arm: Make memory ops work on 64bit/128-bit quantities

Multiple instructions assume only 32-bit load operations are available,
this patch increases load sizes to 64-bit or 128-bit for many load pair and
load multiple instructions.
This commit is contained in:
Mitch Hayenga 2014-09-03 07:42:52 -04:00
parent f6f63ec0aa
commit 8f95144e16
6 changed files with 360 additions and 213 deletions

View file

@ -61,14 +61,29 @@ MacroMemOp::MacroMemOp(const char *mnem, ExtMachInst machInst,
{
uint32_t regs = reglist;
uint32_t ones = number_of_ones(reglist);
// Remember that writeback adds a uop or two and the temp register adds one
numMicroops = ones + (writeback ? (load ? 2 : 1) : 0) + 1;
uint32_t mem_ops = ones;
// It's technically legal to do a lot of nothing
if (!ones)
// Copy the base address register if we overwrite it, or if this instruction
// is basically a no-op (we have to do something)
bool copy_base = (bits(reglist, rn) && load) || !ones;
bool force_user = user & !bits(reglist, 15);
bool exception_ret = user & bits(reglist, 15);
bool pc_temp = load && writeback && bits(reglist, 15);
if (!ones) {
numMicroops = 1;
} else if (load) {
numMicroops = ((ones + 1) / 2)
+ ((ones % 2 == 0 && exception_ret) ? 1 : 0)
+ (copy_base ? 1 : 0)
+ (writeback? 1 : 0)
+ (pc_temp ? 1 : 0);
} else {
numMicroops = ones + (writeback ? 1 : 0);
}
microOps = new StaticInstPtr[numMicroops];
uint32_t addr = 0;
if (!up)
@ -81,94 +96,129 @@ MacroMemOp::MacroMemOp(const char *mnem, ExtMachInst machInst,
// Add 0 to Rn and stick it in ureg0.
// This is equivalent to a move.
*uop = new MicroAddiUop(machInst, INTREG_UREG0, rn, 0);
if (copy_base)
*uop++ = new MicroAddiUop(machInst, INTREG_UREG0, rn, 0);
unsigned reg = 0;
unsigned regIdx = 0;
bool force_user = user & !bits(reglist, 15);
bool exception_ret = user & bits(reglist, 15);
while (mem_ops != 0) {
// Do load operations in pairs if possible
if (load && mem_ops >= 2 &&
!(mem_ops == 2 && bits(regs,INTREG_PC) && exception_ret)) {
// 64-bit memory operation
// Find 2 set register bits (clear them after finding)
unsigned reg_idx1;
unsigned reg_idx2;
for (int i = 0; i < ones; i++) {
// Find the next register.
while (!bits(regs, reg))
reg++;
replaceBits(regs, reg, 0);
// Find the first register
while (!bits(regs, reg)) reg++;
replaceBits(regs, reg, 0);
reg_idx1 = force_user ? intRegInMode(MODE_USER, reg) : reg;
regIdx = reg;
if (force_user) {
regIdx = intRegInMode(MODE_USER, regIdx);
}
// Find the second register
while (!bits(regs, reg)) reg++;
replaceBits(regs, reg, 0);
reg_idx2 = force_user ? intRegInMode(MODE_USER, reg) : reg;
// Load into temp reg if necessary
if (reg_idx2 == INTREG_PC && pc_temp)
reg_idx2 = INTREG_UREG1;
// Actually load both registers from memory
*uop = new MicroLdr2Uop(machInst, reg_idx1, reg_idx2,
copy_base ? INTREG_UREG0 : rn, up, addr);
if (!writeback && reg_idx2 == INTREG_PC) {
// No writeback if idx==pc, set appropriate flags
(*uop)->setFlag(StaticInst::IsControl);
(*uop)->setFlag(StaticInst::IsIndirectControl);
if (!(condCode == COND_AL || condCode == COND_UC))
(*uop)->setFlag(StaticInst::IsCondControl);
else
(*uop)->setFlag(StaticInst::IsUncondControl);
}
if (up) addr += 8;
else addr -= 8;
mem_ops -= 2;
} else {
// 32-bit memory operation
// Find register for operation
unsigned reg_idx;
while(!bits(regs, reg)) reg++;
replaceBits(regs, reg, 0);
reg_idx = force_user ? intRegInMode(MODE_USER, reg) : reg;
if (load) {
if (writeback && reg_idx == INTREG_PC) {
// If this instruction changes the PC and performs a
// writeback, ensure the pc load/branch is the last uop.
