).");
switch (objFile->getOpSys()) {
case ObjectFile::Linux:
process = new SparcLinuxProcess(nm, objFile, system,
if (objFile->getArch() == ObjectFile::SPARC64) {
process = new Sparc64LinuxProcess(nm, objFile, system,
stdin_fd, stdout_fd, stderr_fd,
argv, envp, cwd,
_uid, _euid, _gid, _egid, _pid, _ppid);
_uid, _euid, _gid,
_egid, _pid, _ppid);
} else {
process = new Sparc32LinuxProcess(nm, objFile, system,
stdin_fd, stdout_fd, stderr_fd,
argv, envp, cwd,
_uid, _euid, _gid,
_egid, _pid, _ppid);
}
break;

View file

@ -44,6 +44,7 @@
#include <vector>
#include "base/statistics.hh"
#include "sim/host.hh"
#include "sim/sim_object.hh"
class ThreadContext;
@ -59,7 +60,7 @@ namespace TheISA
void
copyStringArray(std::vector<std::string> &strings, Addr array_ptr,
Addr data_ptr, TranslatingPort* memPort);
Addr data_ptr, TranslatingPort* memPort, int ptr_size = sizeof(Addr));
class Process : public SimObject
{