// Load into a temp reg here.
*uop = new MicroLdrUop(machInst, INTREG_UREG1,
copy_base ? INTREG_UREG0 : rn, up, addr);
} else if (reg_idx == INTREG_PC && exception_ret) {
// Special handling for exception return
*uop = new MicroLdrRetUop(machInst, reg_idx,
copy_base ? INTREG_UREG0 : rn, up, addr);
} else {
// standard single load uop
*uop = new MicroLdrUop(machInst, reg_idx,
copy_base ? INTREG_UREG0 : rn, up, addr);
}
// Loading pc as last operation? Set appropriate flags.
if (!writeback && reg_idx == INTREG_PC) {
(*uop)->setFlag(StaticInst::IsControl);
(*uop)->setFlag(StaticInst::IsIndirectControl);
if (load) {
if (writeback && i == ones - 1) {
// If it's a writeback and this is the last register
// do the load into a temporary register which we'll move
// into the final one later
*++uop = new MicroLdrUop(machInst, INTREG_UREG1, INTREG_UREG0,
up, addr);
} else {
// Otherwise just do it normally
if (reg == INTREG_PC && exception_ret) {
// This must be the exception return form of ldm.
*++uop = new MicroLdrRetUop(machInst, regIdx,
INTREG_UREG0, up, addr);
if (!(condCode == COND_AL || condCode == COND_UC))
(*uop)->setFlag(StaticInst::IsCondControl);
else
(*uop)->setFlag(StaticInst::IsUncondControl);
} else {
*++uop = new MicroLdrUop(machInst, regIdx,
INTREG_UREG0, up, addr);
if (reg == INTREG_PC) {
(*uop)->setFlag(StaticInst::IsControl);
if (!(condCode == COND_AL || condCode == COND_UC))
(*uop)->setFlag(StaticInst::IsCondControl);
else
(*uop)->setFlag(StaticInst::IsUncondControl);
(*uop)->setFlag(StaticInst::IsIndirectControl);
}
}
} else {
*uop = new MicroStrUop(machInst, reg_idx, rn, up, addr);
}
} else {
*++uop = new MicroStrUop(machInst, regIdx, INTREG_UREG0, up, addr);
if (up) addr += 4;
else addr -= 4;
--mem_ops;
}
if (up)
addr += 4;
else
addr -= 4;
// Load/store micro-op generated, go to next uop
++uop;
}
if (writeback && ones) {
// put the register update after we're done all loading
// Perform writeback uop operation
if (up)
*++uop = new MicroAddiUop(machInst, rn, rn, ones * 4);
*uop++ = new MicroAddiUop(machInst, rn, rn, ones * 4);
else
*++uop = new MicroSubiUop(machInst, rn, rn, ones * 4);
*uop++ = new MicroSubiUop(machInst, rn, rn, ones * 4);
// Write PC after address writeback?
if (pc_temp) {
if (exception_ret) {
*uop = new MicroUopRegMovRet(machInst, 0, INTREG_UREG1);
} else {
*uop = new MicroUopRegMov(machInst, INTREG_PC, INTREG_UREG1);
}
(*uop)->setFlag(StaticInst::IsControl);
(*uop)->setFlag(StaticInst::IsIndirectControl);
// If this was a load move the last temporary value into place
// this way we can't take an exception after we update the base
// register.
if (load && reg == INTREG_PC && exception_ret) {
*++uop = new MicroUopRegMovRet(machInst, 0, INTREG_UREG1);
if (!(condCode == COND_AL || condCode == COND_UC))
(*uop)->setFlag(StaticInst::IsCondControl);
else
(*uop)->setFlag(StaticInst::IsUncondControl);
} else if (load) {
*++uop = new MicroUopRegMov(machInst, regIdx, INTREG_UREG1);
if (reg == INTREG_PC) {
(*uop)->setFlag(StaticInst::IsControl);
(*uop)->setFlag(StaticInst::IsCondControl);
(*uop)->setFlag(StaticInst::IsIndirectControl);
// This is created as a RAS POP
if (rn == INTREG_SP)
(*uop)->setFlag(StaticInst::IsReturn);
}
if (rn == INTREG_SP)
(*uop)->setFlag(StaticInst::IsReturn);
++uop;
}
}
--uop;
(*uop)->setLastMicroop();
/* Take the control flags from the last microop for the macroop */
@ -176,16 +226,15 @@ MacroMemOp::MacroMemOp(const char *mnem, ExtMachInst machInst,
setFlag(StaticInst::IsControl);
if ((*uop)->isCondCtrl())
setFlag(StaticInst::IsCondControl);
if ((*uop)->isUncondCtrl())
setFlag(StaticInst::IsUncondControl);
if ((*uop)->isIndirectCtrl())
setFlag(StaticInst::IsIndirectControl);
if ((*uop)->isReturn())
setFlag(StaticInst::IsReturn);
for (StaticInstPtr *curUop = microOps;
!(*curUop)->isLastMicroop(); curUop++) {
MicroOp * uopPtr = dynamic_cast<MicroOp *>(curUop->get());
assert(uopPtr);
uopPtr->setDelayedCommit();
for (StaticInstPtr *uop = microOps; !(*uop)->isLastMicroop(); uop++) {
(*uop)->setDelayedCommit();
}
}
@ -196,95 +245,96 @@ PairMemOp::PairMemOp(const char *mnem, ExtMachInst machInst, OpClass __opClass,
IntRegIndex rn, IntRegIndex rt, IntRegIndex rt2) :
PredMacroOp(mnem, machInst, __opClass)
{
bool post = (mode == AddrMd_PostIndex);
bool writeback = (mode != AddrMd_Offset);
numMicroops = 1 + (size / 4) + (writeback ? 1 : 0);
if (load) {
// Use integer rounding to round up loads of size 4
numMicroops = (post ? 0 : 1) + ((size + 4) / 8) + (writeback ? 1 : 0);
} else {
numMicroops = (post ? 0 : 1) + (size / 4) + (writeback ? 1 : 0);
}
microOps = new StaticInstPtr[numMicroops];
StaticInstPtr *uop = microOps;
bool post = (mode == AddrMd_PostIndex);
rn = makeSP(rn);
*uop = new MicroAddXiSpAlignUop(machInst, INTREG_UREG0, rn, post ? 0 : imm);
if (!post) {
*uop++ = new MicroAddXiSpAlignUop(machInst, INTREG_UREG0, rn,
post ? 0 : imm);
}
if (fp) {
if (size == 16) {
if (load) {
*++uop = new MicroLdrQBFpXImmUop(machInst, rt,
INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*++uop = new MicroLdrQTFpXImmUop(machInst, rt,
INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*++uop = new MicroLdrQBFpXImmUop(machInst, rt2,
INTREG_UREG0, 16, noAlloc, exclusive, acrel);
*++uop = new MicroLdrQTFpXImmUop(machInst, rt2,
INTREG_UREG0, 16, noAlloc, exclusive, acrel);
*uop++ = new MicroLdFp16Uop(machInst, rt,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*uop++ = new MicroLdFp16Uop(machInst, rt2,
post ? rn : INTREG_UREG0, 16, noAlloc, exclusive, acrel);
} else {
*++uop = new MicroStrQBFpXImmUop(machInst, rt,
INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*++uop = new MicroStrQTFpXImmUop(machInst, rt,
INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*++uop = new MicroStrQBFpXImmUop(machInst, rt2,
INTREG_UREG0, 16, noAlloc, exclusive, acrel);
*++uop = new MicroStrQTFpXImmUop(machInst, rt2,
INTREG_UREG0, 16, noAlloc, exclusive, acrel);
*uop++ = new MicroStrQBFpXImmUop(machInst, rt,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*uop++ = new MicroStrQTFpXImmUop(machInst, rt,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*uop++ = new MicroStrQBFpXImmUop(machInst, rt2,
post ? rn : INTREG_UREG0, 16, noAlloc, exclusive, acrel);
*uop++ = new MicroStrQTFpXImmUop(machInst, rt2,
post ? rn : INTREG_UREG0, 16, noAlloc, exclusive, acrel);
}
} else if (size == 8) {
if (load) {
*++uop = new MicroLdrFpXImmUop(machInst, rt,
INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*++uop = new MicroLdrFpXImmUop(machInst, rt2,
INTREG_UREG0, 8, noAlloc, exclusive, acrel);
*uop++ = new MicroLdPairFp8Uop(machInst, rt, rt2,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
} else {
*++uop = new MicroStrFpXImmUop(machInst, rt,
INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*++uop = new MicroStrFpXImmUop(machInst, rt2,
INTREG_UREG0, 8, noAlloc, exclusive, acrel);
*uop++ = new MicroStrFpXImmUop(machInst, rt,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*uop++ = new MicroStrFpXImmUop(machInst, rt2,
post ? rn : INTREG_UREG0, 8, noAlloc, exclusive, acrel);
}
} else if (size == 4) {
if (load) {
*++uop = new MicroLdrDFpXImmUop(machInst, rt, rt2,
INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*uop++ = new MicroLdrDFpXImmUop(machInst, rt, rt2,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
} else {
*++uop = new MicroStrDFpXImmUop(machInst, rt, rt2,
INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*uop++ = new MicroStrDFpXImmUop(machInst, rt, rt2,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
}
}
} else {
if (size == 8) {
if (load) {
*++uop = new MicroLdrXImmUop(machInst, rt, INTREG_UREG0,
0, noAlloc, exclusive, acrel);
*++uop = new MicroLdrXImmUop(machInst, rt2, INTREG_UREG0,
size, noAlloc, exclusive, acrel);
*uop++ = new MicroLdPairUop(machInst, rt, rt2,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
} else {
*++uop = new MicroStrXImmUop(machInst, rt, INTREG_UREG0,
*uop++ = new MicroStrXImmUop(machInst, rt, post ? rn : INTREG_UREG0,
0, noAlloc, exclusive, acrel);
*++uop = new MicroStrXImmUop(machInst, rt2, INTREG_UREG0,
*uop++ = new MicroStrXImmUop(machInst, rt2, post ? rn : INTREG_UREG0,
size, noAlloc, exclusive, acrel);
}
} else if (size == 4) {
if (load) {
if (signExt) {
*++uop = new MicroLdrDSXImmUop(machInst, rt, rt2,
INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*uop++ = new MicroLdrDSXImmUop(machInst, rt, rt2,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
} else {
*++uop = new MicroLdrDUXImmUop(machInst, rt, rt2,
INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*uop++ = new MicroLdrDUXImmUop(machInst, rt, rt2,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
}
} else {
*++uop = new MicroStrDXImmUop(machInst, rt, rt2,
INTREG_UREG0, 0, noAlloc, exclusive, acrel);
*uop++ = new MicroStrDXImmUop(machInst, rt, rt2,
post ? rn : INTREG_UREG0, 0, noAlloc, exclusive, acrel);
}
}
}
if (writeback) {
*++uop = new MicroAddXiUop(machInst, rn, INTREG_UREG0,
*uop++ = new MicroAddXiUop(machInst, rn, post ? rn : INTREG_UREG0,
post ? imm : 0);
}
(*uop)->setLastMicroop();
assert(uop == &microOps[numMicroops]);
(*--uop)->setLastMicroop();
for (StaticInstPtr *curUop = microOps;
!(*curUop)->isLastMicroop(); curUop++) {
@ -297,18 +347,19 @@ BigFpMemImmOp::BigFpMemImmOp(const char *mnem, ExtMachInst machInst,
IntRegIndex base, int64_t imm) :
PredMacroOp(mnem, machInst, __opClass)
{
numMicroops = 2;
numMicroops = load ? 1 : 2;
microOps = new StaticInstPtr[numMicroops];
StaticInstPtr *uop = microOps;
if (load) {
microOps[0] = new MicroLdrQBFpXImmUop(machInst, dest, base, imm);
microOps[1] = new MicroLdrQTFpXImmUop(machInst, dest, base, imm);
*uop = new MicroLdFp16Uop(machInst, dest, base, imm);
} else {
microOps[0] = new MicroStrQBFpXImmUop(machInst, dest, base, imm);
microOps[1] = new MicroStrQTFpXImmUop(machInst, dest, base, imm);
*uop = new MicroStrQBFpXImmUop(machInst, dest, base, imm);
(*uop)->setDelayedCommit();
*++uop = new MicroStrQTFpXImmUop(machInst, dest, base, imm);
}
microOps[0]->setDelayedCommit();
microOps[1]->setLastMicroop();
(*uop)->setLastMicroop();
}
BigFpMemPostOp::BigFpMemPostOp(const char *mnem, ExtMachInst machInst,
@ -316,21 +367,24 @@ BigFpMemPostOp::BigFpMemPostOp(const char *mnem, ExtMachInst machInst,
IntRegIndex base, int64_t imm) :
PredMacroOp(mnem, machInst, __opClass)
{
numMicroops = 3;
numMicroops = load ? 2 : 3;
microOps = new StaticInstPtr[numMicroops];
if (load) {
microOps[0] = new MicroLdrQBFpXImmUop(machInst, dest, base, 0);
microOps[1] = new MicroLdrQTFpXImmUop(machInst, dest, base, 0);
} else {
microOps[0] = new MicroStrQBFpXImmUop(machInst, dest, base, 0);
microOps[1] = new MicroStrQTFpXImmUop(machInst, dest, base, 0);
}
microOps[2] = new MicroAddXiUop(machInst, base, base, imm);
StaticInstPtr *uop = microOps;
microOps[0]->setDelayedCommit();
microOps[1]->setDelayedCommit();
microOps[2]->setLastMicroop();
if (load) {
*uop++ = new MicroLdFp16Uop(machInst, dest, base, 0);
} else {
*uop++= new MicroStrQBFpXImmUop(machInst, dest, base, 0);
*uop++ = new MicroStrQTFpXImmUop(machInst, dest, base, 0);
}
*uop = new MicroAddXiUop(machInst, base, base, imm);
(*uop)->setLastMicroop();
for (StaticInstPtr *curUop = microOps;
!(*curUop)->isLastMicroop(); curUop++) {
(*curUop)->setDelayedCommit();
}
}
BigFpMemPreOp::BigFpMemPreOp(const char *mnem, ExtMachInst machInst,
@ -338,21 +392,24 @@ BigFpMemPreOp::BigFpMemPreOp(const char *mnem, ExtMachInst machInst,
IntRegIndex base, int64_t imm) :
PredMacroOp(mnem, machInst, __opClass)
{
numMicroops = 3;
numMicroops = load ? 2 : 3;
microOps = new StaticInstPtr[numMicroops];
if (load) {
microOps[0] = new MicroLdrQBFpXImmUop(machInst, dest, base, imm);
microOps[1] = new MicroLdrQTFpXImmUop(machInst, dest, base, imm);
} else {
microOps[0] = new MicroStrQBFpXImmUop(machInst, dest, base, imm);
microOps[1] = new MicroStrQTFpXImmUop(machInst, dest, base, imm);
}
microOps[2] = new MicroAddXiUop(machInst, base, base, imm);
StaticInstPtr *uop = microOps;
microOps[0]->setDelayedCommit();
microOps[1]->setDelayedCommit();
microOps[2]->setLastMicroop();
if (load) {
*uop++ = new MicroLdFp16Uop(machInst, dest, base, imm);
} else {
*uop++ = new MicroStrQBFpXImmUop(machInst, dest, base, imm);
*uop++ = new MicroStrQTFpXImmUop(machInst, dest, base, imm);
}
*uop = new MicroAddXiUop(machInst, base, base, imm);
(*uop)->setLastMicroop();
for (StaticInstPtr *curUop = microOps;
!(*curUop)->isLastMicroop(); curUop++) {
(*curUop)->setDelayedCommit();
}
}
BigFpMemRegOp::BigFpMemRegOp(const char *mnem, ExtMachInst machInst,
@ -361,23 +418,23 @@ BigFpMemRegOp::BigFpMemRegOp(const char *mnem, ExtMachInst machInst,
ArmExtendType type, int64_t imm) :
PredMacroOp(mnem, machInst, __opClass)
{
numMicroops = 2;
numMicroops = load ? 1 : 2;
microOps = new StaticInstPtr[numMicroops];
StaticInstPtr *uop = microOps;
if (load) {
microOps[0] = new MicroLdrQBFpXRegUop(machInst, dest, base,
offset, type, imm);
microOps[1] = new MicroLdrQTFpXRegUop(machInst, dest, base,
offset, type, imm);
*uop = new MicroLdFp16RegUop(machInst, dest, base,
offset, type, imm);
} else {
microOps[0] = new MicroStrQBFpXRegUop(machInst, dest, base,
offset, type, imm);
microOps[1] = new MicroStrQTFpXRegUop(machInst, dest, base,
offset, type, imm);
*uop = new MicroStrQBFpXRegUop(machInst, dest, base,
offset, type, imm);
(*uop)->setDelayedCommit();
*++uop = new MicroStrQTFpXRegUop(machInst, dest, base,
offset, type, imm);
}
microOps[0]->setDelayedCommit();
microOps[1]->setLastMicroop();
(*uop)->setLastMicroop();
}
BigFpMemLitOp::BigFpMemLitOp(const char *mnem, ExtMachInst machInst,
@ -385,14 +442,11 @@ BigFpMemLitOp::BigFpMemLitOp(const char *mnem, ExtMachInst machInst,
int64_t imm) :
PredMacroOp(mnem, machInst, __opClass)
{
numMicroops = 2;
numMicroops = 1;
microOps = new StaticInstPtr[numMicroops];
microOps[0] = new MicroLdrQBFpXLitUop(machInst, dest, imm);
microOps[1] = new MicroLdrQTFpXLitUop(machInst, dest, imm);
microOps[0]->setDelayedCommit();
microOps[1]->setLastMicroop();
microOps[0] = new MicroLdFp16LitUop(machInst, dest, imm);
microOps[0]->setLastMicroop();
}
VldMultOp::VldMultOp(const char *mnem, ExtMachInst machInst, OpClass __opClass,
@ -1538,4 +1592,20 @@ MicroMemOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
return ss.str();
}
std::string
MicroMemPairOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss);
printReg(ss, dest);
ss << ",";
printReg(ss, dest2);
ss << ", [";
printReg(ss, urb);
ss << ", ";
ccprintf(ss, "#%d", imm);
ss << "]";
return ss.str();
}
}

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2010-2013 ARM Limited
* Copyright (c) 2010-2014 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
@ -395,6 +395,26 @@ class MicroMemOp : public MicroIntImmOp
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
class MicroMemPairOp : public MicroOp
{
protected:
RegIndex dest, dest2, urb;
bool up;
int32_t imm;
unsigned memAccessFlags;
MicroMemPairOp(const char *mnem, ExtMachInst machInst, OpClass __opClass,
RegIndex _dreg1, RegIndex _dreg2, RegIndex _base,
bool _up, uint8_t _imm)
: MicroOp(mnem, machInst, __opClass),
dest(_dreg1), dest2(_dreg2), urb(_base), up(_up), imm(_imm),
memAccessFlags(TLB::MustBeOne | TLB::AlignWord)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
/**
* Base class for microcoded integer memory instructions.
*/

View file

@ -1,6 +1,6 @@
// -*- mode:c++ -*-
// Copyright (c) 2011-2013 ARM Limited
// Copyright (c) 2011-2014 ARM Limited
// All rights reserved
//
// The license below extends only to copyright in the software and shall
@ -187,35 +187,32 @@ let {{
AA64FpDestP2_uw = 0;
AA64FpDestP3_uw = 0;
'''
elif self.size == 8 or (self.size == 16 and not self.top):
elif self.size == 8:
accCode = '''
uint64_t data = cSwap(Mem%s,
isBigEndian64(xc->tcBase()));
AA64FpDestP0_uw = (uint32_t)data;
AA64FpDestP1_uw = (data >> 32);
AA64FpDestP2_uw = 0;
AA64FpDestP3_uw = 0;
'''
# Only zero out the other half if this isn't part of a
# pair of 8 byte loads implementing a 16 byte load.
if self.size == 8:
accCode += '''
AA64FpDestP2_uw = 0;
AA64FpDestP3_uw = 0;
'''
elif self.size == 16 and self.top:
elif self.size == 16:
accCode = '''
uint64_t data = cSwap(Mem%s,
isBigEndian64(xc->tcBase()));
AA64FpDestP2_uw = (uint32_t)data;
AA64FpDestP3_uw = (data >> 32);
Twin64_t data = cSwap(Mem%s,
isBigEndian64(xc->tcBase()));
AA64FpDestP0_uw = (uint32_t)data.a;
AA64FpDestP1_uw = (data.a >> 32);
AA64FpDestP2_uw = (uint32_t)data.b;
AA64FpDestP3_uw = (data.b >> 32);
'''
elif self.flavor == "widen" or self.size == 8:
accCode = "XDest = cSwap(Mem%s, isBigEndian64(xc->tcBase()));"
else:
accCode = "WDest = cSwap(Mem%s, isBigEndian64(xc->tcBase()));"
if self.size == 16:
accCode = accCode % buildMemSuffix(self.sign, 8)
else:
accCode = accCode % buildMemSuffix(self.sign, self.size)
accCode = accCode % buildMemSuffix(self.sign, self.size)
self.codeBlobs["memacc_code"] = accCode
@ -231,17 +228,29 @@ let {{
# Code that actually handles the access
if self.flavor == "fp":
accCode = '''
uint64_t data = cSwap(Mem_ud, isBigEndian64(xc->tcBase()));
AA64FpDestP0_uw = (uint32_t)data;
AA64FpDestP1_uw = 0;
AA64FpDestP2_uw = 0;
AA64FpDestP3_uw = 0;
AA64FpDest2P0_uw = (data >> 32);
AA64FpDest2P1_uw = 0;
AA64FpDest2P2_uw = 0;
AA64FpDest2P3_uw = 0;
'''
if self.size == 4:
accCode = '''
uint64_t data = cSwap(Mem_ud, isBigEndian64(xc->tcBase()));
AA64FpDestP0_uw = (uint32_t)data;
AA64FpDestP1_uw = 0;
AA64FpDestP2_uw = 0;
AA64FpDestP3_uw = 0;
AA64FpDest2P0_uw = (data >> 32);
AA64FpDest2P1_uw = 0;
AA64FpDest2P2_uw = 0;
AA64FpDest2P3_uw = 0;
'''
elif self.size == 8:
accCode = '''
AA64FpDestP0_uw = (uint32_t)Mem_tud.a;
AA64FpDestP1_uw = (uint32_t)(Mem_tud.a >> 32);
AA64FpDestP2_uw = 0;
AA64FpDestP3_uw = 0;
AA64FpDest2P0_uw = (uint32_t)Mem_tud.b;
AA64FpDest2P1_uw = (uint32_t)(Mem_tud.b >> 32);
AA64FpDest2P2_uw = 0;
AA64FpDest2P3_uw = 0;
'''
else:
if self.sign:
if self.size == 4:
@ -253,8 +262,8 @@ let {{
'''
elif self.size == 8:
accCode = '''
XDest = sext<64>(Mem_tud.a);
XDest2 = sext<64>(Mem_tud.b);
XDest = Mem_tud.a;
XDest2 = Mem_tud.b;
'''
else:
if self.size == 4:
@ -416,6 +425,11 @@ let {{
decConstBase = 'LoadStoreLitU64'
micro = True
LoadImmDU64("ldp_uop", "MicroLdPairUop", 8).emit()
LoadImmDU64("ldp_fp8_uop", "MicroLdPairFp8Uop", 8, flavor="fp").emit()
LoadImmU64("ldfp16_uop", "MicroLdFp16Uop", 16, flavor="fp").emit()
LoadReg64("ldfp16reg_uop", "MicroLdFp16RegUop", 16, flavor="fp").emit()
LoadImmDouble64("ldaxp", "LDAXPW64", 4, flavor="acexp").emit()
LoadImmDouble64("ldaxp", "LDAXPX64", 8, flavor="acexp").emit()
LoadImmDouble64("ldxp", "LDXPW64", 4, flavor="exp").emit()
@ -428,18 +442,8 @@ let {{
LoadRegU64("ldrfpxr_uop", "MicroLdrFpXRegUop", 8, flavor="fp").emit()
LoadLitU64("ldrfpxl_uop", "MicroLdrFpXLitUop", 8, literal=True,
flavor="fp").emit()
LoadImmU64("ldrqbfpxi_uop", "MicroLdrQBFpXImmUop",
16, flavor="fp", top = False).emit()
LoadRegU64("ldrqbfpxr_uop", "MicroLdrQBFpXRegUop",
16, flavor="fp", top = False).emit()
LoadLitU64("ldrqbfpxl_uop", "MicroLdrQBFpXLitUop",
16, literal=True, flavor="fp", top = False).emit()
LoadImmU64("ldrqtfpxi_uop", "MicroLdrQTFpXImmUop",
16, flavor="fp", top = True).emit()
LoadRegU64("ldrqtfpxr_uop", "MicroLdrQTFpXRegUop",
16, flavor="fp", top = True).emit()
LoadLitU64("ldrqtfpxl_uop", "MicroLdrQTFpXLitUop",
16, literal=True, flavor="fp", top = True).emit()
LoadLitU64("ldfp16_lit__uop", "MicroLdFp16LitUop",
16, literal=True, flavor="fp").emit()
LoadImmDU64("ldrduxi_uop", "MicroLdrDUXImmUop", 4, sign=False).emit()
LoadImmDU64("ldrdsxi_uop", "MicroLdrDSXImmUop", 4, sign=True).emit()
LoadImmDU64("ldrdfpxi_uop", "MicroLdrDFpXImmUop", 4, flavor="fp").emit()

View file

@ -1,6 +1,6 @@
// -*- mode:c++ -*-
// Copyright (c) 2010-2013 ARM Limited
// Copyright (c) 2010-2014 ARM Limited
// All rights reserved
//
// The license below extends only to copyright in the software and shall
@ -55,6 +55,18 @@ let {{
'predicate_test': predicateTest},
['IsMicroop'])
microLdr2UopCode = '''
uint64_t data = Mem_ud;
Dest = cSwap((uint32_t) data, ((CPSR)Cpsr).e);
Dest2 = cSwap((uint32_t) (data >> 32), ((CPSR)Cpsr).e);
'''
microLdr2UopIop = InstObjParams('ldr2_uop', 'MicroLdr2Uop',
'MicroMemPairOp',
{'memacc_code': microLdr2UopCode,
'ea_code': 'EA = URb + (up ? imm : -imm);',
'predicate_test': predicateTest},
['IsMicroop'])
microLdrFpUopCode = "Fa_uw = cSwap(Mem_uw, ((CPSR)Cpsr).e);"
microLdrFpUopIop = InstObjParams('ldrfp_uop', 'MicroLdrFpUop',
'MicroMemOp',
@ -159,8 +171,8 @@ let {{
header_output = decoder_output = exec_output = ''
loadIops = (microLdrUopIop, microLdrRetUopIop, microLdrFpUopIop,
microLdrDBFpUopIop, microLdrDTFpUopIop)
loadIops = (microLdrUopIop, microLdrRetUopIop,
microLdrFpUopIop, microLdrDBFpUopIop, microLdrDTFpUopIop)
storeIops = (microStrUopIop, microStrFpUopIop,
microStrDBFpUopIop, microStrDTFpUopIop)
for iop in loadIops + storeIops:
@ -174,6 +186,12 @@ let {{
exec_output += StoreExecute.subst(iop) + \
StoreInitiateAcc.subst(iop) + \
StoreCompleteAcc.subst(iop)
header_output += MicroMemPairDeclare.subst(microLdr2UopIop)
decoder_output += MicroMemPairConstructor.subst(microLdr2UopIop)
exec_output += LoadExecute.subst(microLdr2UopIop) + \
LoadInitiateAcc.subst(microLdr2UopIop) + \
LoadCompleteAcc.subst(microLdr2UopIop)
}};
let {{

View file

@ -193,7 +193,9 @@ let {{
return Name
def buildMemSuffix(sign, size):
if size == 8:
if size == 16:
memSuffix = '_tud'
elif size == 8:
memSuffix = '_ud'
elif size == 4:
if sign:

View file

@ -1,6 +1,6 @@
// -*- mode:c++ -*-
// Copyright (c) 2010-2013 ARM Limited
// Copyright (c) 2010-2014 ARM Limited
// All rights reserved
//
// The license below extends only to copyright in the software and shall
@ -77,6 +77,39 @@ def template MicroMemConstructor {{
}
}};
def template MicroMemPairDeclare {{
class %(class_name)s : public %(base_class)s
{
public:
%(class_name)s(ExtMachInst machInst,
RegIndex _dreg1, RegIndex _dreg2, RegIndex _base,
bool _up, uint8_t _imm);
%(BasicExecDeclare)s
%(InitiateAccDeclare)s
%(CompleteAccDeclare)s
};
}};
def template MicroMemPairConstructor {{
%(class_name)s::%(class_name)s(ExtMachInst machInst,
RegIndex _dreg1,
RegIndex _dreg2,
RegIndex _base,
bool _up,
uint8_t _imm)
: %(base_class)s("%(mnemonic)s", machInst, %(op_class)s,
_dreg1, _dreg2, _base, _up, _imm)
{
%(constructor)s;
if (!(condCode == COND_AL || condCode == COND_UC)) {
for (int x = 0; x < _numDestRegs; x++) {
_srcRegIdx[_numSrcRegs++] = _destRegIdx[x];
}
}
}
}};
////////////////////////////////////////////////////////////////////
//
// Neon load/store microops